

An introduction to heavy-ion physics France-China Summer School 2017

The basics ...

From the Standard Model of Particle Physics to Big Bang cosmology

Modern physics describes the Universe at all scale

Modern physics describes the Universe at all scale From 10^{28} cm \cdots

Modern physics describes the Universe at all scale \cdots down to 10^{-18} cm \cdots

Modern physics describes the Universe at all scale … using 4 fundamental interactions

Gravity

General relativity

ALICE[©] | IPHC | July 2017 | Yves Schutz

 $\mathcal{L}_{SM} =$

Strong, Electromagnetic, Weak

 $(G_1 \bar{L}\phi R + G_2 \bar{L}\phi_c R + h.c.$

fermion masses and couplings to Higgs

Relativistic quantum field theory: the Standard Model

cinetic energies and self-interactions of the gauge boson

kinetic energies and electroweak interactions of fermions

 $\frac{1}{2} \left| (i\partial_{\mu} - \frac{1}{2}g\tau \cdot \mathbf{W}_{\mu} - \frac{1}{2}g'YB_{\mu})\phi \right|^2 - V(\phi)$

 $W^{\pm}, Z, \gamma,$ and Higgs masses and couplings

interactions between quarks and gluons

8

ALICE

Standard Model of Elementary Particles

The heavy-ion scientific program is about the Strong Interaction

- Quantum Chromodynamics (QCD) is the relevant theory
- Quarks and Gluons are the characters of the story

QCD primer

Mass is generated through symmetry breaking phase transition

- Bare mass: electroweak phase transition, interaction with the Higgs field
- Composite mass: chiral symmetry spontaneously broken, non vanishing mass of the chiral condensate

Color charge

- Color charge (R, G, B) is the relevant charge for the strong interaction
 - Only color singlet (color neutral) states appear in nature
 - This is called confinement: there exists no ab initio rigorous mathematical proof
- Quarks (fermions) degrees of freedom
 - 6 flavors
 - 3 colors
 - 2 charge states
 - 2 spin states

Gluon

- The mediator of the strong interaction
 - gluon interact among themselves: asymptotic freedom, color confinement, chiral symmetry breaking
- Gluon (boson) degrees of freedom
 - 8 choices of colors
 - 2 helicity states

15

Vacuum polarisation

Remember QED

Vacuum polarisation **QCD** is different

Asymptotic freedom

At short distance

• Vacuum polarization makes the interaction stronger (qq screening)

 Non linear gluon interaction makes the interaction weaker (gg anti screening)

Chiral symmetry

• QCD vacuum

An intrinsic symmetry of QCD for massless quarks: the strong interaction does not couple the left- and right-handed quarks

• True vacuum

Quarks acquire mass through the spontaneous breaking of the symmetry

Explore the QCD vacuum

- If color charge density becomes sufficiently high, Debye screening (electric charge in a plasma) weakens the interaction also at large distance !
- The system becomes a color conductor with free color charges: we call such a system the Quark Gluon Plasma (QGP)

$$V(r) = \frac{e^{(-r/r_{Debye})}}{r}, r_{Debye} = \frac{1}{gT}$$

Does such a system exist?

- At very early times in the history of the Universe, temperature was high enough T \approx 100 GeV (electroweak phase transition)
 - All particles of the SM are relativistic
 - $N_{\text{particles}} = N_{\text{particles}}$ (chemical potential $\mu = 0$)
 - Quarks interaction is weak
 - Chiral symmetry

« In high-energy physics we have concentrated on experiments in which we distributed a higher and higher amount of energy into a region with smaller and smaller dimensions. In order to study the question of 'vacuum' we must turn in a different direction; we should investigate some bulk phenomena by distributing high energy over a relatively large volume »

-T.D. Lee, Rev. Mod. Phys. 47 (1975)

QGP: a new state of matter

- Transformation of nuclear matter into deconfined phase at high T (if temperature and/or nuclear densities are high enough quarks and gluons become free)
- Quark Gluon Plasma
 - Ideal gas: no interaction between quarks and gluons
 - Liquid: significant interactions between quarks and gluons

- ✓ µ_B = baryon chemical potential; measure of net baryon density
- ✓ T_c = critical temperature [150 - 200 MeV @ μ_B = 0]
- ρ_B = critical density [0.5 2 baryons/fm³]

Thermodynamics of strongly interacting matter

How does the complexity of the phase diagram of matter emerge from the dynamics of the strong interaction ?

160 MeV

Thermodynamics of strongly interacting matter at LHC temperature

QGP: **Color deconfined Chiral symmetric**

hadron gas: **Color confined Chiral symmetry broken**

μB

Statistical QCD

Heavy-ion collisions

Thermodynamics primer

• Energy density (free hot gas, µ neglected)

$$\epsilon_{i} = \int \frac{d^{3}p_{i}}{(2\pi)^{3}} \frac{E_{i}}{e^{\beta E_{i}} \pm 1}$$
Fermions or bosons

• At high T (ignoring masses)

$$\epsilon = \sum_{i} g_{i} \epsilon_{i} = \frac{\pi^{2}}{30} N \left(k_{B}T\right)^{4}$$

$$g_{luons}$$

$$N = 2 \times 8 + 4 \times 3 \times n_{F}$$

pions only

- QGP:
- Hadrons: N = 3

Established facts: theory

Z₃ symmetry restored

Chiral symmetry restored

smooth transition from HG to QGP

quarks mass reverts to Higgs mass

 $T = 154 \pm 9 MeV$

Established facts: experiment

Matter created at LHC :

- hottest matter created in laboratory (T > 300 MeV)
- has the properties of a liquid (strongly coupled)
- the most perfect perfect liquid (non dissipative)

The ALICE core mandate

Establish the fundamental properties of strongly interacting matter through measurements

- complete ($p_t \sim T \oplus PID \oplus p_t \gg \Lambda_{QCD}$)
- precision

Standard strategy

- Large and dense: heavy-ion physics
 - AA → pQCD + Npdf + FF + collectivity

- Small and dilute: comparison measurement
 - ▷ pp → pQCD + pdf + FF
 - ▷ pA → pQCD + Npdf + FF

Cosmics

Temperature

► T_{eff} = 297 ± 12^{stat} ± 42^{syst} MeV

μB

A Large Ion Collider Experiment

temperature

Net baryon number

μB

Particle to anti-particle ratio = 1

μ ~ 0

Final state QGP _ (τ₀< 1 fm/c) ALICE Run:244918 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb Energy: 5.02 TeV

36

How to decipher?

- Global characteristics
 - mass density Ω, age

- Global characteristics
 - Energy density, size, lifetime

- Global characteristics
 - mass density Ω, age
- Expansion (galaxies)
 - Huble flow

- Global characteristics
 - Energy density, size, lifetime
- Expansion (hadrons)
 - Particles flow, π interferometry

- Expansion (galaxies)
 - Huble flow
- Primordial nucleosynthesis (H, He, Li)
 - Thermodynamics at T ~ 100 s

- Expansion (hadrons)
 - Particles flow, π interferometry
- Hadrochemistry (π, K, p ratios)
 - Thermodynamics at $\tau \sim 10^{-21}$ s

- Primordial nucleosynthesis (H, He, Li)
 - Thermodynamics at τ ~ 100 s
- Large scale structures
 - Density fluctuations

- Hadrochemistry (π, K, p ratios)
 - Thermodynamics at $\tau \sim 10^{-21}$ s
- Event structures
 - Fluctuations at phase transition

- Large scale structures
 - Density fluctuations
- Cosmic microwave background
 - Temperature at decoupling

COBE (Cosmic Background Explorer)

- Event structures
 - Fluctuations at phase transition
- Thermal radiation (γ, I⁺I⁻)
 - Time evolution of temperature

Black body radiation

- Cosmic microwave background
 - Temperature at decoupling
- Temperatures fluctuations
 - Origin of big structures

WMAP (Wilkinson Microwave Anisotropy Probe)

- Thermal radiation
 - Time evolution of temperature
- Tomography of QGP
 - Jet quenching, color screening

HIC dynamics

Multiplicity Geometry beam rest from the second s

(τ₀< 1 fm/c)

$\frac{1/N_{ev}}{1} \frac{1}{(2\pi\rho_{T})} \frac{d^{2}N}{d^{2}N} \frac{d\rho_{T}}{d\rho_{T}} \frac{dy}{d\rho_{T}} [(GeV/c)^{-2}]$ 10⁶ π Range of combined fit 10⁵ (a) 0-5% positive negative 10⁻² combined fit 33_{0,}, individual fit 80-90% 10⁻³ 2.5 3 1.5 0 0.5 2 1 $p_{_{\rm T}}$ (GeV/c) -PUB-5657

Kinetic freeze out

 $(\tau_0 < 1 \text{ fm/c})$

۱0⁶ $1/N_{ev} 1/(2\pi\rho_T) d^2 N/(d\rho_T dy) [(GeV/c)^2]$ π Range of combined fit **^**5 -10° Κ Range of combined fit (b) -5% positive negative combined fit 10⁻³ individual fit CIC 80-90% 10-4 2.5 3 1.5 0 0.5 2 1 $p_{_{\rm T}}$ (GeV/c) AT.T-PIIB-56578

Kinetic freeze out

Kinetic freeze out

QGP

 $(\tau_0 < 1 \text{ fm/c})$

 $T_{kfo} \sim 100 \; MeV \\ \beta_T \sim 0,65c$

49

- (τ₀< 1 fm/c)

Hadron gas

$T_{cfo} \sim 155 \; MeV$

_ (τ₀< 1 fm/c)

soft: p_T~ T, Λ_{QCD}

probe the collective properties of QGP

Dissipation in a perfect fluid is minimal: QGP is transparent to IS quantum fluctuations

x [fm]

IS: weakly coupled pure gauge field + quantum fluctuations

classical field dynamics + non dissipative hydrodynamics

Dissipation in a perfect fluid is minimal: QGP is transparent to IS quantum fluctuations

53

Matter in Universe

Dissipation in a perfect fluid is minimal: from CMB T fluctuations to matter distribution

Pb+Pb @ 2.76 TeV

55

_ (τ₀< 1 fm/c)

hard: p_T , $m_T \gg T$, Λ_{QCD}

probe QGP at high resolution scale

Parton shower

- high p_T, m_T created in initial hard scattering
- develop a partonic shower and hadronize at Λ_{QCD} scale

- high p_T, m_T created in initial hard scattering
- develop a partonic shower and hadronize at Λ_{QCD} scale
- probe QGP at small scale

color density, transport properties, degrees of freedom

 $R_{AA}(p_{T}) = \frac{1}{T_{AA}} \frac{d^{2}Nch/d\eta dp_{T}}{d^{2}\sigma_{ch}^{pp}/d\eta dp_{T}}$ how different is AA from $\Sigma_{A}pp$

- single hadron

- single hadron \rightarrow full jet

- single hadron \rightarrow full jet
- Identified hadrons

- single hadron \rightarrow full jet
- Identified hadrons
- g, q (u, d, s, c, b)

- 2 R=0.2/R=0.3 **PbPb 0-10%** Pb-Pb vs_{NN}=2.76 TeV 1.8 PbPb 50-80% 1.6 **Pythia** 1.4 1.2 0.8 0.6 **Charged Jets** 0.4 correlated uncertainty Anti-k_T 0.2 $p_{T}^{track} > 0.15 \text{ GeV/c}$ shape uncertainty 00 20 40 60 100 80 $p_{\tau}^{charged}$ (GeV/c) ALI-PREL-26887
- single hadron \rightarrow full jet
- Identified hadrons
- g, q (u, d, s, c, b)
- jet shape

- single hadron \rightarrow full jet
- Identified hadrons
- g, q (u, d, s, c, b)
- jet shape
- correlations

- (τ₀< 1 fm/*c*)

LHC discovery QGP in small systems ?

66

LHC discovery QGP in small systems ?

LHC discovery QGP in small systems ?

Most of features observed in AA and attributed to collective effects ... also observed in high M pA and pp

67

LHC discovery QGP in small systems ?

Long range correlations

Elliptic flow

LHC discovery QGP in small systems ?

strangeness

enhancement

LHC discovery QGP in small systems ?

LHC discovery QGP in small systems ?

baryon to meson enhancement

LHC discovery QGP in small systems ?

QGP

- (τ₀< 1 fm/c)

LHC discovery Towards a new paradigm?

Most of features observed in AA and attributed to collective effects ... also observed in high M pA and pp

