

An introduction to heavy-ion physics France-China Summer School 2017

1

The basics …

From the Standard Model of Particle Physics to Big Bang cosmology

Modern physics describes the Universe at all scale

Modern physics describes the Universe at all scale From 10^{28} cm \cdots

Modern physics describes the Universe at all scale ... down to 10⁻¹⁸ cm $\ddot{\bullet}$

Modern physics describes the Universe at all scale ... using 4 fundamental interactions

Gravity

General relativity

ALICE[®] | IPHC | July 2017 | Yves Schutz

 $\mathcal{L}_{SM} =$

Strong, Electromagnetic, Weak

Relativistic quantum field theory: the Standard Model

Standard Model of Elementary Particles

The heavy-ion scientific program is about the Strong Interaction

- Quantum Chromodynamics (QCD) is the relevant theory
- Quarks and Gluons are the characters of the story

QCD primer

Mass is generated through symmetry breaking phase transition

- Bare mass: electroweak phase transition, interaction with the Higgs field
- Composite mass: chiral symmetry spontaneously broken, non vanishing mass of the chiral condensate

Color charge

- Color charge $(**R**, **G**, **B**)$ is the relevant charge for the strong interaction
	- Only color singlet (color neutral) states appear in nature
	- This is called confinement: there exists no ab initio rigorous mathematical proof
- Quarks (fermions) degrees of freedom
	- 6 flavors
	- 3 colors
	- 2 charge states
	- 2 spin states

- The mediator of the strong interaction
	- gluon interact among themselves: asymptotic freedom, color confinement, chiral symmetry breaking
- Gluon (boson) degrees of freedom
	- 8 choices of colors
	- 2 helicity states

15

Vacuum polarisation

Remember QED

Vacuum polarisation QCD is different

Asymptotic freedom

At short distance

• Vacuum polarization makes the interaction stronger (qq screening) -
-
2

• Non linear gluon interaction makes the interaction weaker (gg anti screening) -
-
2 |

Chiral symmetry

• QCD vacuum

An intrinsic symmetry of QCD for massless quarks: the strong interaction does not couple the left- and right-handed quarks

• True vacuum

Quarks acquire mass through the spontaneous breaking of the symmetry

Explore the QCD vacuum

- If color charge density becomes sufficiently high, Debye screening (electric charge in a plasma) weakens the interaction also at large distance !
- The system becomes a color conductor with free color charges: we call such a system the Quark Gluon Plasma (QGP)

$$
V(r) = \frac{e^{(-r/r_{\text{p}dye})}}{r}, r_{\text{p}dye} = \frac{1}{gT} \approx 1
$$

Does such a system exist ?

- At very early times in the history of the Universe, temperature was high enough $T \approx 100$ GeV (electroweak phase transition)
	- All particles of the SM are relativistic
	- $N_{particles} = N_{particles}$ (chemical potential $\mu = 0$) $\frac{1}{2}$
	- Quarks interaction is weak
	- **Chiral symmetry**

« In high-energy physics we have concentrated on experiments in which we distributed a higher and higher amount of energy into a region with smaller and smaller dimensions. In order to study the question of 'vacuum' we must turn in a different direction; we should investigate some bulk phenomena by distributing high energy over a relatively large volume »

-T.D. Lee, Rev. Mod. Phys. 47 (1975)

QGP: a new state of matter

- Transformation of nuclear matter into deconfined phase at high T (*if temperature and/or nuclear densities are high enough quarks and gluons become free*)
- Quark Gluon Plasma
	- Ideal gas: no interaction between quarks and gluons
	- Liquid: significant interactions between quarks and gluons

- \mathbf{v} μ _B = baryon chemical potential; measure of net baryon density
- \checkmark T_c = critical temperature [150 $- 200$ MeV \textcircled{e} $\mu_{\text{B}} = 0$]
- \checkmark p_B = critical density [0.5 2 baryons/fm3]

Thermodynamics of strongly interacting matter

How does the complexity of the phase diagram of matter emerge from the dynamics of the strong interaction ?

160 MeV

0

Thermodynamics of strongly interacting matter at LHC temperature temperature

QGP: Color deconfined Chiral symmetric

hadron gas: Color confined Chiral symmetry broken

 μ _B

25

Thermodynamics of strongly interacting matter

Statistical QCD Heavy-ion collisions

Thermodynamics primer

• Energy density (*free hot gas, μ neglected*)

$$
\epsilon_i = \int \frac{d^3 p_i}{(2\pi)^3} \frac{E_i}{e^{\beta E_i} + 1}
$$

fermions or bosons

• At high T (*ignoring masses*)

$$
\epsilon = \sum_{i} g_{i} \epsilon_{i} = \frac{\pi^{2}}{30} N \left(k_{B} T\right)^{4}
$$

QGP:

$$
N = 2 \times 8 + 4 \times 3
$$

- Hadrons: $N=3$ $\times n_F$

 \mathcal{W}

Established facts: theory

Z₃ symmetry restored Chiral symmetry restored

smooth transition from HG to QGP

quarks mass reverts to Higgs mass

 $T = 154 \pm 9$ MeV

Established facts: experiment

Matter created at LHC :

- hottest matter created in laboratory ($T > 300$ MeV)
- has the properties of a liquid (strongly coupled)
- the most perfect perfect liquid (non dissipative)

The ALICE core mandate

Establish the fundamental properties of strongly interacting matter through measurements

- complete ($p_t \sim T \oplus PID \oplus p_t \gg \Lambda_{\text{QCD}}$)
- precision

Standard strategy

- Large and dense: heavy-ion physics
	- \triangleright AA \rightarrow pQCD + Npdf + FF + collectivity

- Small and dilute: comparison measurement
	- $p \rightarrow pQCD + pdf + FF$
	- \triangleright pA \rightarrow pQCD + Npdf + FF

Cosmics

Temperature

- Direct photons: pQCD + thermal
- \rightarrow T_{eff} = 297 \pm 12^{stat} \pm 42^{syst} MeV

 μ _B

 $T_{initial}$ \gg $T_{critical}$

A Large Ion Collider Experiment

temperature temperature

 μ _B

‣ Particle to anti-particle ratio = 1

μ ∼ 0

Central region **Final state** *^Kineti^c ^Freeze-Ou^t* Kinetic Freeze.Out
IS Predict Press Out of Strait School Press Cross-Over 2014 *Chemica^l ^Freeze-Ou^t* Hadron Gas **QGP** $(\tau_0$ < 1 fm/*c*) beam beam beam **ALICE**

Run:244918 Timestamp:2015-11-25 11:25:36(UTC)
System: Pb-Pb
Energy: 5.02 TeV

z

Tfo Tch

time

π, K, p, ...

36

How to decipher ?

ALICE[©] | IPHC | July 2017 | Yves Schutz 38

- Global characteristics
	- mass density Ω, age

- Global characteristics
	- Energy density, size, lifetime

- Global characteristics
	- mass density Ω, age
- Expansion (galaxies)
	- Huble flow

- Global characteristics
	- Energy density, size, lifetime
- Expansion (hadrons)
	- Particles flow, π interferometry

- Expansion (galaxies)
	- Huble flow
- Primordial nucleosynthesis (H, He, Li)
	- Thermodynamics at $\tau \sim 100$ s

- Expansion (hadrons)
	- Particles flow, π interferometry
- Hadrochemistry (π, K, p ratios)
	- Thermodynamics at $\tau \sim 10^{-21}$ s

- Primordial nucleosynthesis (H, He, Li)
	- Thermodynamics at $t \sim 100$ s
- Large scale structures
	- Density fluctuations

- Hadrochemistry (π, K, p ratios)
	- Thermodynamics at $\tau \sim 10^{-21}$ s
- Event structures
	- Fluctuations at phase transition

- Large scale structures
	- Density fluctuations
- Cosmic microwave background
	- Temperature at decoupling

COBE (*Cosmic Background Explorer*) **Black body radiation Black body radiation**

- Event structures
	- Fluctuations at phase transition
- Thermal radiation (γ, I⁺I⁻) l
	- Time evolution of temperature

- Cosmic microwave background
	- Temperature at decoupling
- Temperatures fluctuations
	- Origin of big structures

- Thermal radiation
	- Time evolution of temperature
- Tomography of QGP
	- Jet quenching, color screening

HIC dynamics

Multiplicity beam beam beam time z **QGP** π, K, p, ... *Central region ^Kineti^c ^Freeze-Ou^t* (τ0< 1 fm/*c*) Kinetic Freeze.Out.org 7 Tc *Tfo Tch Chemica^l ^Freeze-Ou^t* Hadron Gas

beam beam beam

QGP

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

(τ0< 1 fm/*c*)

Kinetic Freeze.Out.org 7 Tc

Kinetic freeze out

47

A Large Ion Collider Experiment

beam beam beam

QGP

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

(τ0< 1 fm/*c*)

Kinetic Freeze.Out.org 7 Tc

10^6 $\frac{1/N_{\rm ev}}{2}$ 1/(2 π p-) d 2 N/(dp-dy) [(GeV/c) 2] π Range of combined fit -10 $\frac{1}{2}$
 $\frac{1}{2}$
 K Range of combined fit (b) -5% positive negative combined fit 10^{-3} Đа individual fit **la**loj 80-90% 10^{-4} 3 2.5 0 0.5 1.5 \overline{c} -1 p_{T} (GeV/c) $L1 - PUB - 5657$

Kinetic freeze out

A Large Ion Collider Experiment

Kinetic freeze out

beam beam beam

QGP

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

(τ0< 1 fm/*c*)

Kinetic Freeze.Out.org 7 Tc

T_{kfo} ~ 100 MeV β T ~ 0,65c

49

Hadron gas

T_{cfo} ~ 155 MeV

beam beam beam

QGP

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

(τ0< 1 fm/*c*)

Kinetic Freeze.Out
IS President President of Cross-Over 2014

beam beam beam

QGP

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

 $(\tau_0$ < 1 fm/*c*)

Kinetic Freeze.Out
IS President President of Cross-Over 2014

Soft: pT~ T, ΛQCD

probe the collective properties of QGP

time

Dissipation in a perfect fluid is minimal: QGP is transparent to IS quantum fluctuations

 x [fm]

QGP

IS: weakly coupled pure gauge field + quantum fluctuations

classical field dynamics + non dissipative hydrodynamics

Dissipation in a perfect fluid is minimal: QGP is transparent to IS quantum fluctuations

Matter in Universe

Dissipation in a perfect fluid is minimal: from CMB T fluctuations to matter distribution **QGP**

Pb+Pb @ 2.76 TeV

beam beam beam

QGP

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

 $(\tau_0 < 1$ fm/*c*)

Kinetic Freeze.Out
IS President President of Cross-Over 2014

hard: pτ, mτ >> T, AQCD

probe QGP at high resolution scale

Parton shower

- \cdot high p_T, m_T created in initial hard scattering
- develop a partonic shower and hadronize at Λocp scale

QGP

- \cdot high p_T, m_T created in initial hard scattering
- develop a partonic shower and hadronize at Λ_{QCD} scale
- probe QGP at small scale

color density, transport properties, degrees of freedom

$R_{AA}\left(p_{\rm T}\right)=$ 1 *TAA* d^2Nch *l* $d\eta dp_{\rm T}$ $d^2\sigma_{ch}^{pp}/d\eta dp$ _T how different is AA $from \space \Sigma_A$ pp

QGP: RAA

- single hadron

beam beam beam

QGP

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

(τ0< 1 fm/*c*)

Kinetic Freeze.Out
IS President President of Cross-Over 2014

- single hadron **→** full jet

- single hadron **→** full jet
- Identified hadrons

- single hadron **→** full jet
- Identified hadrons
- g, q (u, d, s, c, b)

time

π, K, p, ...

- 2 $R = 0.2/R = 0.3$ **PbPb 0-10%** Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV 1.8 PbPb 50-80% 1.6 **Pythia** ALICE 1.4 PRELIMINARY 1.2 0.8 0.6 **Charged Jets** 0.4 correlated uncertainty Anti- k_{τ} 0.2 $p_T^{track} > 0.15$ GeV/c shape uncertainty 0_0^T 20 40 60 100 80 $p_T^{charged}$ (GeV/c) ALI-PREL-26887
- single hadron **→** full jet
- **Identified hadrons**
- g, q (u, d, s, c, b)
- jet shape

- single hadron **→** full jet
- Identified hadrons
- g, q (u, d, s, c, b)
- jet shape
- correlations

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

 $(\tau_0 < 1$ fm/*c*)

Kinetic Freeze.Out
IS President President of Cross-Over 2014

QGP

LHC discovery QGP in small systems?

65

66

LHC discovery QGP in small systems ?

Most of features observed in AA and attributed to collective effects … also observed in high M pA and pp

67

LHC discovery QGP in small systems ?

beam beam beam

(τ0< 1 fm/*c*) Long range correlations

z

Most of features observed in AA and attributed to collective effects … also observed in high M pA and pp

beam beam beam

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

Elliptic flow

Kinetic Freeze.Out
IS President President of Cross-Over 2014

LHC discovery QGP in small systems ?

beam beam

strangeness

enhancement

Kinetic Freeze.Out
IS Pressoon Cross-Over 2014

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

LHC discovery QGP in small systems ?

70

LHC discovery QGP in small systems ?

beam beam

baryon to meson enhancement

Most of features observed in AA and attributed to collective effects … also observed in high M pA and pp

LHC discovery QGP in small systems ?

Most of features observed in AA and attributed to collective effects … also observed in high M pA and pp

beam beam beam

QGP

z

Tfo Tch

time

Central region

Hadron Gas

π, K, p, ...

^Kineti^c ^Freeze-Ou^t

Chemica^l ^Freeze-Ou^t

 $(\tau_0 < 1$ fm/*c*)

Kinetic Freeze.Out.org 7 Tc

LHC discovery Towards a new paradigm?

Most of features observed in AA and attributed to collective effects … also observed in high M pA and pp

