

Nuclear observables

G. Duchêne

Du noyau aux étoiles (From nuclei to stars) e-mail : gilbert.duchene@iphc.cnrs.fr

Lecture plan

- **1. Introduction**
- **2. Radiation-matter interactions and detectors for charged particle and ɣ rays**
- **3. Nuclear reactions**
- **4. Nuclear structure and observables**
- **5. Perspectives**

Lecture plan

- **1. Introduction**
- **2. Radiation-matter interactions and detectors for charged particle and ɣ rays**
- **3. Nuclear reactions**
- **4. Nuclear structure and observables**
- **5. Perspectives**

Emitted particles in nuclear reactions

- \triangleright Neutrons
- \triangleright Charged particles (protons, alphas, electrons)
- \triangleright Fragments (Z, A)
- \triangleright y rays

Neutrons

- \triangleright For En > 500 keV mainly elastic scattering $n + H \rightarrow n + H$
- \triangleright Recoil induces atomic excitations
- Prompt and delayed fluorescence

G. Duchêne
G

Radiation-matter interactions and detectors

Neutrons

10 2

10

Neutrons

5700

 $\frac{6000}{TAC \left(cx\right)}$

5700

5900 6000

5950

1000

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

6200

6300

 $\frac{6400}{TAC} \frac{6500}{(cx)}$

10 -1

6100

ISITÉ DE STRASBOURG

EMON:

modular neutron detector

Charged particles

 \triangleright Bethe formula

 $-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_e c^2 \beta^2} NZ \left[\ln \frac{2m_e c^2}{I} \beta^2 \gamma^2 - \beta^2 \right]$

Linear stopping power

- \triangleright incident particle
	- \Box z charge state of the particle
	- \Box β = v/c
	- \Box y = 1/(1- β^2)
- \triangleright penetrated material
	- \Box Z atomic number of the material
	- N number of atoms per volume unit
	- \Box I ionisation potential (~10 eV to few 10 keV)

G. Duchêne

Radiation-matter interactions and detectors

Fragments

- \triangleright Particle identification
	- □ Si detectors (FAZIA)
	- \Box Telescope of 2 ΔE Si det. and 1 CsI det.
	- \Box Pulse-shape analysis

Case of fragments stopped in the Si2

G. Duchêne

Radiation-matter interactions and detectors

- \triangleright Particle identification
	- □ Spectrometer

Fragments

- Spectrometer
	- Magnets: focus in X and Y (quadripoles) and deviate the ions for mass selection (dipole)
	- PPAC: (Parallel Plate Avalanche Counter)
		- Gaseous detector
		- \triangleq Ion trajectory (X_{in} , Y_{in})
		- \div Time of flight (ToF = T_f T_{in})
		- \div Velocity (v = L/ToF)
	- Drift chamber:
		- Gaseous detector
		- \div Ion trajectory (X_f, Y_{f,})
	- \Box IC: (Ionisation chamber)
		- **S** Gaseous detector
		- Z identification (ΔE, E)
		- **Mass/Charge state (M/Q)** determination
		- **Mass determination**

- \triangleright Particle identification
	- □ Spectrometer

G. Duchêne

UNIVERSITÉ DE STRASBOURG

Radiation-matter interactions and detectors

- \triangleright Particle identification
	- □ Spectrometer

ɣ rays

 \triangleright Transmission

 $\texttt{I}(\mathsf{x})$ = $\texttt{I}_{\texttt{0}}$ e^{-µx}

- \Box μ is the total absorption coefficient
- \Box x thickness of material
- \Box μ depends on the material and on the ɣ-ray energy

\triangleright γ -ray detection

- **Energy transfer to primary charged** particle and secondary ones
- \Box Detection of the charges

ɣ rays

 \triangleright Photoelectric effect **O** Full photon energy transfer to one electron $E_y = hv$ E_{e^-} = hv - B_{e^-}

σ_{photo} ~ (hv)^{-3,5} · Ζ⁵

Fast cross section reduction with energy

Strongly depend of Z of material/detector

G. Duchêne

ɣ rays

- ▶ Compton effect
	- Elastic scattering of a photon on a quasi-free electron

$$
h\nu' = \frac{h\nu}{1 + \frac{h\nu}{m_e c^2} (1 - \cos \theta)}
$$

$$
E_{e^-} = hv - hv'
$$

The electron energy varies continously with θ

JNIVERSITÉ DE STRASBOURG

ɣ rays

- \triangleright Pair creation
	- A photon is materialised in one electron and one positron

 $hv > 2 m_e c^2 (1,022 \text{ MeV})$

 $E_{e^-} = E_{e^+} = \frac{1}{2} (h v - 2 m_{e^-} c^2)$

UNIVERSITÉ DE STRASBOURG

ɣ rays

G. Duchêne

ɣ rays

- Gamma-ray detectors
	- \Box Scintillators -> PARIS detector
	- **Q** Phoswitch: front LaBr₃ crystal
		- back NaI crystal
			- One photomultiplier (PMT)
	- **Large detection efficiency**
	- **Q** Fast timing response and good energy resolution (LaBr₃)

G. Duchêne

ɣ rays

Gamma-ray detectors

Q PARIS detector performance

ɣ rays

- Gamma-ray detectors
	- PARIS detector performance using digital electronics

ɣ rays

- Gamma-ray detectors
	- **Q** PARIS detector timing performance

UNIVERSITÉ DE STRASBOURG

ɣ rays

Gamma-ray detectors

Semiconductors (Si, Ge)

G. Duchêne

NIVERSITÉ DE STRASBOURG

ɣ rays

- Gamma-ray detectors
	- G Semiconductors characteristics

 $N = E_y/W$ for Ge and a 1 MeV ɣ ray N > 300 000 pairs e-h **Good energy resolution**

FWHM = Full Width Half Maximum

FWHM (NaI) / $E \sim 8\%$ $FWHM$ (LaBr $_3)$ / E ~ 3-4% FWHM $\left(1.4\right)$ / E ~ 1.5% -> X rays FWHM $({}_{32}Ge)$ / E ~ 0.2% -> γ rays

G. Duchêne

Multi-detector AGATA for ɣ–ray detection

Solely composed of Ge crystals

Pulse-shape analysis + ɣ-ray tracking

> Today: 35 Ge crystals each segmented in 36+1 (1295 channels)

 In 2030: 180 crystals (6660 channels)

Multi-detector AGATA for ɣ–ray detection

Gamma-Ray Tracking Paradigm

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

IN2P3

 \mathbf{E} = 990

K ロ ▶ K (日) X (日) X (日)

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

UNIVERSITÉ DE STRASBOURG

 $E = \Omega Q$

IN2P3

Kロンス個メス違いス違い

Scan of a segmented coaxial detector

Conclusion

UNIVERSITÉ DE STRASBOURG

 $E = \Omega Q$

IN2P3 es deux infinis

K ロ > K 伊 > K ミ > K ミ >

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

UNIVERSITÉ DE STRASBOURG

 $E = \Omega Q$

IN2P3 es deux infinis

K ロ > K 伊 > K ミ > K ミ >

3D partial PSCS

 $9/15$

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

UNIVERSITÉ DE STRASBOURG

 $E = \Omega Q$

IN2P3 es deux infinis

K ロ > K 伊 > K ミ > K ミ >

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

UNIVERSITÉ DE STRASBOURG

 $E = \Omega Q$

IN2P3

メロンス 伊 メ スミンス ミン

3D partial PSCS

 $9/15$

Scan of a segmented coaxial detector

Conclusion

UNIVERSITÉ DE STRASBOURG

 $E = \Omega Q$

IN2P3

Kロンス個メス違いス違い

3D partial PSCS

 $9/15$

Scan of a segmented coaxial detector

Conclusion

IN2P3

 $E = \Omega Q$

nstitut Pluridisciplinaire **メロトメ (伊): メ ミ > メ ミ >**

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

UNIVERSITÉ DE STRASBOURG

 $E = \Omega Q$

IN2P3 es deux infinis

K ロ > K 伊 > K ミ > K ミ >

Scan of a segmented coaxial detector

Conclusion

UNIVERSITÉ DE STRASBOURG

 $E = \Omega Q$

IN2P3 es deux infinis

K ロ > K 伊 > K ミ > K ミ >

Scan of a segmented coaxial detector

Conclusion

UNIVERSITÉ DE STRASBOURG

 $E = \Omega Q$

IN2P3 es deux infinis

K ロ > K 伊 > K ミ > K ミ >

3D partial PSCS

 $9/15$

Scan of a segmented coaxial detector

Conclusion

Scan of a segmented coaxial detector

Conclusion

3D partial PSCS

 $10/15$

Scan of a segmented coaxial detector

Multi-detector AGATA

UNIVERSITÉ DE STRASBOURG

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

Lecture plan

- **1. Introduction**
- **2. Radiation-matter interactions and detectors for charged particle and ɣ rays**
- **3. Nuclear reactions**
- **4. Nuclear structure and observables**
- **5. Perspectives**

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

Nuclear reactions

Nuclear reactions

Transfert of nucleon

- Peripheral collisions (direct reactions) with 10 25 MeV/u beam energy
- Energy exchange, internal excitation -> inelastic channel
- Energy exchange, internal excitation and transfer of few nucleons -> transfer
	- \Box Stripping channel: one nucleon of the projectile is transferred to the target
	- \Box Pick up channel: one nucleon of the target is transferred to the projectile

Nuclear reactions

Fusion-fission

- \triangleright Fusion -> compound nucleus -> fission
	- \Box Production of hundreds fragments can be identified
	- Neutron-rich isotopes populated
	- □ Large total cross-section (~250 mb)
	- Angular momentum transfer (~20-30 Ћ)
- \triangleright Inverse kinematics
	- \Box Fast recoiling fission fragments
	- \Box Forward focused fragments better entering in the magnet
- Systematic study of exotic-nuclei structure

Case of an experiment @ GANIL

AGATA-VAMOS++ (exp at GANIL)

 \triangleright Ge detector coupled to a spectrometer

238 U @ 6.2 MeV/u + $9Be$

Case of an experiment @ GANIL

G. Duchêne

Selected nucleus in VAMOS – Prompt gamma-rays in AGATA

Lecture plan

- **1. Introduction**
- **2. Radiation-matter interactions and detectors for charged particle and ɣ rays**
- **3. Nuclear reactions**
- **4. Nuclear structure and observables**
- **5. Perspectives**

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

 $\left|-\frac{1}{2}\right|$

Spin coupling

- \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow $|I1-I2| \le J \le I1+I2$
- Nucleons are fermion: s=1/2
- On orbitals with momentum l
- Some Nucleon spin $j = 1 + s$ j = $1 + \frac{1}{2}$ or

NIVERSITÉ DE STRASBOURG

 $N=1$

Magic numbers

Basic rules

Nucleus

- Composed of two liquids, protons (Z) and neutrons (N)
- \triangleright Protons and neutrons are placed on orbitals independently
- Number of nucleon per orbital $n = 2j+1$
- \triangleright Spin J of the nucleus; projections m $J = \sum_{i} j_{I}$ with $-J \leq m \leq j$
- Parity of the nucleus

 $\pi_{\text{nucleus}} = \Pi_i \pi_i$

- Pairing: 2 nucleons on same orbital couple their spin to zero
	- Ground state spin of even-even nuclei: $J = 0$
	- Ground state spin of odd-even nuclei: $J = j$ single nucleon

Protons (π) or neutrons (v)

G. Duchêne

Basic rules

 \neg Ni

Nucleus

- \triangleright Nucleon excitations within a shell need moderate energy
- \triangleright Nucleon excitations across a shell gap need large energy

First 2⁺ excitation energy E*(2⁺)

Odd Cu case

Systematics

- \triangleright Evolution of level energy (Indicator)
- \triangleright Odd Cu: Z=29, even N
- \triangleright Ground state 3/2⁻ (orbital p_{3/2})
- \triangleright Excited state 5/2⁻ (orbital f_{5/2})
- \triangleright One proton promoted from $p_{3/2}$ to $f_{5/2}$
- \triangleright Almost constant excitation energy E^{\star} ~1 MeV of the $5/2$ ⁻ state up to N=40
- For N > 40 (A > 69) $g_{9/2}$ neutron orbital start to fill
- \triangleright E* (5/2-) strongly reduces

Proton $f_{5/2}$ – **neutron** $g_{9/2}$ **interaction p3/2**

Direct reaction

- > 68 Ni + d -> 69Ni + p
- \triangleright Orbital populated by the neutron with momentum l
- \triangleright Proton energy and angular distribution is affected by the neutron destination

Observables

- p energy -> excitation energy of the level populated
- p angular distribution -> l

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

Orbital momentum assignment

 $\chi^2 = 0.68$

UNIVERSITÉ DE STRASBOURG

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

 E_{free}^8 [MeV]

6

 -2 $\overline{0}$ $\overline{2}$ $\frac{4}{3}$

-4

Orbital momentum assignment

G. Duchêne

DE STRASBOURG

Spin - parity

ɣ-ray transition

- Energy conservation: $E_f = E_i E_g$ $i = initial; f = final$
- Parity conservation: $\pi_v = \pi_i \cdot \pi_f$ \Box π_{y} = (-1)[†] for an electric transition E \Box $\pi_{y} = (-1)^{i+1}$ for a magnetic transition M

\triangleright Spin: $|\mathbf{I}_i\text{-}\mathbf{I}_f| \leq |\leq \mathbf{I}_i\text{+}\mathbf{I}_f$

G. Duchêne

UNIVERSITÉ DE STRASBOURG

Spin - parity

ɣ-ray transition

Examples: \rightarrow 2⁺ \rightarrow 0⁺ transition: 2-0 \le 1 \le 2+0; l=2; π _v = +1 **electric transition E2** \rightarrow 4+ \rightarrow 2+ transition: $4-2 < 1 < 4+2$; $1 = 2, 3, 4, 5, 6$ E2,M3,E4,M5,E6 $\pi_{\rm v}$ = (+1).(+1) = +1 E2 favored vs M3 **electric transition E2**

$$
\begin{array}{r}\n\rightarrow 4^+ \rightarrow 2^- \text{ transition:} \\
2 \leq l \leq 6; l = 2, 3, 4, 5, 6 \\
M2, E3, M4, E5, M6 \\
\pi_{\gamma} = (+1).(-1) = -1 \\
M2 \text{ unfavored vs } E3 \\
E3 \text{ or mixed } M2 + E3 \text{ transition}\n\end{array}
$$

 \rightarrow 3⁺ \rightarrow 2⁺ transition: $1 \leq 1 \leq 5$; $= 1, 2, 3, 4, 5$ M1,E2,M3,E4,M5 $\pi_{y} = (+1)(+1) = +1$ M1 unfavored vs E2 **2mixed M1+E2 transition**

INIVERSITÉ DE STRASBOURG

Transition probabilities

Charge distribution of the nucleus

- \triangleright Electric or magnetic dipole described in l order r^λ. $Y_{\lambda\mu}(\theta,\phi)$
- > Lowest orders are most likely
- \triangleright Reduced matrix element for a transition from J_i to J_f with projections m_i and m_f

$$
B(\sigma,\lambda;J_{i}\to J_{f})=\sum_{m_{f}\mu}\Bigl|\Bigl\langle\alpha_{f};J_{f}m_{f}\Big| \mathbf{M}(\sigma,\lambda\mu)\Big|\alpha_{i};J_{i}m_{i}\Bigr\rangle\Bigr|^{2} \text{ with } m_{f}=m_{i}+\lambda
$$

Following Wigner-Eckart

$$
B(\boldsymbol{\sigma},\boldsymbol{\lambda};\boldsymbol{J}_{i}\rightarrow\boldsymbol{J}_{f})=\frac{1}{2\boldsymbol{J}_{i}+1}\Big|\big\langle\boldsymbol{\alpha}_{f}\big\|\mathbf{M}(\boldsymbol{\sigma},\boldsymbol{\lambda})\big\|\boldsymbol{\alpha}_{i}\big\rangle\Big|^{2}
$$

where the multipolar electric moment writes

$$
M(E\lambda\mu) = \int_{noyau} \rho(r) r^{\lambda} Y_{\lambda\mu}(\hat{r}) dv
$$

and the multipolar magnetic moment writes

$$
\mathbf{M}(M\lambda\mu) = \frac{-1}{c(\lambda+1)}\int_{\text{noyau}}j(r)(r\times\nabla)r^{\lambda}Y_{\lambda\mu}(\hat{r})dv
$$

Transition probabilities

Amplitude of transition probability

$$
\Gamma_{if}\left(\left\{EL\,ou\,ML\right\};J_{i}\to J_{f}\right)=\frac{2(L+1)}{L\big[(2L+1)!!\big]^{2}}\frac{1}{\hbar}\left(\frac{\hbar\omega}{\hbar c}\right)^{2L+1}B\left(\left\{EL\,ou\,ML\right\};J_{i}\to J_{f}\right)
$$

where
$$
\hbar = 6.58211899(16) 10^{-19} keV
$$

 $\hbar c = 197,3269631(49) 10^3 keV$

 $B(EL)$ en unité de e^2 fm^{2L}

 $B(ML)$ en unité de $(e\hbar/2Mc)^2 fm^{2L-2}$

$$
\Gamma_{w}(E1) = 1.59 \times 10^{15} \cdot E^{3} \cdot B(E1) \qquad \Gamma_{w}(M1) = 1.76 \times 10^{13} \cdot E^{3} \cdot B(M1)
$$
\n
$$
\Gamma_{w}(E2) = 1.22 \times 10^{9} \cdot E^{5} \cdot B(E2) \qquad \Gamma_{w}(M2) = 1.35 \times 10^{7} \cdot E^{5} \cdot B(M2)
$$
\n
$$
\Gamma_{w}(E3) = 5.67 \times 10^{2} \cdot E^{7} \cdot B(E3) \qquad \Gamma_{w}(M3) = 6.28 \times 10^{0} \cdot E^{7} \cdot B(M3)
$$
\n
$$
\Gamma_{w}(E4) = 1.69 \times 10^{-4} \cdot E^{9} \cdot B(E4) \qquad \Gamma_{w}(M4) = 1.87 \times 10^{-6} \cdot E^{9} \cdot B(M4)
$$
\nin Weisskopf unit

Transitions of smallest l predominate Electric transitions predominate on magnetic transitions

NIVERSITÉ DE STRASBOURG

Transition probability and half life

Half life of a state

$$
\Gamma_{ij}\left(\left\{EL\,ou\,ML\right\};J_{i}\to J_{f}\right)=\frac{2(L+1)}{L\big[(2L+1)!!\big]^{2}}\frac{1}{\hbar}\left(\frac{\hbar\omega}{\hbar c}\right)^{2L+1}B\big(\left\{EL\,ou\,ML\right\};J_{i}\to J_{f}\big)
$$

- The transition-probability amplitude Γ_{if} is related to the half life of state "i"
- Heisenberg: $\hbar = \tau_i \Gamma_i$ with $\Gamma_i = \sum_i \Gamma_{ij} (\sigma \lambda)$ including all decay paths

$$
\blacktriangleright \ \text{Half life is deduced} \quad \ \ T_{\frac{1}{2}} = \tau.\ln(2) = \frac{\hbar.\ln(2)}{\Gamma}
$$

State half life depend on

- initial and final spins
- single-particle configuration of the initial and final states

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

G. Duchêne

Nuclear shapes

Nuclear shapes

Nuclear shape parametrisation

$$
R(\theta,\phi) = R_0 \left[1 + \sum_{\lambda=2}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}^* Y_{\lambda\mu}(\theta,\phi) \right].
$$

Nuclear shapes

Rotational bands

Excitation energy

$$
E_{rot} = \frac{\hbar^2 \left[I(I+1) - K^2 \right]}{2\Im}
$$

ɣ-ray transition energy

$$
E_{\gamma} = \Delta E_{rot}
$$

\n
$$
E_{\gamma}(I \to I - 2) = \frac{\hbar^2 \left[I(I + 1) - (I - 2)(I - 1) \right]}{2\Im} = \frac{\hbar^2 \left[4I - 2 \right]}{2\Im}
$$

Difference between two consecutive transitions

$$
\Delta E_{\gamma}(I, I-2) = \frac{\hbar^{2}[4I-2]}{23} - \frac{\hbar^{2}[4(I-2)-2]}{23} = \frac{4\hbar^{2}[I-(I-2)]}{23} = \frac{4\hbar^{2}[I-(I-2)]}{23} = \frac{4\hbar^{2}[I-(I-2)]}{23} = \frac{4\hbar^{2}[I-(I-2)]}{3} = \frac{4\
$$

UNIVERSITÉ DE STRASBOURG

Nuclear shapes

Nuclear shapes

 Shape coexistence with normal deformed, single particle states

UNIVERSITÉ DE STRASBOURG

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

G. Duchêne

NIVERSITÉ DE STRASBOURE

Nuclear lifetime measurements

Many techniques

- DSAM (Doppler Shift Attenuation Method) -> below ps
- \triangleright Plunger -> ps to ns
- \triangleright Fast scintillators (LaBr₃) -> ps to ns
- \triangleright ToF -> > μs

Doppler effect

- \triangleright v = recoil velocity of the nucleus
- \triangleright Detected energy depend on the angle
	- of the detector relative to the beam axis

 $\varDelta E_{\gamma}(\theta,E_{\gamma})=E_{\gamma}\frac{v}{c}\cos(\theta).$

Nuclear lifetime measurements

NIVERSITÉ DE STRASBOURG

Nuclear lifetime measurements

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

Angular distributions

Spin alignment

- \triangleright In the plan perpendicular to the beam
- \triangleright Aligned nuclear states (m ~0)
- Anisotropic ɣ–ray emission (not uniform emission in 4π)

Angular distribution

Distribution of normalised intensity

$$
w(\theta) = \frac{I_{\gamma}(\theta)}{I_{\gamma}} = 1 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta) + \cdots
$$

where

- \Box Θ = angle between γ ray (detector) and beam axis
- \Box Pi (cos θ) = Legendre polynomials
- \Box Pure dipole (I=1): a_2 negative and a_4 =0
- \Box Stretched quadripole (I=2): a_2 positive and a_4 < 0 and small

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

Angular distributions

Angular distribution

- \triangleright y-ray intensity varies with angle θ versus beam axis
- For pure stretched $(\Delta I=1)$ dipole transitions
	- \Box max at 90 $^{\circ}$
	- \Box Smallest at 0°
- \triangleright For pure stretched ($\Delta I=2$) quadripole transitions
	- \Box max at \sim 45°
	- □ Important at 0°
	- □ Smallest at 90°

Lecture plan

- **1. Introduction**
- **2. Radiation-matter interactions and detectors for charged particle and ɣ rays**
- **3. Nuclear reactions**
- **4. Nuclear structure and observables**
- **5. Perspectives**

Ecole d'été France Excellence 2017 Amb and Asc Excellence 2017 Amb and Assembly 2-11, 2017 Amb and Assembly 2-11, 2017

Magic numbers

Perspectives

Coupling of different detectors to AGATA

GANIL physics campaigns

2018

8 experiments using AGATA+NEDA (+DIAMANT) (+LaBr3) (+plunger)

G. Duchêne

INIVERSITÉ DE STRASBOURG

Perspectives

Coupling of different detectors to AGATA

 GANIL physics campaigns 2019 – (2020)

Nucleon transfer spectroscopy using **SPIRAL1 ISOL** beams

New accelerators for exotic beam

- \triangleright SPES in 2022 (Legnaro, Italy) -> radioactive beams up to 10⁸ particule per sec
- HIE-ISOLDE in 2020 (CERN, Switzerland) -> radioactive beams up to 10⁸ part. per sec
	- **□ ISOL technique (fission products reaccelerated)**

Structure study of neutron-rich nuclei around ⁷⁸Ni and above

- FAIR in 2025 (Darmstadt, Germany) -> intense radioactive beams at high energy **Q** Fragmentation technique Structure study of exotic nuclei
- GANIL SPIRAL2 (Caen, France) -> very intense stable beam (2018) -> very intense exotic beams (ISOL technique) ?? Structure study of exotic nuclei

