Nuclear physics for nuclear reactors

1 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

- In this class, we will explain, starting from the microscopic nuclear reactions and processes, how a nuclear reactor operates.
- The aspects of safety and life-cycle of the fuel will be examined and we will highlight the limitations of the current nuclear power plant designs.
- This will lead us to look at the designs of next generation reactors and how they can meet the nuclear energy challenges.
- Obviously, we will only glance over the topics as we have very little time compared to the complexity of the topic.
- I will present you here a short version of a 10 hours class I give in the M2 here.

Today, the central nuclear reaction used in nuclear power generation is:

n + ²³⁵U -> xn + heat + Fission Fragments

Today, the central nuclear reaction used in nuclear power generation is:

$$n + {}^{235}U \longrightarrow xn + heat + Fission Fragments$$

This class will follow the different terms of the equation.

The entrance channel for the reaction is a neutron (n) and a nucleus of Uranium 235.

The neutron

- Has a mass slightly above the one of the proton: $m_{neutron} = 1.675 \times 10^{-27} \text{ kg} = 939.57 \text{ MeV} = 1.0087 \text{ u}$
- Unstable when free with a life time of τ =881.5 seconds
- or approximately 15 minutes.
- Has no electric charge (q=0) and a spin of 1/2 (i.e. it's a fermion).
- It's magnetic moment is μ =-1.9 μ _N, and it's electric moment is expected to be zero, verified to be <2.9×10⁻²⁶ e.cm.

- Uranium is a naturally occurring element (Z=92),
- 5 isotopes found in nature (233, 234, 235, 236, 238),
- all of them unstable with lifetime ranging from 10⁵ to 10⁹ years.
- The most abundant are 238 (99.274 %) and 235 (0.720 %).

- Fission is governed by a parameter called the fission barrier (B_f).
- The lower B_{f} , the easier it is to make a nucleus fission.
- The fission process is similar to have fragment go thru a potential energy barrier:

• To get the most out of fission, we are looking to find the element that is easier to split with this process. So we investigate the fission barrier of elements:

9 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

 \wedge

- We notice that Uranium is the best element.
- Heavier elements have even smaller fission barrier, but are not found in nature).
- In particular, for the two isotopes we can found in nature:
- $B_f(^{235}U) = 4.87 \text{ MeV}$
- $B_f(^{238}U) = 5.63 \text{ MeV}$

Fission barrier of Elements

- Different isotopes react differently with an incoming neutron and several outcomes are possible
- We want to maximize the fission process because that is the one that release energy.

11 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

- The low energy neutrons are great: they fission ²³⁵U without affecting other channels (or much less).
- This is because the capture of a low energy neutron by ²³⁵U is very favorable and leads to an internal excitation energy for the resulting ²³⁶U above the fission barrier:

•
$$Q_{neutroncapture}(^{235}U) = 6.546 \text{ MeV},$$

 $B_f^{236}U = 5.03 \text{ MeV}$
• $Q_{neutroncapture}(^{238}U) = 4.806 \text{ MeV},$
 $B_f^{239}U = 6.21 \text{ MeV}$

- Remember, the natural abundance of 235 U is 0.7 %.
- To really use this isotope in fuel, one will need to enrich the Uranium in 235.
- Typical enrichment for power generating fuel is 3-6 %.

• (Higher enrichment is possible, for research or weapon. But it has to stay limited: too much ²³⁵U and the material will get critical out of control)

- First building block of the reactor: 235 Uranium enriched material
- Usually as Uranium-Oxyde (UOx)

$n + {}^{235}U \longrightarrow xn + heat + Fission Fragments$

- The neutrons released in the fission process are key for the chain reaction used in nuclear power.
- Indeed, the goal is to maintain a constant rate of fission reaction, to release energy in a constant manner.
- As **1** neutron is used to induce the reaction, at least 1 neutron has to be produced in the out channel.

- The neutron multiplicity *x* is not fixed.
- Because fission is a statistical process, the number of neutrons produced varies around an average value noted $\overline{v} = 2.64$

• The produced neutron also have a distribution of energy, that is close in shape to a Maxwellian.

We see that the produced neutrons have a mean energy around 1 MeV. But the neutron used to induce fission are slow (E_n of the order of meV and below). We need to *slow* down the neutrons, other wise the chain reaction can't sustain itself.

17 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

• By inelastic scattering on heavy elements:

• By elastic scattering on light elements

Figure 16 Elastic Scattering

- Second building block of the reactor: Moderator
- ²³⁸U in fuel (inelastic)
- Water (elastic)

- The number of neutrons in the reactor should be constant to maintain a chain reaction.
- The evolution of the number of neutrons is characterized by the neutron multiplication number k
- $k = N_{i+1}/N_i$

Criticality

- k needs to be one to sustain a chain reaction
- k < 1 : the reaction will die down
- k > 1 : the reaction rate (hence power output) will increase exponentially with time.

N(t+a) = k N(t)

a = Unit of time

= lifetime of a generation of neutron in the fuel

Around 0.1 second

23 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

- k is influenced by neutron productions (\overline{v}) ,
- Neutron losses due to geometry
- And neutron absorption by reactions other than fission

- $k_{_{\!\!\infty\!}}$ characterized the infinite fuel (no geometry effect)
- $k_{\infty} = \overline{v} / 1 + \alpha$, $\alpha = \sigma_{capture} / \sigma_{fission}$
- k_{eff} takes into account the geometry:
- $k_{eff} = k_{\infty} x P$, P is a geometric factor, depends on the volume to surface ratio (more surface = more neutron loss)

24 clear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

- Control rod
- Neutron absorbing material (B, Cd) inserted for control

Desclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

$n + {}^{235}U \longrightarrow xn + heat + Fission Fragments$

- The fission process produces energy because it leads to elements of greater stability.
- This energy is collected in the reactor to produce power.

Fission of ²³⁵U

Molar density: 238 g/mol, 1 eV = 1,6 10⁻¹⁹ J

1g of 235 U produces 82GJ = 22.8 MWh

- ~ 3 tons of Coal
- \sim 1.7 tons of oil
- ~ 0.08 g of D, 0.12 g of T and 0.26 g of 6-Li

Fission of ²³⁵U

Fission releases in average 200 MeV as...

- Kinetic energy of fragments (170 MeV)
- Neutrons $\overline{v} \approx 2.5$ (2 MeV each)
- Gamma rays (7 MeV)
- Beta decay (8 MeV)
- (anti)neutrino 12 MeV
- Delayed gamma (7MeV)

- Building block of the reactor: Heat exchange system
- Water is a good heat exchange fluid (high Pressure)

Heat exchange

Typically:

- 1800°C in fuel
- 600°C on fuel material surface
- 400°C around fuel cladding
- 300°C for heat exchange fluid.

From heat to electric power

 \sim

Thermal machine

32 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

 \sim

 \wedge

- Thermal neutrons reactor.
- Fuel: Uranium Oxide (2.3% enrich. at start, 3% when refueling)
- Moderator and heat exchange fluid : water at 150 bars, 325°C.
- Heat exchange fluid stays liquid.
- Control: Graphite + Borated water
- 60 % of world's reactors.
- 100 % of French reactors
- Auto-stability
- 80 to 100 tons of U.
- 2700 to 4300 MW_{th}
- 900 to 1600 MW_e
- 32 % efficiency

n + ²³⁵U –> *x*n + heat + Fission Fragments

- The fission fragments are usually unstable and can perturb the reactor running.
- Fuel waste has to be processed

Fission Fragments

- Most of the fission products are below the stability line → β⁻ decay
- Life time : 10⁻⁵ to 10⁵ seconds.
- Delayed energy released.

Residual heat

- Spent fuel storage in pools to cool down.
- 1 to 20 years.
- After one year, the residual power is about 10 kW per ton.
- Down to 1 kW/t after 10 years
- No reprocessing possible while the spent fuel is *hot*

- Some fission Fragments have a very large neutron capture cross section
- Reduces the reactivity (consume neutrons, k down)
- These isotopes have specific decay, appearance times

Samarium 149

• $\sigma_{(n,y)}$ = 41140 barn

¹⁴⁹Sm stable

- From : fission \rightarrow ¹⁴⁹Nd \rightarrow ¹⁴⁹Pm \rightarrow ¹⁴⁹Sm, T ~55 h
- During reactor operation, concentration is stable (flux independent). Anti reactivity : -0,65 %
- After shutdown, concentration increase and get to a limit in ~10 days. Antireactivity ~ -2 %

38 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

Xenon 135

- $\sigma_{(n,y)}$ = 2,65 10⁶ barn
- ¹³⁵Xe is unstable, $t_{1/2}$ =9,2h
- From : fission \rightarrow ¹³⁵Te \rightarrow ¹³⁵I \rightarrow ¹³⁵Xe, T ~7 h
- During operations, concentration is stable (flux dependance). Anti reactivity ~ -4 %
- After shutdown,concentration increases and gets to a maximum in ~12 h. Antireactivity up to -20 %
- After shutdown, restart possible during ~30 minutes. After that, a few days need to wait for the decay.

Minor Actinides

- From neutron captures on ^{235,238}U
- \bullet T_{1/2} several hundred, thousands of years
- Mostly ²³⁷Np, ^{241,243}Am, ^{243,244,245}Cm
- Source of ²³⁹Pu

Minor actinides are responsible for most of the radioactivity and residual power in spent fuel at mid and long term (300-20000 years).

41 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

 \sim

Challenges of nuclear power

- Sustainable fuel source
- Reduction of radioactive waste
- Safety conditions

Not all objectives can be met at the same time and in the same reactor type.

New reactor designs are needed.

Gen-4 reactors

6 designs

 \sim

Mainly done thru simulations

Analytical computations : Bateman equation, neutron diffusion, ...

Monte-Carlo (random) simulation : Computer softwares (MCNP, Geant, ...)

Coupling to hydrodynamics, heat diffusion, magnetic fields, ...

Criticity calculations, power map, heat, neutron budget, fuel usage and waste production ...

Evaluated data bases

45 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

 \wedge

Evaluated data bases

Evaluated data bases

47 Nuclear physics for nuclear reactors – Greg Henning (IPHC) – July 2017

 \sim

Improve evaluations for better and more precise simulations of gen4 reactors, in particular for fast neutrons reactors.

Measures for

- fissiles, fertiles isotopes (²³²Th, ²³³U, ²³⁸U, ²³⁹Pu)
- Structure materials (Fe, W, Zr)
- Moderator, heat exchange fluid (O, Na, F, ...)

Requests listed in HPRL

Coordination :

UE, OCDE/NEA, IAEA

Re	q.ID	View	Target	Reaction	Quantity	Energy range	Sec.E/Angle	Accuracy	Cov Field
G	1		14-SI-28	(n, np)	SIG	Threshold-20 MeV	4 pi	20	Y Fusion
н	2		8-0-16	(n,a),(n,abs)	SIG	2 MeV-20 MeV	See	details	Y Fission
н	3		94-PU-239	(n, f)	Prompt g-prod	Thermal-Fast	Eg=0-10MeV	7.5	Y Fission
н	4		92-U-235	(n,f)	prompt g-prod	Thermal-Fast	Eg=0-10MeV	7.5	Y Fission
н	5		72-HF-0	(n,g)	SIG	0.5-5.0 keV		4	Y Fission
G	6		92-U-233	(n,g)	SIG	10 keV-1.0 MeV		9	Y Fission
G	7		26-FE-56	(n, xn)	SIG, DDX	7 MeV-20 MeV	1MeV-20MeV	30	Fission, ADS
н	8		1-H-2	(n,ela)	dA/dE	0.1 MeV-1 MeV	0-180 Deg	5	Y Fission
G	9		92-U-233	(n,g)	nubar, SIG	Thermal-10 keV		.5	Y Fission
G	10		79-AU-197	(n,tot)	SIG	5 keV-200 keV		5	Science, Fusio
G	11		94-PU-239	(n,f), (n,g)	SIG,eta, alpha	1 meV-1 eV		1	Y Fission
н	12		92-U-235	(n,g)	SIG, RP	100 eV-1 MeV		3	Y Fission
G	13		24-CR-52	(n,xd), (n,xt)	SIG	Threshold-65 MeV		20	Y Fusion
G	14		94-PU-242	(n,g), (n,tot)	SIG	0.5 eV-2.0 keV		8	Y Fission
н	15		95-AM-241	(n,g), (n,tot)	SIG	Thermal	See	details	Fission
G	16		95-AM-243	(n, f)	n spectrum	Eth-10 MeV		10	ADS
G	17		96-CM-244	(n,f)	n spectrum	Eth-10 MeV		10	ADS
н	18		92-U-238	(n,inl)	SIG	65 keV-20 MeV	Emis spec. See	details	Y Fission
н	19		94-PU-238	(n, f)	SIG	9 keV-6 MeV	See	details	Y Fission
н	21		95-AM-241	(n,f)	SIG	180 keV-20 MeV	See	details	Y Fission
н	22		95-AM-242	(n,f)	SIG	0.5 keV-6 MeV	See	details	Y Fission
н	25		96-CM-244	(n,f)	SIG	65 keV-6 MeV	See	details	Y Fission
н	27		96-CM-245	(n,f)	SIG	0.5 keV-6 MeV	See	details	Y Fission
н	29		11-NA-23	(n,inl)	SIG	0.5 MeV-1.3 MeV	Emis spec. See	details	Y Fission
н	32		94-PU-239	(n,g)	SIG	0.1 eV-1.35 MeV	See	details	Y Fission
н	33		94-PU-241	(n,g)	SIG	0.1 eV-1.35 MeV	See	details	Y Fission
н	34		26-FE-56	(n,n')	SIG	0.5 MeV-20 MeV	Emis spec. See	details	Y Fission
н	35		94-PU-241	(n, f)	SIG	0.5 eV-1.35 MeV	See	details	Y Fission
н	36		92-U-238	(n,g)	SIG	20 eV-25 keV	See	details	Y Fission
н	37		94-PU-240	(n, f)	SIG	0.5 keV-5 MeV	See	details	Y Fission
н	38		94-PU-240	(n, f)	nubar	200 keV-2 MeV	See	details	Y Fission
н	39		94-PU-242	(n, f)	SIG	200 keV-20 MeV	See	details	Y Fission
н	40		14-SI-28	(n,inl)	SIG	1.4 MeV-6 MeV	See	details	Y Fission
н	41		82-PB-206	(n,inl)	SIG	0.5 MeV-6 MeV	See	details	Y Fission
н	42		82-PB-207	(n,inl)	SIG	0.5 MeV-6 MeV	See	details	Y Fission
н	43		1-H-1	(n,n)	SIG, DA	10 MeV-20 MeV	4 pi	1-2	Y Standard

 \wedge

Conclusion

Safety and sustainability challenges could be met with new reactor designs, new fuel cycles.

 \rightarrow Need for new nuclear physics data for simulation and development.