Generalized dark matter model with the Euclid satellite

Isaac Tutusaus

Institut de Recherche en Astrophysique et Planétologie

$17\mathrm{th}$ April 2018

I. Tutusaus (ΊR./	(P)

Index

1 Introduction

2 Theoretical framework

3 Current data

4 Euclid satellite

2

3 N A 3 N

Introduction

$\Lambda {\rm CDM}$ Good phenomenological fit to current cosmological data:

But no direct detection of DM, neither of DE as a cosmological constant +

Some tensions between low-z and high-z data

Goal: Go beyond Λ CDM focusing on a more general phenomenology for dark matter \Rightarrow Generalized dark matter [Hu 1998; Thomas *et al.* 2016; Kunz *et al.* 2016; Kopp *et al.* 2016; 2018]

I. Tutusaus (IRAP)

GDM with Eucli

Theoretical framework

- We assume that DM is only coupled to the visible sector through gravity:
 - ▶ \Rightarrow DM energy-momentum tensor is conserved.
 - ► ⇒ We can use the standard conservation equations for a general matter source:

$$\dot{\rho} + 3H(1+w)\rho = 0$$

• We focus on linear scalar perturbations:

$$\dot{\delta} + (1+w)\left(\theta + \frac{\dot{h}}{2}\right) + 3H\left(\frac{\delta p}{\delta \rho} - w\right) = 0$$

$$\dot{\theta} + H(1 - 3w)\theta + \frac{\dot{w}}{1 + w}\theta - \frac{\delta p/\delta\rho}{1 + w}k^2\delta + k^2\sigma = 0$$

• GDM is then specified by

$$w, \quad \delta p, \, \sigma \leftrightarrow \delta, \theta$$

I. Tutusaus (IRAP)

Theoretical framework

• We consider non-relativistic DM (it can allow for the formation of galaxies) with the c_{vis} parameterization:

$$\begin{split} \delta p &= c_s^2 \delta \rho - \dot{\rho} (c_s^2 - c_a^2) \theta / k^2 \\ \dot{\sigma} &+ 3H \frac{c_a^2}{w} \sigma = \frac{4}{3} \frac{c_{\rm vis}^2}{1+w} (2\theta + \dot{h} + 6\dot{\eta}) \end{split}$$

- In conclusion, GDM is characterized by
 - Equation of state parameter $w(z) \to w_0$ (= 0 for CDM)
 - ▶ Sound speed $c_s^2(z, x) \to c_{s,0}^2$ (= 0 for CDM)
 - Viscosity $c_{\rm vis}^2(z,x) \to 0$ (= 0 for CDM)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ののの

Current data

- Markov chain Monte Carlo with Monte Python and a modified version of CLASS
 - ▶ Type Ia supernovae (JLA) [Betoule *et al.* 2014]
 - ▶ BAO [Anderson et al. 2014; Beutler et al. 2011; Ross et al. 2015]
 - CMB (Planck_highl_TTTEEE, Planck_lowl, Planck_lensing) [Planck Collaboration 2016]
 - ▶ CFHTLenS [Heymans et al. 2013]
 - ★ Tension with CMB data?
 - \star Nonlinear scales?

CMB + SNIa + BAO

GDM allows for:

- Smaller Ω_m
- Smaller σ_8
- Larger H_0

3

・ロト ・ 同ト ・ ヨト ・ ヨト

CMB + SNIa + BAO

GDM could alleviate the tension between Ω_m and σ_8 (smaller value for σ_8 keeping Ω_m fixed)

CMB + SNIa + BAO + WL

Much stronger constraints when adding WL data:

 $c_s^2 < 7.65e-7 \quad \Rightarrow \quad c_s^2 < 1.14e-10$

But can GDM still alleviate the Ω_m - σ_8 tension?

• 3 >

ъ

The Euclid satellite

I. Tutusaus (IRAP)

GDM with Euclid

17th April 2018

11 / 19

ъ

The Euclid satellite

The Euclid Mission:	baseline a	and options
---------------------	------------	-------------

Euclid Consortium

SURVEYS In ~5.5 years						
	Area (deg2)		Description			
Wide Survey	15,000 deg ²	Step and stare with 4 dither pointings per step.				
Deep Survey	40 deg ²	In at least 2 patches of > 10 deg ² 2 magnitudes deeper than wide survey				
PAYLOAD						
Telescope		1.2 m Korsch	1.2 m Korsch, 3 mirror anastigmat, f=24.5 m			
Instrument	VIS	NISP				
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$	$0.763 \times 0.722 \text{ deg}^2$				
Capability	Visual Imaging	NIR Imaging Photometry NIR Spectroscopy			NIR Spectroscopy	
Wavelength range	550– 900 nm	Y (920- 1146nm),	J (1146-1372 nm)	H (1372- 2000nm)	1100-2000 nm	
Sensitivity	24.5 mag 10σ extended source Shapes + Photo-	24 mag 5σ point source z of <u>n</u> = 1.5 x10	24 mag 5σ point source ⁹ galaxies	24 mag 5σ point source z of n	3 10 ⁻¹⁶ erg cm-2 s-1 3.5σ unresolved line flux =5x10 ⁷ galaxies	
Detector Technology	36 arrays 4k×4k CCD	16 arrays 2k×2k NIR sensitive HgCdTe detectors				
Pixel Size Spectral resolution	0.1 arcsec	0.3 arcsec 0		0.3 arcsec R=250		
Possibility other surveys: SN and/or μ-lens surveys, Milky Way ?						

17th April 2018

・ロト ・四ト ・ヨト ・ヨト

ъ.

Recipe for weak lensing

Observable: tomographic cosmic shear power spectrum

Cosmological parameters

- $\{\Omega_b, h, \Omega_m, n_s, w_0, w_a, \sigma_8, \mathcal{A}_{\text{IA}}, \eta_{\text{IA}}, \beta_{\text{IA}}\}$ without any projection
- We marginalise over the intrinsic alignments (IA) nuisance parameters A_{IA} , η_{IA} , β_{IA}

We model five observational effects beyond calculating the linear matter power spectrum:

- Shear power spectrum
- IA power spectrum
- Small-scale modelling of the matter power spectrum
- Redshift errors
- Shot noise due to Poisson sampling
- 10 equipopulated bins from z = 0.001 up to z = 2.5

Recipe for photometric galaxy clustering

Observable: tomographic angular galaxy clustering

Cosmological parameters

- { $\Omega_b, h, \Omega_m, n_s, w_0, w_a, \sigma_8, b_i$ } without any projection
- We marginalise over the galaxy bias nuisance parameters b_i

We model five observational effects beyond calculating the linear matter power spectrum:

- Angular clustering spectrum
- Galaxy bias
- Small-scale modelling of the matter power spectrum
- Redshift errors
- Shot noise due to Poisson sampling
- 10 equipopulated bins from z = 0.001 up to z = 2.5

Observables:

$$\begin{split} C_{ij}^{\gamma\gamma}(\ell) &= \int \mathrm{d}\chi \frac{W_i^{\gamma}(\chi) W_j^{\gamma}(\chi)}{\chi^2} P_{\delta\delta}\left(\frac{\ell+1/2}{\chi}, z(\chi)\right) \\ C_{ij}^{\delta_g\gamma}(\ell) &= \int \mathrm{d}\chi \frac{W_i^{\delta_g}\left(\frac{\ell+1/2}{\chi}, \chi\right) W_j^{\gamma}(\chi)}{\chi^2} P_{\delta\delta}\left(\frac{\ell+1/2}{\chi}, z(\chi)\right) \\ C_{ij}^{\delta_g\delta_g}(\ell) &= \int \mathrm{d}\chi \frac{W_i^{\delta_g}\left(\frac{\ell+1/2}{\chi}, \chi\right) W_j^{\delta_g}\left(\frac{\ell+1/2}{\chi}, \chi\right)}{\chi^2} P_{\delta\delta}\left(\frac{\ell+1/2}{\chi}, z(\chi)\right) \end{split}$$

→ ∃→

2

Fisher matrix for probe combination:

For the photometric galaxy clustering and weak lensing:

$$F_{\alpha\beta}^{XC} = \sum_{\ell} \sum_{AB} \sum_{pq} \frac{\partial C_p^{AB}(\ell)}{\partial \theta_{\alpha}} (\mathbf{Cov}^{-1})_{pq}^{AB}(\ell) \frac{\partial C_q^{AB}(\ell)}{\partial \theta_{\beta}}$$

with the joint covariance matrix:

$$\mathbf{Cov}_{ij}(\ell) = \frac{C_{ij}^{AB}(\ell) + N_{\ell}^{AB}}{(2\ell+1)f_{\mathrm{sky}}\Delta\ell}$$

In practice: CosmoSIS [arXiv:1409.3409]

Framework for structuring cosmological parameter estimation in the form of calculation modules

 $c_{s}^{2} = 0$

17th April 2018

< 17 ►

< ∃→

æ

17th April 2018

프 🖌 🛛 프

Conclusions

- The nature of DM is not yet well understood, so it is important to study models proposing a more general approach.
- A more generalized treatment of DM seems to alleviate the tension between low-z and high-z data.
- Adding WL data can be tricky (non-linearities) but it is a key probe to constrain GDM.
- Euclid may provide exquisite constraints on DM properties, showing whether GDM is preferred over standard CDM, and if the tension between low-z and high-z data is alleviated.

(2) (4) (2) (4)