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Gaël touquet

IPNL

December 1, 2017
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The standard model

SM Higgs → ττ

Higgs Coupling to fermions
∝ Mfermion

Mτ ≈ 1.777GeV .c−2

ττ = 290.3± 0.5× 10−15s

⇒ cτ = 87.03µm
detecting τ ’s decay products
τ− → e− + ν̄e + ντ
τ− → µ− + ν̄µ + ντ
τ− → h− + ντ + ...

final states : ee , µµ , eµ , τhe
, τhµ , τhτh
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The MSSM

MSSM adds a boson/fermion
symmetry on top of the standard
model

1 Higgsino ⇒ gauge anomaly! 2
Higgsino ⇒ OK.

Furthermore in MSSM single Higgs
field can’t couple to both up-type and
down-type fermions

⇒ two scalar Higgs doublet
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The 2HDM

MSSM (and 2HDM) Higgs sector consists of two Higgs Doublets ⇒ 5
Physical Higgs bosons

Charged H± pair
Three neutral bosons h, H, A
Transparent look for extra boson called φ

At tree level properties are described by 2 free parameters : mA, tanβ

tanβ =
〈H0

u 〉
〈H0

d 〉
Enhanced couplings to fermions at large tanβ values :

Enhanced branching ratios of H → ττ and A → ττ with respect to SM
h→ ττ branching ratio
An additional important production mode - b associated production

Introduction
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Gaël touquet (IPNL) MSSM H → ττ December 1, 2017 5 / 20



CMS
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Particle reconstruction
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Resonance reconstruction

Missing Energy!

τ− → e− + ν̄e + ντ

τ− → µ− + ν̄µ + ντ

τ− → h− + ντ + ...

Each H → ττ event has at least 2 ν

MET helps partially

Solutions :
Introduce new variable as final discriminant : mtot

T

mtot
T =

√
m2

T (l1,MET ) + m2
T (l2,MET ) + m2

T (l1, l2)

mT (x , y) =
√

2 × px
T × py

T × (1 − cos(∆Φx,y ))

Fit event’s variables to get the most likely mass value : SVFit
What about using ML (Machine Learning) to find the resonance mass?
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What is machine learning?

⇒ Type of algorithm that uses a training sample as basis to learn how
to do a given task, as regression or classification
In the training sample, the result we expect as output from the
algorithm needs to be known!
A few examples :

BDT (Boosted Decision Trees)
Likelihood-based estimators
k-Nearest Neighbours
(Deep) Neural Network
...
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Deep Neural Network (DNN)

Training :
1 Test what is the output for a given set of input
2 How different is the output from what we wanted??
3 Propagate this difference backwards into the network
4 Adapt the state of each neuron in order to minimize the difference
5 Start again!

Perfect training ⇒ DNN uses optimally all the available information
he is given to compute the desired output
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It works!

SVFit Comparison :

Similar results
But computation time for
SVFit ≈ 1s per event
Evaluation of DNN’s output
quasi instantaneous
Though the training phase
requires a lot of
computational power, it only
needs it once!

Clemens Lange - Di-τ mass reconstruction with DNNs22.11.2017

>Reduced mass bias 

>DNN shows better resolution

14

Mass correction applied

Figure 1: Preliminary study done by a
CMS Summer Student (Clemens
Lange)
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Others development useful for the analysis (Services tasks)

Asymetric pT threshold double
τh HLT study

Goal : get a better
acceptance (greater number
of signal events) while
keeping the trigger rate low
enough
No results to show yet...

Hadron energy calibration in
the Particle Flow (using kNN)

Residual b-jet energy
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Analysis backgrounds

Z → ττ

tt̄

Diboson

QCD

W + jets

single top

Idea of the fake factor (FF) method
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. Quark/gluon jets which pass τh selections
comprise a large portion of backgrounds in the
µτ, eτ, ττ channels:
• W+jets background
• QCD multijet background
• DY+jets
• tt̄ and a few smaller ones

. Fake factor for each background component is
calculated as:

FFi =
nisolated

ninverted isolation

. FFi = FFi(Njet,p
τ
T, τ decay mode)

. pT fit (Landau function + first order
polynomial) for each Njet, τ decay mode bin

Fakejet

Fakejet

jet Fake
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Which variable to fit?

Fitted distribution MSSM H → ττ (CMS-HIG-17-020)

ττ pre-fit mtot
T distribution
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Several variables to fit?

Fitted distribution SM H → ττ (CMS-HIG-16-043)

16 9 Results

Figures 6–17 show the distributions observed in all channels and categories of this analysis,
together with the expected background and signal distributions. The choice of the binning
is driven by the statistical precision of the background and data templates, leading to wider
bins in the poorly-populated VBF category. The most sensitive category, VBF, is shown first
and is followed by the boosted and 0-jet categories. The signal prediction for a Higgs boson
with mH = 125.09 GeV is normalized to its best fit cross section times branching fraction. The
background distributions are adjusted to the results of the global maximum likelihood fit.
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Figure 6: Observed and predicted 2D distributions in the VBF category of the τhτh decay chan-
nel. The normalization of the predicted background distributions corresponds to the result of
the global fit. The signal distribution is normalized to its best fit signal strength. The back-
ground histograms are stacked. The “Others” background contribution includes events from
diboson and single top quark production, as well as Higgs boson decays to a pair of W bosons.
The background uncertainty band accounts for all sources of background uncertainty, system-
atic as well as statistical, after the global fit. The signal is shown both as a stacked filled his-
togram and an open overlaid histogram.

The 2D distributions of the final discriminating variables obtained for each category and each
channel in the signal regions, along with the control regions, are combined in a binned like-
lihood involving the expected and observed numbers of events in each bin. The expected
number of signal events is the one predicted for the production of a SM Higgs boson of mass
mH = 125.09 GeV decaying into a pair of τ leptons, multiplied by a signal strength modifier µ
treated as a free parameter in the fit.

The systematic uncertainties are represented by nuisance parameters that are varied in the fit
according to their probability density functions. A log-normal probability density function
is assumed for the nuisance parameters affecting the event yields of the various background
contributions, whereas systematic uncertainties that affect the shape of the distributions are
represented by nuisance parameters whose variation results in a continuous perturbation of the
spectrum [68] and which are assumed to have a Gaussian probability density function. Overall,
the statistical uncertainty in the observed event yields is the dominant source of uncertainty for
all combined results.
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Which variable(s)?

Why not fit the output of a
DNN trained to classify signal
and background?

Perfect DNN ⇒ optimal use
of the given informations
allowing discrimination
New techniques could allow
to train on data!

ττ pre-fit mtot
T distribution
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nel. The normalization of the predicted background distributions corresponds to the result of
the global fit. The signal distribution is normalized to its best fit signal strength. The back-
ground histograms are stacked. The “Others” background contribution includes events from
diboson and single top quark production, as well as Higgs boson decays to a pair of W bosons.
The background uncertainty band accounts for all sources of background uncertainty, system-
atic as well as statistical, after the global fit. The signal is shown both as a stacked filled his-
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The 2D distributions of the final discriminating variables obtained for each category and each
channel in the signal regions, along with the control regions, are combined in a binned like-
lihood involving the expected and observed numbers of events in each bin. The expected
number of signal events is the one predicted for the production of a SM Higgs boson of mass
mH = 125.09 GeV decaying into a pair of τ leptons, multiplied by a signal strength modifier µ
treated as a free parameter in the fit.

The systematic uncertainties are represented by nuisance parameters that are varied in the fit
according to their probability density functions. A log-normal probability density function
is assumed for the nuisance parameters affecting the event yields of the various background
contributions, whereas systematic uncertainties that affect the shape of the distributions are
represented by nuisance parameters whose variation results in a continuous perturbation of the
spectrum [68] and which are assumed to have a Gaussian probability density function. Overall,
the statistical uncertainty in the observed event yields is the dominant source of uncertainty for
all combined results.
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Does DNNs learn as much as they can? jet discrimination
example

Modern Deep NN’s for Classification
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Is there more to learn that we know about?
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Train on data!
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For supervised learning, we depend on labels
labels usually come from simulation

What if data and simulation are very different?
…your classifier will be sub-optimal

quark gluonquark vs gluon 
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quark gluonquark vs gluon 
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Solution: Train directly on 
data using mixed samples

E. Metodiev et al., JHEP 10 (2017) 174
L. Dery et al., JHEP 05 (2017) 145

Where next III: Learning directly from data
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Conclusion

My goal will be to find the evidence or reject the possibility of extra
Higgs bosons from MSSM and 2HDM.

New analysis using 2017 data.

Studies around the analysis :

pT -asymmetric ττ HLT
Calibration of analysis objects : PF-hadrons et bjets

Introducing machine learning
in the analysis

Resonance’s mass
determination
Classification Signal /
Background

Let’s get to work!
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Thank you for your attention!
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