Search for extra MSSM Higgs bosons decaying to a au lepton pair in the CMS experiment

Gaël touquet

IPNL

December 1, 2017

Outline

- Theoretical context
 - The standard model
 - MSSM and 2HDM
- Experimental context
 - CMS (Compact Muon Solenoid)
 - Reconstruction
 - Machine learning in mass reconstruction
- The analysis
 - Backgrounds
 - Discriminating variable

The standard model

- SM $Higgs \rightarrow \tau \tau$
 - Higgs Coupling to fermions $\propto M_{fermion}$
 - $M_{ au} pprox 1.777\, GeV.c^{-2}$
- $\bullet \ \tau_{\tau} = 290.3 \pm 0.5 \times 10^{-15} s$
 - $\Rightarrow c\tau = 87.03 \mu m$
 - \bullet detecting τ 's decay products
 - $\tau^- \rightarrow e^- + \bar{\nu}_e + \nu_\tau$
 - $\bullet \ \tau^- \to \mu^- + \bar{\nu}_\mu + \nu_\tau$
 - $\tau^- \to h^- + \nu_{\tau} + ...$
- final states : ee , $\mu\mu$, $e\mu$, $\tau_h e$, $\tau_h \mu$, $\tau_h \tau_h$

Standard Model of Elementary Particles

The MSSM

- MSSM adds a boson/fermion symmetry on top of the standard model
- 1 Higgsino ⇒ gauge anomaly! 2 Higgsino ⇒ OK.
- Furthermore in MSSM single Higgs field can't couple to both up-type and down-type fermions
- ⇒ two scalar Higgs doublet

The 2HDM

- \bullet MSSM (and 2HDM) Higgs sector consists of two Higgs Doublets \Rightarrow 5 Physical Higgs bosons
 - Charged H[±] pair
 - Three neutral bosons h, H, A
 - ullet Transparent look for extra boson called ϕ
- ullet At tree level properties are described by 2 free parameters : $\emph{m}_{\emph{A}}$, $an\!eta$
 - $tan\beta = \frac{\langle H_u^0 \rangle}{\langle H_u^0 \rangle}$
- Enhanced couplings to fermions at large $tan \beta$ values :
 - Enhanced branching ratios of H $\to \tau \tau$ and A $\to \tau \tau$ with respect to SM h $\to \tau \tau$ branching ratio
 - An additional important production mode b associated production

Particle reconstruction

Resonance reconstruction

Missing Energy!

$$ullet$$
 $au^-
ightarrow e^- + ar{m{
u}}_{m{e}} + m{
u}_{m{ au}}$

$$\bullet$$
 $\tau^- o \mu^- + ar{m{
u}}_{m{\mu}} + m{
u}_{m{ au}}$

•
$$\tau^- \rightarrow h^- + \nu_{\tau} + \dots$$

- Each H $\rightarrow \tau \tau$ event has at least 2 ν
 - MET helps partially
- Solutions :
 - Introduce new variable as final discriminant : m_T^{tot}

•
$$m_T^{tot} = \sqrt{m_T^2(I_1, MET) + m_T^2(I_2, MET) + m_T^2(I_1, I_2)}$$

•
$$m_T(x,y) = \sqrt{2 \times p_T^x \times p_T^y \times (1 - \cos(\Delta \Phi_{x,y}))}$$

- Fit event's variables to get the most likely mass value : SVFit
- What about using ML (Machine Learning) to find the resonance mass?

What is machine learning?

- ⇒ Type of algorithm that uses a training sample as basis to learn how to do a given task, as regression or classification
- In the training sample, the result we expect as output from the algorithm needs to be known!
- A few examples :
 - BDT (Boosted Decision Trees)
 - Likelihood-based estimators
 - k-Nearest Neighbours
 - (Deep) Neural Network

• ...

Deep Neural Network (DNN)

- Training :
 - Test what is the output for a given set of input
 - 4 How different is the output from what we wanted??
 - Propagate this difference backwards into the network
 - Adapt the state of each neuron in order to minimize the difference
 - Start again!
- Perfect training ⇒ DNN uses optimally all the available information he is given to compute the desired output

It works!

- SVFit Comparison :
 - Similar results
 - But computation time for $SVFit \approx 1s$ per event
 - Evaluation of DNN's output quasi instantaneous
 - Though the training phase requires a lot of computational power, it only needs it once!

Figure 1: Preliminary study done by a CMS Summer Student (Clemens Lange)

Others development useful for the analysis (Services tasks)

- Asymetric p_T threshold double τ_h HLT study
 - Goal: get a better acceptance (greater number of signal events) while keeping the trigger rate low enough
 - No results to show yet...
- Hadron energy calibration in the Particle Flow (using kNN)
- Residual b-jet energy correction using $\gamma + bjet$ analysis

Analysis backgrounds

•
$$Z \rightarrow \tau \tau$$

- tī
- Diboson
- QCD
- *W* + *jets*
- single top

Which variable to fit?

Fitted distribution MSSM H o au au (CMS-HIG-17-020)

Several variables to fit?

Fitted distribution SM H ightarrow au au (CMS-HIG-16-043)

Which variable(s)?

- Why not fit the output of a DNN trained to classify signal and background?
 - Perfect DNN ⇒ optimal use of the given informations allowing discrimination
 - New techniques could allow to train on data!

Does DNNs learn as much as they can? jet discrimination example

mass, τ₂₁, ΔR are all simple functions of the image

Solution: Train directly on data using mixed samples

Conclusion

- My goal will be to find the evidence or reject the possibility of extra Higgs bosons from MSSM and 2HDM.
- New analysis using 2017 data.
- Studies around the analysis :
 - p_T -asymmetric $\tau \tau$ HLT
 - Calibration of analysis objects : PF-hadrons et bjets
- Introducing machine learning in the analysis
 - Resonance's mass determination
 - Classification Signal / Background
- Let's get to work!

19 / 20

Thank you for your attention!

