

# Search for branons in hadronic final states in proton-proton collisions at sqrt(s) = 13 TeV



#### Outline

Motivations

Presentation of the branon model

Branon phenomenology

The mono-jet and mono-V analysis

Simulations and results



#### Outline

Motivations

Presentation of the branon model

Branon phenomenology

The mono-jet and mono-V analysis

Simulations and results



# The hierarchy problem

Why the Electroweak scale is not Planck scale ?





## The Dark Matter problem

What is Dark Matter ?



#### •Galaxies rotation curves

• • • •



### The Dark Matter problem

What is Dark Matter ?



# Galaxies rotation curvesGalaxy cluster collisions

••••



### The Dark Matter problem

What is Dark Matter ?



Galaxies rotation curves
Galaxy cluster collisions
Cosmic Microwave
Background

•..



#### Outline

Motivations

Presentation of the branon model

Branon phenomenology

The mono-jet and mono-V analysis

Simulations and results



Based on extra-dimension ADD model (Arkani, Dimopoulos & Dvali)



Gravity leaks in the extra-dimension

SM particles are confined into a rigid brane

-The Planck mass can be made arbitrarily small :  $M_p^2 pprox M_D^{D-2} R^d$ 

Solution to Hierarchy problem + DM candidate : KK-graviton



Based on extra-dimension ADD model





Based on extra-dimension ADD model





Based on extra-dimension ADD model





Suppose the brane is flexible and can move along the extradimension



f is the brane tension : scale of perturbations on the brane  $\tilde{g}$  is the induced metric on the brane

- The presence of the brane breaks spacetime symmetries.
- Each broken space-time symmetry produces a stable Goldstone boson, called branon.
- A priori, family of N branons
- >N is degenerated with  $f \rightarrow N=1$  here









The general free branon (field  $\pi$ ) action is given by :

$$S_{\pi} = \frac{1}{2} \int_{\mathcal{M}_4} d^4 x (\delta_{\alpha\beta} \partial_{\mu} \pi^{\alpha} \partial^{\mu} \pi^{\beta} - M_{\alpha\beta}^2 \pi^{\alpha} \pi^{\beta})$$

The branons are also coupled to SM vie the energy-momentum tensor :

$$S_{SM/\pi} = \frac{1}{8f^4} \int_{\mathcal{M}_4} d^4 x (4\delta_{\alpha\beta}\partial_\mu\pi^\alpha\partial_\nu\pi^\beta - \eta_{\mu\nu}M_{\alpha\beta}^2\pi^\alpha\pi^\beta) T_{SM}^{\mu\nu}$$

Example of process producing two branons along with a gluon :





The general free branon (field  $\pi$ ) action is given by :

$$S_{\pi} = \frac{1}{2} \int_{\mathcal{M}_4} d^4 x (\delta_{\alpha\beta} \partial_{\mu} \pi^{\alpha} \partial^{\mu} \pi^{\beta} - M_{\alpha\beta}^2 \pi^{\alpha} \pi^{\beta})$$
Mass term

The branons are also coupled to SM vie the energy-momentum tensor :

$$S_{SM/\pi} = \frac{1}{\delta f^4} \int_{\mathcal{M}_4} d^4 x (4\delta_{\alpha\beta}\partial_\mu\pi^\alpha\partial_\nu\pi^\beta - \eta_{\mu\nu}M_{\alpha\beta}^2\pi^\alpha\pi^\beta) T_{SM}^{\mu\nu}$$

#### Brane tension <

Example of process producing two branons along with a gluon :





The general free branon (field  $\pi$ ) action is given by :

$$S_{\pi} = \frac{1}{2} \int_{\mathcal{M}_{4}} d^{4}x (\delta_{\alpha\beta}\partial_{\mu}\pi^{\alpha}\partial^{\mu}\pi^{\beta} - M_{\alpha\beta}^{2}\pi^{\alpha}\pi^{\beta})$$

$$Mass term$$

$$Mass term$$

$$Mass term$$

$$S_{SM/\pi} = \frac{1}{\sqrt{f^{4}}} \int_{\mathcal{M}_{4}} d^{4}x (4\delta_{\alpha\beta}\partial_{\mu}\pi^{\alpha}\partial_{\nu}\pi^{\beta} - \eta_{\mu\nu}M_{\alpha\beta}^{2}\pi^{\alpha}\pi^{\beta}) T_{SM}^{\mu\nu}$$

#### Brane tension -

Example of process producing two branons along with a gluon :





The general free branon (field  $\pi$ ) action is given by :





#### Branon model - summary

- ADD model provides an answer for hierarchy problem
- If there are extra-dimensions there must be branons
- Branon can be produced at collider
  - Direct coupling to SM particles via energy-momentum tensor
  - <sup>D</sup>2 parameters : the branon's mass M and the brane tension f
  - The cross-sections are suppressed by 1/f<sup>8</sup>
  - Branons are pair produced
  - When f is low, branon production can dominate over KK graviton production
- Branon is a scalar that can be Dark Matter candidate



#### Outline

Motivations

Presentation of the branon model

Branon phenomenology

The mono-jet and mono-V analysis

Simulations and results



At LHC, QCD is everywhere : monojet final state is very interesting

Two main channels for this study : Mono-jet :







- ► The branon model have been implemented in FeynRules.
- Monte-Carlo production with MadGraph at parton level.
- Hadronization with Pythia8.
- Validation in W/Z production channels, base on results from Phys.Rev. D67 (2003) 075010 :





>PDF : LHAPDF-263000, sqrt(s)= 13TeV



Results in mono-Z and mono-W production channel are similar



#### Outline

Motivations

Presentation of the branon model

Branon phenomenology

The mono-jet and mono-V analysis

Simulations and results



At LHC, QCD is everywhere : monojet final state is very interesting

Two main channels for this study : Mono-jet :







At LHC, QCD is everywhere : monojet final state is very interesting

Two main channels for this study : Mono-jet :



Mono-V:





W



At LHC, QCD is everywhere : monojet final state is very interesting

Two main channels for this study : Mono-jet :



Ζ

q

a



At LHC, QCD is everywhere : monojet final state is very interesting

Two main channels for this study :



q

a

# DM search in monojet and monoV channels



Search for events with >1 jets and significant MET

Two channels : mono-jet and mono-V

Backgrounds considered :

Estimated from data : Z(vv)+jets W(lv)+jets QCD Estimated from MC : □Z(ℓℓ)+jets □γ+jets □top □Dibosons

Use of kinematically similar control regions to estimate backgrounds from data

#### Physics objects

#### >Jets clustering :



- In the detector, many collimated tracks
- Originated from a single parton

Reconstructed as a single jet







#### Physics objects

–Usual jets :  $\Delta R=0.4$ 

-Boosted jets :  $\Delta R = 0.8 \rightarrow$  substructure variables





#### Physics objects

Important tool to study particles that don't interact in the detector : Missing Transverse Energy



CLÉMENT LELOUP – CEA SACLAY

# Signal regions selection



Search for monojet and mono-V as two disjoint channels

Two categories of selections :

#### Mono-V

- Leading jet :
- $\Delta R=0.8$
- $p_{\rm T}>250~{\rm GeV}$
- > MET>250 GeV

V-tagging selection :
 N-subjettiness variable < 0.6</li>
 65<m<sub>pruned</sub><105 GeV</li>

- > Veto on leptons
- Veto on b-jets (remove ttbar)
- >  $\Delta \varphi$ (jets,MET)>0.5 (remove QCD)

Mono-jet

Leading jet :
 △R=0.4
 □p<sub>T</sub>>100 GeV
 MET>200 GeV

- Veto on leptons
- Veto on b-jets (remove ttbar)
- >  $\Delta \varphi$ (jets,MET)>0.5 (remove QCD)



#### Outline

Motivations

Presentation of the branon model

Branon phenomenology

The mono-jet and mono-V analysis

Simulations and results

# Selection efficiencies - monojet category



| Mass (GeV) | Monojet | MonoW  | MonoZ  |
|------------|---------|--------|--------|
| 1          | 41,42%  | 15,92% | 15,41% |
| 10         | 41,29%  | 15,72% | 15,65% |
| 50         | 41,45%  | 15,67% | 15,57% |
| 150        | 41,67%  | 15,84% | 15,45% |
| 500        | 43,45%  | 15,96% | 15,53% |
| 1000       | 46,01%  | 16,49% | 15,96% |
| 3000       | 49,29%  | 15,66% | 15,57% |
| 5000       | 46,44%  | 10,86% | 10,37% |
| 6000       | 20,09%  | 03,60% | 03,95% |
| 6400       | 0,03%   | 0,04%  | 0,05%  |

# Selection efficiencies - monoV category



| Mass (GeV) | Monojet | MonoW  | MonoZ  |
|------------|---------|--------|--------|
| 1          | 02,71%  | 06,46% | 06,19% |
| 10         | 02,82%  | 06,25% | 06,07% |
| 50         | 02,75%  | 06,24% | 06,11% |
| 150        | 02,76%  | 06,21% | 06,14% |
| 500        | 02,95%  | 06,51% | 06,25% |
| 1000       | 03,20%  | 06,62% | 06,64% |
| 3000       | 03,47%  | 06,62% | 06,61% |
| 5000       | 03,57%  | 04,44% | 04,32% |
| 6000       | 0,96%   | 0,80%  | 0,77%  |
| 6400       | 0,007%  | 0,01%  | 0,01%  |



#### Monte-Carlo generation

#### MET distributions in the mono-V category :





#### Monte-Carlo generation

#### MET distributions in the mono-jet category :





## Comparison with background

MET distribution of signal compared to background in the two categories, with ICHEP data :





#### Projected limit

Observed limit not public yet

Projected result obtained by extrapolating previous result at 8TeV in monophoton channel





#### Perspectives

- Objectif : Discover branons (if not, constraint the model as much as possible)
- Make the limit obtained with 2016 data public
- Do the analysis with 2017 data
- Build a branon dedicated analysis in these channels
- Use other data to extract the most we can from branon model (ex: DM relic density)



# Thank you !



Partial decay width of Z/W decaying in two fermions and two branons :



Figure 1:  $W^{\pm}$  and Z widths as a function of the branon mass. Both plots correspond to a single channel. We have extracted the dependence on the brane tension and the number of branons in the factor  $f^8/n$ .



$$s = 2p_{1}^{0}p_{2}^{0}(1 - \cos\theta), \qquad \frac{d\Gamma_{Z}^{b}}{d^{3}\vec{p}\vec{l}d^{3}\vec{p}\vec{2}} = \frac{|h|^{2}}{4\pi} \frac{2M_{Z}n}{61440f^{8}3\pi^{6}t^{2}u^{2}(M_{Z}^{2} - t)(M_{Z}^{2} - u)(M_{Z}^{2} - s)^{2}}}{\sqrt{1 - \frac{4M^{2}}{k^{2}}} \{20M^{2}M_{Z}^{2}(2k^{2} - 5M^{2})t^{2}u^{2}(M_{Z}^{2}(2s - k^{2}) + tu) + (k^{2} - 4M^{2})^{2}\{stu(s(k^{2} + M_{Z}^{2}) + 4tu)(2s(k^{2} + M_{Z}^{2}) + t^{2} + u^{2}) + (t^{2} + u^{2})(2s + 2k^{2} + M_{Z}^{2})M_{Z}^{8}} - [6s(t^{4} + u^{3}) + 6s^{2}(t^{2} + u^{2} - tu) + 3tu(t - u)^{2} + t^{4} + u^{4}]M_{Z}^{6}} + M_{Z}^{4}[2s^{3}(2(t^{2} + u^{2}) - 5tu) + 2s^{2}(3(t^{3} + u^{3}) - 5tu(t + u)) + s(2(t^{4} + u^{4}) + tu(t^{2} + u^{2} - 8tu)) + tu(t^{3} + u^{3} - 7tu(t + u))] - M_{Z}^{2}[s^{4}(t - u)^{2} - 8t^{3}u^{3} + 2s^{3}(t^{3} + u^{3} - 2tu(t + u)) + s^{2}(t^{4} + u^{4} + tu(t^{2} + u^{2} - 14tu))]] + s^{2}(t^{4} + u^{4} + tu(t^{2} + u^{2} - 14tu))]\}$$



Differential cross section of the process  $l\bar{l} \rightarrow Z \pi \pi$ 





#### • PDF : LHAPDF-263000, sqrt(s)= 13TeV





- Three production channels : mono-W, mono-Z, monojet
- Mono-jet channel : 100k events
- Mono-W and Mono-Z channel : 50k events
- >10 mass points,  $M_{\pi} = 1$  to 6400 GeV, to cover all the allowed kinematical region, no need to produce for several f values



#### Substructure variables

$$\tau_N = \frac{\sum_i k_{T,i} \min\left(R_{1i}, R_{2i} \dots R_{ni}\right)}{\sum_i k_{T,i} R}$$



Suppose the brane is flexible and can move along the extra-dimension



∽See :

Sundrum PRD59 (1999) 085009
Dobado, Maroto NPB592 (2001) 203
Cembranos, Dobado, Maroto PRD65 (2002) 026005



- ADD model provides an answer for hierarchy problem
- Branon can be produced at collider
  - Direct coupling to SM particles via energy-momentum tensor
  - 2 types of couplings : derivative coupling and mass term ; and the coupling strength is controlled by 1/f<sup>8</sup>
  - Branons are pair produced
  - 2 parameters : the branon's mass M and the brane tension f
  - <sup>D</sup> When f<M<sub>D</sub> branon pair production can dominate over KK graviton production
  - (see PRD88 (2013) 075021)
- Branon is a scalar that can be Dark Matter candidate
  - DM model with no mediator
  - (see Cembranos, Dobado, Maroto with PRL90 (2003) 241301, PRD68 (2003) 103505, PRD69 (2004) 043509)

# DM search in monojet and monoV channels



#### Backgrounds considered : Z(vv)+jets

