Phenomenological analysis of Charged Lepton Flavor Violation processes

Albert Saporta

Supervisor : Sacha Davidson

JRJC
iPN

Outline

Introduction

- The Standard Model
- Charged Lepton Flavor Violation (CLFV) processes

Effective field theories (EFT)

- What is it?
- Why do we need EFT?
- Renormalization Group Equations
μ-e conversion in nuclei
- Motivation
- BSM model
- Prospects and conclusions

Introduction

Standard Model

- Particles of matter: quarks and leptons (3 generations)
- Force carriers : gauge bosons (and Higgs boson)

- In the Standard model, the flavor is conserved.
- In CLFV processes, the initial and final number of flavors are different.
- CFLV forbidden in SM \rightarrow need BSM physics

Examples:
$\mu \rightarrow e$ conversion in nuclei, $\mu \rightarrow e \gamma, \mu \rightarrow e e \bar{e}$ and mesons decays such as $K \rightarrow \bar{\mu} e$
Flavor physics is sensitive to new physics at scales $\Lambda_{N P}$
Eexperiment

Effective fields theories (EFT)

What is EFT?

- Theoretical framework used to parametrize observables at a given energy scale $\boldsymbol{\Lambda}$.
- Choose the relevant degrees of freedom to describe the dynamics
- Describe indirect effects of heavy New Physics (NP) on interactions between SM particles.
- Contact interactions

Why do we need EFT?
Assumption : new particles are too heavy to be produced

- Remove particles with $m>\Lambda$ from the theory \rightarrow obtain an effective Lagrangian
- Operators and coefficients \rightarrow parametrize the low energy EFT
- Compute observables at a specific scale $\Lambda<\Lambda_{N P}$

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{S M}+\mathcal{L}_{5}+\mathcal{L}_{6}+\ldots
$$

where

$$
\mathcal{L}_{d}=\sum_{i} \frac{C_{i}^{d}}{\Lambda_{N P}^{d-4}} \mathcal{O}_{i}^{d}
$$

Example : $O^{6}=\left(\bar{\mu} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu\right)\left(\bar{e} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right)$

Renormalization Group Equations (RGEs)

In an EFT, operator coefficients run with the energy scale and can mix to other operators!!

EFT \Rightarrow what is the scale of the physics we are interested in? $C_{i}^{d}\left(\Lambda_{N P}\right)$ run down to the scale of interest $\left(\boldsymbol{\Lambda}_{\text {exp }}\right)$
\Rightarrow need a tool to relate the different scales

Solutions: RGEs

Every parameters of \mathcal{L} evolve with energy scale because of loops

(2)

(3)

- Counterterms δ obtained from loops
- Anomalous dimension γ encodes the running
- $\gamma=-2 \alpha \frac{\partial \delta}{\partial \alpha}$

$$
\Lambda \frac{\partial}{\partial \Lambda}\left(C_{l}, \ldots C_{J}, \ldots\right)=\frac{\alpha_{e}}{4 \pi} \vec{C} \Gamma^{e}+\frac{\alpha_{s}}{4 \pi} \vec{C} \Gamma^{s}
$$

\Rightarrow all coefficients organized in the row vector \vec{C}, Γ is an anomalous dimension matrix

$\mu-e$ conversion in nuclei

Why CLFV and muons?

- No SM contribution in CLFV \Longleftrightarrow Signal of BSM physics !!
- μ^{-}are easy to produce : at least $\sim 10^{8} \mu /$ sec at J-PARC
- Future experiments : $\sim 10^{12} \mu / \mathrm{sec}$
- τ : $400 \tau /$ sec at super-KEKB

This is what we start with.

This is the process we are looking for.

BSM scenario: Leptoquarks

- Bosons that allow leptons and quarks to interact
- Triplet of SU(3) and carry B and L numbers
- Could explain many similarities between quarks and leptons
- $m_{L Q} \sim T e V$

Extend the SM with two Leptoquarks S and \tilde{S}
$\mathcal{L}_{B S M}=\mathcal{L}_{S M}+D^{\mu} S^{\dagger} D_{\mu} S+m^{2} S^{\dagger} S+D^{\mu} \tilde{S}^{\dagger} D_{\mu} \tilde{S}+\tilde{m}^{2} \tilde{S} \dagger \tilde{S}+$
$\left[\lambda_{L}^{*}\right]_{\mu d} \bar{l}_{\mu} i \tau_{2} q_{L, d}^{c} S+\left[\lambda_{R}^{*}\right]_{e u} \bar{e} u^{c} S+\left[\tilde{\lambda}^{*}\right]_{e d} \bar{e} d^{c} \tilde{S}+\left[\tilde{\lambda}^{*}\right]_{\mu d} \bar{\mu} d^{c} \tilde{S}+$ h.c

Operators and coefficients at $\Lambda_{N P} \sim m_{L Q}$

$$
\begin{aligned}
& O_{T, X}^{u \mu}=\left(\bar{e} \sigma_{\alpha \beta} P_{X} \mu\right)\left(\bar{u} \sigma^{\alpha \beta} u\right), O_{S, X}^{u \mu}=\left(\bar{e} P_{X} \mu\right)(\bar{u} u) \\
& O_{V, X}^{d d}=\left(\bar{e} \gamma_{\alpha} P_{X} \mu\right)\left(\bar{d} \gamma^{\alpha} d\right), O_{A, X}^{d d}=\left(\bar{e} \gamma_{\alpha} P_{X} \mu\right)\left(\bar{d} \gamma^{\alpha} \gamma_{5} d\right) \\
& \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right], P_{X}=P_{R, L}=\frac{1 \pm \gamma^{5}}{2}
\end{aligned}
$$

For the Leptoquark S: $C_{S, X}^{u u^{u}}=\frac{\left[\lambda_{L}^{*}\right]_{\mu u}\left[\lambda_{R}\right]_{e u}}{4 m^{2}}, C_{T}^{u /}, X=\frac{\left[\lambda_{L}^{*}\right]_{\mu u}\left[\lambda_{R}\right]_{e u}}{8 m^{2}}$
For the Leptoquark $\tilde{S}: C_{V, X}^{d d}=C_{A, X}^{d d}=\frac{\left[\tilde{\lambda}^{*}\right]_{e d}[\tilde{\lambda}]_{\mu d}}{4 \tilde{m}^{2}}$

But we need these coefficients at $\Lambda_{\text {exp }} \sim 2 \mathrm{Gev}$ (nucleon level)

Running down to the experimental scale

$$
C_{l}\left(\Lambda_{e x p}\right)=C_{J}\left(\Lambda_{N P}\right) \lambda^{a \jmath}\left(\delta_{J I}-\frac{\alpha_{e} \widetilde{\Gamma}_{J l}^{e}}{4 \pi} \log \frac{\Lambda_{N P}}{\Lambda_{\text {exp }}}\right)
$$

- $\lambda=\frac{\alpha_{s}\left(\Lambda_{N P}\right)}{\alpha_{s}\left(\Lambda_{\text {exp }}\right)} \rightarrow$ QCD running
- $a_{J}=\frac{r^{s} \mu_{j}}{2 \beta_{0}} \rightarrow$ QCD running
- $\widetilde{\Gamma}_{J /}^{e} \rightarrow$ QED/QCD running and mixing

Branching ratio

$$
B R=B R_{S I}+B R_{S D}(\mathrm{SI}=\text { Spin Independent, } \mathrm{SD}=\text { Spin Dependent })
$$

$$
\begin{aligned}
& B R_{S I}=2 B_{0}\left|Z\left[C_{V, R}^{p p}+C_{S, L}^{p p}+\frac{m_{\mu}}{m_{p}} C_{T, L}^{p p}\right] F_{p}\left(m_{\mu}\right)+N\left[C_{V, R}^{n n}+C_{S, L}^{n n}+\frac{m_{\mu}}{m_{n}} C_{T, L}^{n n}\right] F_{n}\left(m_{\mu}\right)\right|^{2} \\
& B R_{S D}=8 B_{0} \frac{J+1}{J}\left|\left(S_{p} C_{A, R}^{p p}+S_{n} C_{A, R}^{n n}\right)^{2}+\left(2 S_{p} C_{T, L}^{p p}++2 S_{n} C_{T, L}^{n n}\right)^{2}\right| \frac{S_{A}\left(m_{\mu}\right)}{S_{A}(0)}
\end{aligned}
$$

- $\mathrm{B}_{0}=G_{F}^{2} m_{\mu}^{5}(\alpha Z)^{3} /\left(\pi^{2} \Gamma_{c a p}\right)$
- $S_{p, n}, F_{p, n}$ and $\frac{S_{A}\left(m_{\mu}\right)}{S_{A}(0)}$ are nuclear factors
- Different coefficients (\tilde{S} and S) in $B R_{S I}$ and $B R_{S D}$
- $B R_{S D}$ highly suppressed

Bounds on coefficients

Using experimental bounds on branching ratios :

- $B R_{S I}(\mu A I \rightarrow e A I) \leq 10^{-14}, B R_{S D}(\mu A I \rightarrow e A I) \leq 10^{-14}$
- $B R_{S I}(\mu T i \rightarrow e T i) \leq 10^{-14}, B R_{S D}\left(\mu^{47} T i \rightarrow e^{47} T i\right) \leq 10^{-14}$
- $B R_{S I}(\mu \mathrm{~Pb} \rightarrow e \mathrm{~Pb}) \leq 10^{-14}$
give the bounds on the coefficients: $C_{V, R}^{d d} \leq \sqrt{0.0103 \times B R}$, $C_{S, L}^{u \mu} \leq \sqrt{0.0011 \times B R} \ldots$

How to distinguish operators?

\Rightarrow Use different target nuclei

$$
a=\frac{\left.\frac{B R(A l \mu \rightarrow A l e)}{B R(X \mu \rightarrow X e)}\right|_{S}}{\left.\frac{B R(A l \mu \rightarrow A l e)}{B R(X \mu \rightarrow X e)}\right|_{\tilde{S}}} \quad b=\frac{\left.\frac{B R(N b \mu \rightarrow N b e)}{B R(X \mu \rightarrow X e)}\right|_{\text {scalar }}}{\left.\frac{B R(N b \mu \rightarrow N b e)}{B R(X \mu \rightarrow X e)}\right|_{\text {vector }}}
$$

Conclusions and prospects

- Charged Lepton Flavor Violation \Leftrightarrow signal of physics beyond the Standard Model
- Future experiments will improve their sensitivity
- Effective operators parametrization
- Coefficients run with the scale
- Different operators in SI and SD branching ratios
- Use various nuclei to distinguish operators and separate S and \tilde{S} contributions to the branching ratio

I'm a second year PhD student...

BACKUP

Anomalous dimension and mixing
The operators coefficients below the scale $\Lambda_{N P}$ are organized in the vector \vec{C} as following :

$$
\begin{aligned}
& \vec{C}=\left(\vec{C}_{V}^{u}, \vec{C}_{V}^{d}, \vec{C}_{A}^{u}, \vec{C}_{A}^{d}, \vec{C}_{S}^{u}, \vec{C}_{S}^{d}, \vec{C}_{T}^{u}, \vec{C}_{T}^{d}\right) \\
& \vec{C}_{V}^{f}=\left(C_{V L}^{f f}, C_{V R}^{f f}\right) \quad \vec{C}_{A}^{f}=\left(C_{A L}^{f f}, C_{A R}^{f f}\right) \\
& \vec{C}_{S}^{f}=\left(C_{S, L}^{f f}, C_{S, R}^{f f}\right) \quad \vec{C}_{T}^{f}=\left(C_{T, L}^{f f}, C_{T, R}^{f f}\right)
\end{aligned}
$$

In the basis of \vec{C}, the QED anomalous dimension matrix can be written $\Gamma^{e}=\left[\begin{array}{cc}\Gamma_{V A} & 0 \\ 0 & \Gamma_{S T}\end{array}\right]$ with

$$
\Gamma_{S T}=\left[\begin{array}{cccc}
\gamma_{S, S}^{u, u} & 0 & \gamma_{S, T}^{u, u} & 0 \\
0 & \gamma_{S, S}^{d, d} & 0 & \gamma_{S, T}^{d, d} \\
\gamma_{T, S}^{u, u} & 0 & \gamma_{T, L}^{u, u} & 0 \\
0 & \gamma_{T, S}^{d, d} & 0 & \gamma_{T, T}^{d, d}
\end{array}\right] \Gamma_{V A}=\left[\begin{array}{cccc}
0 & 0 & \gamma_{V, A}^{u, u} & 0 \\
0 & 0 & 0 & \gamma_{V, A}^{d, d} \\
\gamma_{A, V}^{u, u} & 0 & 0 & 0 \\
0 & \gamma_{A, V}^{d, d} & 0 & 0
\end{array}\right]
$$

$$
\begin{array}{c|cc}
& C_{S, L}^{f f} & C_{S, R}^{f f} \\
\gamma_{S, S}^{f, f}= & C_{S, L}^{f f} & 6\left(1+Q_{f}^{2}\right) \\
C_{S, R}^{f f} & 0 & 6\left(1+Q_{f}^{2}\right)
\end{array} \quad \gamma_{T, S}^{f, f}=\begin{array}{cc|cc}
& C_{S, L}^{f f} & C_{S, R}^{f f} \\
\hline & C_{T, L}^{f f} & -96 Q_{f} & 0 \\
0 & -96 Q_{f}
\end{array}
$$

$$
C_{l}\left(\Lambda_{\text {exp }}\right)=C_{J}\left(\Lambda_{N P}\right) \lambda^{a \jmath}\left(\delta_{J I}-\frac{\alpha_{e} \widetilde{\Gamma}_{J l}^{e}}{4 \pi} \log \frac{\Lambda_{N P}}{\Lambda_{\exp }}\right)
$$

$$
C_{S, L}^{q q}\left(\Lambda_{e x p}\right)=24 \lambda^{a_{T} T} f_{T S} Q_{q} \frac{\alpha_{e}}{\pi} \log \frac{\Lambda_{N P}}{\Lambda_{\text {exp }}} C_{T, L}^{q q}\left(\Lambda_{N P}\right)+\lambda^{a_{S} 5}\left[1-\frac{3}{2} \frac{\alpha_{e}}{\pi} \log \frac{\Lambda_{N P}}{\Lambda_{e x p}}\left(1+Q_{q}^{2}\right)\right] C_{S, L}^{q q}\left(\Lambda_{N P}\right)
$$

Finally, the coefficients at the experimental scale $\Lambda_{\text {exp }}$ are obtained via the matching condition :

$$
C_{O, Y}^{N N}\left(\Lambda_{\exp }\right)=\sum_{q=u, d} G_{O}^{N, q} C_{O, Y}^{q q}\left(\Lambda_{\exp }\right)
$$

Covariance matrix

In the basis $\left(C_{V, R}^{d d}, C_{S, L}^{u u}, C_{T, L}^{u u}, C_{A, R}^{d d}\right)$ the matrix is written:

$$
\begin{aligned}
& M^{-1}=\left[\begin{array}{cccc}
V^{2} & S V & T V & 0 \\
S V & S^{2} & S T & 0 \\
T V & S T & T^{2} & A T \\
0 & 0 & A T & A^{2}
\end{array}\right] \\
& T^{2}=2 B_{0}^{A l}\left|2 Z^{A l} \frac{m_{\mu}}{m_{p}} G_{T}^{p, u}+2 N^{A l} \frac{m_{\mu}}{m_{n}} G_{T}^{n, u}\right|^{2} F_{p, A l}^{2} \\
&+2 B_{0}^{T i}\left|2 Z^{T i} \frac{m_{\mu}}{m_{p}} G_{T}^{p, u}+2 N^{T i} \frac{m_{\mu}}{m_{n}} G_{T}^{n, u}\right|^{2} F_{p, T i}^{2} \\
&+32 B_{0}^{P b}\left|2 S_{p}^{P b} \frac{m_{\mu}}{m_{p}} G_{T}^{p, u}+2 S_{n}^{P b} \frac{m_{\mu}}{m_{n}} G_{T}^{n, u}\right|^{2} \\
&+8 B_{0}^{A l} \frac{J_{A l}+1}{J_{A l}} \frac{S_{A l}\left(m_{\mu}\right)}{S_{A l}(0)}\left|2 \tilde{S}_{p}^{A l} G_{T}^{p, u}+2 \tilde{S}_{n}^{A l} G_{T}^{n, u}\right|^{2} \\
&+8 B_{0}^{T i} \frac{J_{T i}+1}{J_{T i}} \frac{S_{T i}\left(m_{\mu}\right)}{S_{A l}(0)}\left|2 \tilde{S}_{p}^{T i} G_{T}^{p, u}+2 \tilde{S}_{n}^{T i} G_{T}^{n, u}\right|^{2} \\
& A T=8 B_{0}^{A l} \frac{J_{A l}+1}{J_{A l}} \frac{S_{A l}(m \mu)}{S_{A l}(0)}\left|\tilde{S}_{p}^{A l} G_{A}^{p, d}+\tilde{S}_{n}^{A l} G_{A}^{n, d}\right|\left|2 \tilde{S}_{p}^{A l} G_{T}^{p, u}+2 \tilde{S}_{n}^{A l} G_{T}^{n, u}\right| \\
&+8 B_{0}^{T i} \frac{J_{T i}+1}{J_{T i}} \frac{S_{T i}(m \mu)}{S_{T i}(0)}\left|\tilde{S}_{p}^{T i} G_{A}^{p, d}+\tilde{S}_{n}^{T i} G_{A}^{n, d}\right|\left|2 \tilde{S}_{p}^{T i} G_{T}^{p, u}+2 \tilde{S}_{n}^{T i} G_{T}^{n, u}\right|
\end{aligned}
$$

