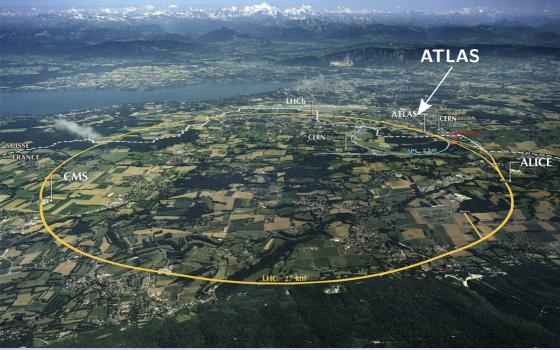
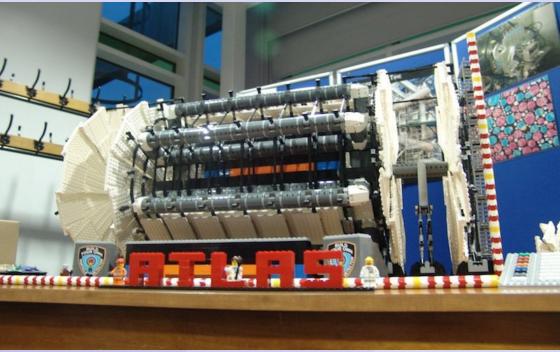
Search for the SM (and BSM) production of four top quarks in the ATLAS detector at the LHC

Thibault CHEVALÉRIAS

CEA Saclay - IRFU

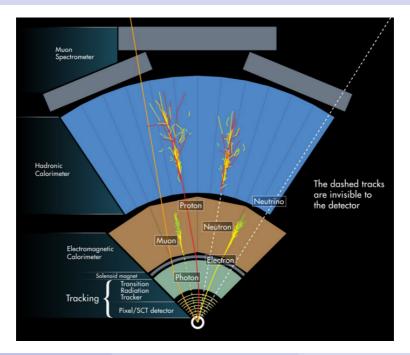
Journées de Rencontre des Jeunes Chercheurs December 1, 2017




1 ATLAS @ LHC

- 2 Motivation and models
- 3 Event selection
- Background Modeling
- 5 Results

The Large Hadron Collider


The ATLAS detector

Thibault Chevalérias (CEA Saclay)

Search for 4 top quark production at the LHC

Particle detection in ATLAS

Thibault Chevalérias (CEA Saclay)

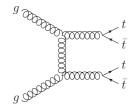
Table of Contents

1 ATLAS @ LHC

2 Motivation and models

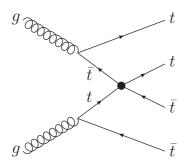
3 Event selection

Background Modeling

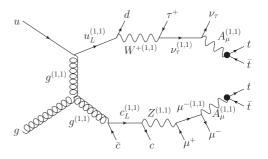

5 Results

Top quark: heaviest elementary particle currently known

Four top production: $t\bar{t}t\bar{t}$, an extremely rare process


- $\longrightarrow \sigma_{t \overline{t} t \overline{t}} = { extsf{9.2 fb}}$ at 13 TeV
- \implies Only \sim **300** $t\bar{t}t\bar{t}$ events occurred in 2015-2016! (compare that to the **40 million events per second** produced)

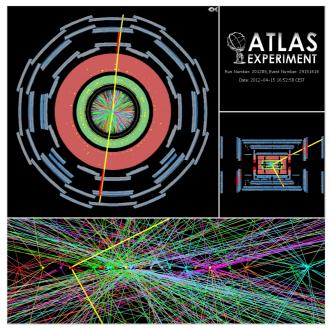
- Goal: Measure the *tttt* cross-section
 - \longrightarrow Very sensitive to several BSM scenarios
 - \longrightarrow Test the Standard Model prediction for $\sigma_{t\bar{t}t\bar{t}}$


Some BSM models tested

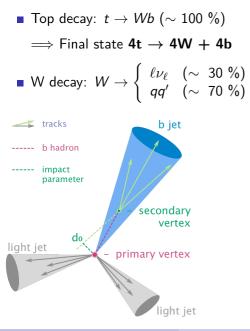
Contact Interaction model

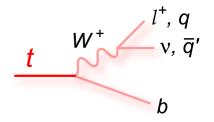
$$\mathcal{L}_{4t} = \frac{\mathcal{L}_{4t}}{\Lambda^2} (\bar{t_R} \gamma^\mu t_R) (\bar{t_R} \gamma_\mu t_R)$$

Universal extra-dimensions (2UED/RPP)


1 ATLAS @ LHC

- 2 Motivation and models
- 3 Event selection
- Background Modeling


5 Results


Event selection

- 40 000 000 events/second produced in ATLAS, with ~ 25 collisions/event
- but a few ~ **100** *ttttt* events per year only!
- \implies Need to perform some smart event selection

The $t\bar{t}t\bar{t}$ final state

Concerning jets

- quarks → jets in the detector (parton shower + hadronization)
- **b-jets** are special (displaced vertex)
 → **b-tagging** techniques

The $t\bar{t}t\bar{t}$ final state: you said 4W?

2 interesting channels:
a single lepton channel (including trilepton)
bhhh (42.2 %)
bhhh (42.2 %)
bhhh (31.1 %)
bhh (31.1 %)

WWWW decays branching fractions

• Choose events with two leptons of the same charge (e or μ)

- \longrightarrow Only \sim 10 % of signal events
- \longrightarrow But very small background contamination!

Signal Regions

Event topology

- Large total energy: $H_T = \sum_{leptons} p_T + \sum_{jets} p_T$
- Large number of b-jets: N_b
- Missing energy (neutrinos): E_T^{miss}

 \longrightarrow We actually make ${\bf 8}$ different selections, and combine them statistically (each one optimized for a given model)

Definition					
$e^\pm e^\pm + e^\pm \mu^\pm + \mu^\pm \mu^\pm + eee + ee\mu + e\mu\mu + \mu\mu\mu, \ N_{ m jets} \geq 2$					
	$N_b = 1$		SR0		
$400 < H_T < 700 \text{GeV}$	$N_b = 2$	$E_T^{ m miss} > 40 { m GeV}$	SR1		
	$N_b \geq 3$		SR2		
	$N_b = 1$	$40 < E_T^{ m miss} < 100{ m GeV}$	SR3		
		$E_T^{ m miss} \ge 100~{ m GeV}$	SR4		
$H_T \ge 700 { m GeV}$	$N_b = 2$	$40 < E_T^{ m miss} < 100{ m GeV}$	SR5		
		$E_T^{ m miss} \ge 100 { m GeV}$	SR6		
	$N_b \geq 3$	$E_T^{ m miss} > 40 { m GeV}$	SR7		

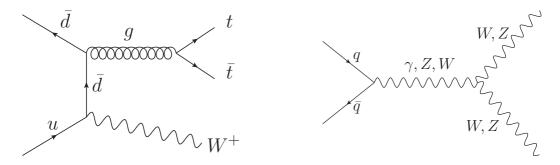
1 ATLAS @ LHC

- 2 Motivation and models
- 3 Event selection
- 4 Background Modeling

5 Results

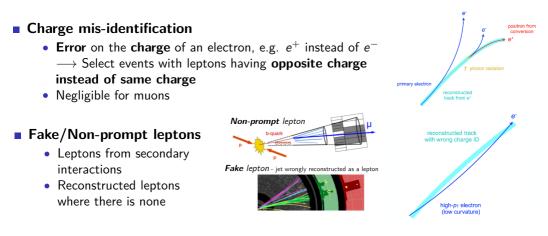
- We're looking for small deviations from the expected number of background events → Primordial to estimate backgrounds
- 2 types of backgrounds:
 - Physical processes producing exactly the particles we're looking for
 - Instrumental backgrounds: charge mis-identification, fake leptons

$$N_{
m bkg} = N_{
m physical} + N_{
m charge\ misID} + N_{
m fakes}$$


Analysis: estimate N_{bkg} as best as possible \longrightarrow then compare $N_{bkg} + N_{signal}$ to $N_{observed}$

Background Modeling - SM backgrounds

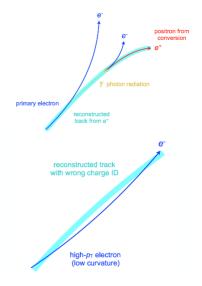
• Physical processes producing same-charge leptons:


- Top quark pair + vector boson: $t\bar{t}V$ (V = W or Z)
- Di-boson production: VV (V = W or Z)
- (+ 4 top SM when searching for BSM signals)
- Other (rare): $t\bar{t}H$, $t\bar{t}WW$, VVV, VH, 3 top, tZ, tWZ

 \Longrightarrow estimated by Monte-Carlo simulations

Background Modeling - instrumental backgrounds

- Wrong identification of leptons in the detector
 - \longrightarrow Coming mostly from $t\bar{t}$ events badly reconstructed
 - \rightarrow Small fraction of $t\bar{t}$ events, but not negligible since $\sigma_{t\bar{t}} \sim 100\,000\,\sigma_{t\bar{t}t\bar{t}}$!


■ Probability of mis-identification: charge flip rate ε → Estimated from data (Z → e⁺e⁻ decays)

Probability to select opposite-sign event:

$$\mathsf{P}_{\mathsf{OS}\to\mathsf{SS}} = \varepsilon_i(1-\varepsilon_j) + \varepsilon_j(1-\varepsilon_i)$$

Look at opposite-sign events in real data to estimate charge mis-ID background:

$$N_{SS}^{ij} = \frac{\varepsilon_i + \varepsilon_j - 2\varepsilon_i\varepsilon_j}{1 - \varepsilon_i - \varepsilon_j + 2\varepsilon_i\varepsilon_j} N_{OS(observed)}^{ij}$$

Fake/Non-prompt background - general principle

- We select only isolated leptons to remove fakes
- Probabilities \varepsilon_{real} / \varepsilon_{fake} that real/fake leptons are selected as isolated
 - \longrightarrow estimated from real data using specific selection

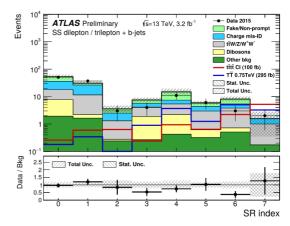
Fake lepton - jet wrongly reconstructed as a lepton

Example with 1 lepton below. Similar method for 2 or 3 leptons. (in blue what we measure, in red what is unknown)

> $N^{tot} = N_{real} + N_{fake}$ $N^{iso} = \varepsilon_{real} N_{real} + \varepsilon_{fake} N_{fake}$

 \implies Estimation of fakes background:

$$\mathbf{V}_{\mathsf{fakes selected}} = \varepsilon_{\mathsf{fake}} \mathsf{N}_{\mathsf{fake}} = \frac{\varepsilon_{\mathsf{fake}}}{\varepsilon_{\mathsf{real}} - \varepsilon_{\mathsf{fake}}} (\varepsilon_{\mathsf{real}} \mathsf{N}^{\mathsf{tot}} - \mathsf{N}^{\mathsf{iso}})$$


1 ATLAS @ LHC

- 2 Motivation and models
- 3 Event selection
- Background Modeling

Results

- Results on 2015 data: 3.2 fb⁻¹
 → ATLAS-CONF-2016-032
 → expecting only ~ 30 tītī events with this dataset
- 2016 data analysis almost finished, using 36.1 fb⁻¹ (10× more!)
- Currently planning the full Run 2 analysis (2015 to 2018 data):
 ~ 120 fb⁻¹ expected

No observed excess of data compared to expected background

 \longrightarrow 95 % CL limits are set to assess the compatibility of each model with observations

Limits - 4 top CI and UED models

- For each of the models
 - \longrightarrow set limits above which we're sure at 95 % CL that it doesn't exist

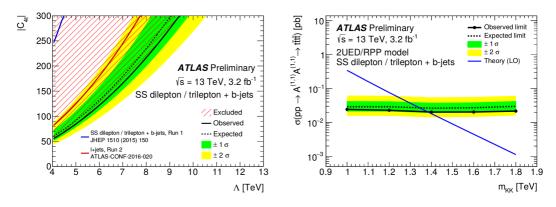


Figure: Expected and observed limits on 4 top CI (left) and UED (right) models

- Observed (expected) limit on 4top SM: 95 fb (107 fb $^{+50}_{-30}$ %)
 - \Longrightarrow Corresponds to $10 \times$ $(12 \times)$ the theory
 - \implies Need to improve a lot to get sensitive enough!

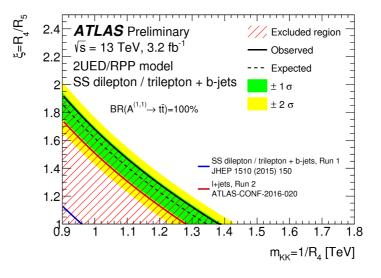
But!

- \longrightarrow The dataset is now $10\times$ larger
- \longrightarrow A whole new analysis has been performed on 2015 2016 data

ATLAS results are not public yet

- \longrightarrow CMS latest results [Sept 2017]
- \rightarrow Observed (expected) limit on 4top SM : 41.7 fb (20.8 fb-1)
- \longrightarrow Sensitivity: 2.3 \times SM prediction

- Study of 4 top quarks production at the LHC with this ATLAS detector → using same-sign leptons + b-jets
- Several BSM models were tested, along with the SM production
- Instrumental backgrounds are the tricky point of this analysis
- The results with 2015 data only are limited, but we expect large improvements from the ongoing analysis, comparable to CMS results
- We will approach the sensitivity required to observe 4 top production in 2018/2019 → first evidence of this process?


BACKUP

Example for 2 leptons with real (fake) efficiencies called r (f):

$$\begin{pmatrix} N^{\text{tt}} \\ N^{\text{tt}} \\ N^{\text{tt}} \\ N^{\text{tt}} \\ N^{\text{tt}} \\ N^{\text{tt}} \end{pmatrix} = \mathbf{M} \begin{pmatrix} N^{\text{ll}}_{\text{rr}} \\ N^{\text{ll}}_{\text{rf}} \\ N^{\text{ll}}_{\text{fr}} \\ N^{\text{ll}}_{\text{fr}} \end{pmatrix} \quad \mathbf{M} = \begin{pmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 \overline{r_2} & r_1 \overline{f_2} & f_1 \overline{r_2} & f_1 \overline{f_2} \\ \overline{r_1 r_2} & \overline{r_1 f_2} & \overline{f_1 r_2} & \overline{f_1 f_2} \\ \overline{r_1 r_2} & \overline{r_1 f_2} & \overline{f_1 r_2} & \overline{f_1 f_2} \\ \overline{f_1 r_2} & \overline{f_1 f_2} & \overline{f_1 f_2} \\ \end{array} \end{pmatrix}$$

$$\text{What we measure need} \qquad \text{transformation matrix} \qquad \text{Loose lepton}$$

Limit UED in 2 dimensions

Source	Signal region							
	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7
Cross section	8	11	26	13	9	27	23	57
Jet energy scale	1	1	3	1	1	3	2	4
Jet energy resolution	<1	2	2	2	< 1	1	<1	3
b-tagging efficiency	1	2	5	3	1	2	2	7
Luminosity	1	1	1	1	1	1	1	1
Fake/non-prompt leptons	17	7	15	13	26	13	17	17
Charge misID	8	3	7	5	3	6	5	8

Source	Signal region							
	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7
Jet energy scale	2	12	2	6	4	3	3	3
Jet energy resolution	16	6	7	16	14	11	1	2
<i>b</i> -tagging efficiency	8	5	5	21	14	15	5	5
Lepton ID efficiency	1	1	1	4	2	2	2	1
Luminosity	2	2	2	2	2	2	2	2

Yields

4 top signals yields normalized to $100\,{\rm fb}^{-1}$

	SR0	SR1	SR2	SR3	SR4
Fake/Non-prompt	16.3 ± 9.5	4.2 ± 3.3	1.0 ± 0.9	1.8 ± 1.4	7.1 ± 4.5
Charge mis-ID	18.1 ± 4.1	14.9 ± 3.5	1.2 ± 0.3	1.5 ± 0.4	2.1 ± 0.5
$t\bar{t}W/Z/W^+W^-$	10.1 ± 1.4	9.2 ± 1.3	$1.0~\pm~0.3$	$2.2~\pm~0.3$	3.1 ± 0.5
Dibosons	$5.8~\pm~1.0$	0.5 ± 0.2	$0.03 {\pm} 0.07$	$1.6~\pm~0.4$	1.8 ± 0.4
Other bkg.	$2.0~\pm~1.0$	1.7 ± 0.9	$0.3~\pm~0.2$	$0.3~\pm~0.2$	0.5 ± 0.3
Total bkg.	52 ± 11	31 ± 5	3.6 ± 1.0	7.4 ± 1.5	15 ± -5
$t\bar{t}t\bar{t}$ (SM)	0.5 ± 0.1	0.8 ± 0.1	$0.9~\pm~0.1$	0.2 ± 0.1	0.5 ± 0.1
$t\bar{t}t\bar{t}$ (CI)	$0.26 {\pm} 0.04$	0.6 ± 0.1	$0.6~\pm~0.1$	$0.24{\pm}0.05$	0.9 ± 0.3
UED 1.2 TeV	< 0.01	< 0.01	< 0.01	$0.3~\pm~0.1$	3.8 ± 0.8
$T\bar{T}$ 0.75 TeV	$0.2~\pm~0.1$	0.31 ± 0.1	$0.04 {\pm} 0.04$	$0.9~\pm~0.2$	3.7 ± 0.4
Data	51	37	3	4	11

	SR5	SR6	SR7
Fake/Non-prompt	$1.4{\pm}0.9$	$2.6{\pm}1.8$	0.0 ± 0.6
Charge mis-ID	$1.4{\pm}0.4$	$1.6 {\pm} 0.5$	0.6 ± 0.2
$t\bar{t}W/Z/W^+W^-$	$2.3 {\pm} 0.6$	$3.0 {\pm} 0.7$	0.8 ± 0.4
Dibosons	0.3 ± 0.1	0.2 ± 0.1	0.0 ± 0.1
Other bkg.	$0.4 {\pm} 0.2$	$0.7 {\pm} 0.4$	0.5 ± 0.3
Total bkg.	5.8 ± 1.2	8.1 ± 2.0	1.9 ± 0.8
$t\bar{t}t\bar{t}$ (SM)	0.7 ± 0.1	1.8 ± 0.2	3.6 ± 0.4
$t\bar{t}t\bar{t}$ (CI)	0.6 ± 0.1	2.2 ± 0.2	5.2 ± 0.4
UED 1.2 TeV	$0.6 {\pm} 0.1$	$6.6 {\pm} 0.7$	10.1 ± 0.8
$T\bar{T}$ 0.75 TeV	$1.3{\pm}0.2$	$5.0{\pm}0.5$	$3.2\ \pm 0.4$
Data	6	3	2

Thibault Chevalérias (CEA Saclay)