

Study of baryonic resonances in the channel pp \rightarrow pp $\pi^{+}\pi^{-}$ @ E=3.5 GeV with HADES

Amel Belounnas for the HADES Collaboration

1. Introduction

N^* and Δ Baryonic Resonances

Short-lived excited states of nucleons

J= 1/2 Baryon Octuplets

J= 3/2 Baryon Decuplets

• N* and Δ Baryonic Resonances

Actual state

Particle	J^P	overall	$N\gamma$	$N\pi$	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
\overline{N}	1/2+	****									
N(1440)		****	****	****		***				*	***
N(1520)	$3/2^{-}$	****	****	****	***					***	***
N(1535)	$1/2^{-}$	****	****	****	****					**	*
N(1650)	$1/2^{-}$	****	****	****	***			***	**	**	***
N(1675)	$5/2^{-}$	****	****	****	*			*		*	***
N(1680)	$5/2^{+}$	****	****	****	*	**				***	***
N(1700)	$3/2^{-}$	***	**	***	*			*	*	*	***
N(1710)	$1/2^{+}$	***	****	****	***		**	****	**	*	**
N(1720)	$3/2^{+}$	***	****	****	***			**	**	**	*
N(1860)	$5/2^{+}$	**		**						*	*
N(1875)	$3/2^{-}$	***	***	*			**	***	**		***
N(1880)	$1/2^{+}$	**	*	*		**		*			
N(1895)	$1/2^{-}$	**	**	*	**			**	*		
N(1900)	,	***	***	**	**		**	***	**	*	**
N(1990)	,	**	**	**					*		
N(2000)	,	**	**	*	**			**	*	**	
N(2040)		*		*							
N(2060)	$5/2^{-}$	**	**	**	*				**		
N(2100)	$1/2^{+}$	*		*							
N(2120)	,	**	**	**				*	*		
N(2190)		****	***	****			*	**		*	
N(2220)	$9/2^{+}$	****		****							
N(2250)	$9/2^{-}$	***		****							
N(2300)	$1/2^{+}$	**		**							
N(2570)	$5/2^{-}$	**		**							
N(2600)	,			***							
N(2700)	$13/2^{+}$	**		**							

Particle J^P	overall	$N\gamma$	$N\pi$	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta\pi$
$\Delta(1232) \ 3/2^{+}$	****	****	****	F						
$\Delta(1600) \ 3/2^+$	***	***	***	О					*	***
$\Delta(1620) \; 1/2^-$	****	***	****		\mathbf{r}				***	***
$\Delta(1700) \; 3/2^-$	****	****	****		b				**	***
$\Delta(1750) \ 1/2^{+}$	*		*		i					
$\Delta(1900) \; 1/2^-$	**	**	**			$^{\mathrm{d}}$		**	**	**
$\Delta(1905) 5/2^+$	****	****	****			$^{\mathrm{d}}$		***	**	**
$\Delta(1910) \ 1/2^{+}$	***	**	****			ϵ	e	*	*	**
$\Delta(1920) \ 3/2^{+}$	***	**	***				\mathbf{n}	***		**
$\Delta(1930) \ 5/2^-$	***		***							
$\Delta(1940) \ 3/2^-$	**	**	*	\mathbf{F}						
$\Delta(1950) \ 7/2^+$	***	****	****	О				***	*	***
$\Delta(2000) 5/2^+$	**				\mathbf{r}					**
$\Delta(2150) \; 1/2^-$	*		*		b					
$\Delta(2200) \ 7/2^-$			*		i					
$\Delta(2300) 9/2^+$	**		**			$^{\mathrm{d}}$				
$\Delta(2350) \ 5/2^-$	*		*			d				
$\Delta(2390) \ 7/2^+$	*		*			(е			
$\Delta(2400) 9/2^-$			**				\mathbf{n}			
$\Delta(2420) \ 11/2^{+}$	****	*	****							
$\Delta(2750) \ 13/2^-$	**		**							
$\Delta(2950) \ 15/2^{+}$	**		**							

Study of baryons with HADES

Electromagnetic Dalitz Decay:

 $R \rightarrow Ne^+e^-$ (never measured before) (predicted BR: ~ 10^{-5})

Interest: electromagnetic structure of baryonic resonances EM time-like form factor (eTFF).

Hadronic Decay:

Two body: $R \rightarrow N \pi$, $R \rightarrow \Lambda K$

Three body: $R \rightarrow N \pi \pi$ $R \rightarrow \Delta \pi \rightarrow N \pi \pi$ $R \rightarrow N \rho \rightarrow N \pi \pi$

Interest: Improve database for baryon spectroscopy.

HADES

Nope, not this one...!

HADES

High Acceptance
DiElectron Spectrometer
(GSI, Darmstadt)

Mission

- Study of hadronic matter in A-A, p-A, π-A collisions.
- Study of baryonic resonances in p-p, d-p, and p- π collisions. (Baryon (N*, Δ) spectroscopy)

▶ **Acceptance:** Azimuthal angles 85% (6 sectors)

polare angles: 18° - 85°

Detected particles: e^{\pm} , p, π^{\pm} , K[±]

▶Tracking: MDC

▷e[±] identification with RICH, TOF/PreShower

 $\triangleright p, \pi^{\pm}, K^{\pm}$ identification TOF-Tracking

HADES is here!

9

$pp \rightarrow np\pi^+$, $pp \rightarrow pp\pi^0$ and $pp \rightarrow ppe^+e^-$ E=3.5 GeV

Interest of the channel $pp \rightarrow pp\pi^{+}\pi^{-}$:

- Test the cocktail on the 2 pion production.
- Measure the ρ ($\rho \rightarrow \pi^+\pi^-$) production direct and coupled to resonances .

Effect of eTFF of the vector meson dominance type (coupling to ρ)

2. Study of the channel pp \rightarrow pp $\pi^{+}\pi^{-}$ a E=3.5 GeV

• What to expect in the 2π channel

- One resonance excitation
- **Double resonance excitation**

Models that include simple and double excitation:

- Cao Effective Lagrangian model
- X. Cao, B.-S. Zou and H.-S. Xu, Phys. Rev. **C81** (2010) 12.
- OPER model (one pion exchange reggeized)

 A.P. Jerusalimov et al., Eur. Phys. J. **A51** (2015) 83.
- Transport models: GiBUU.
- Valencia model: E< 1.4 GeV</p>

Few precise measurements

- OST (Data Summary Tape): Calibration-> included tracks and physics observables, P, ToF, dE/dx...
- \bigcirc PAT(PostDST Analysis Tool): Particle Identification + channel selection: $1\pi^+1\pi^-$ and 1 proton at least

Velocity Vs Momentum

FAT(Final Analysis Tool): File of events with all physical variables (invariant masses, angular distributions...)

Data Analysis

Efficiency Matrices

 \bigcirc Data normalisation $\sigma_{pp}(elastic)$

$$\sigma_{Data} = N_{Data} rac{\sigma_{el}^{pp}}{N_{el}^{pp}}$$

Background subtraction

Acceptance Matrices

Data Analysis

o 2D histograms are a good indication for some channels

3. PLUT0++ Simulations

Pluto is a monte carlo <u>simulation framework</u> developed by the HADES collaboration for heavy ion and hadronic-physics reactions.

I. Frolich et al. PoS ACAT2007 (2006)

Simulations

- One resonance excitation simulation pp \rightarrow pR \rightarrow pp $\pi^+\pi^-$
- $ightharpoonup \sigma_R(1\pi)$: from 1 π production analysis*

Resonance	BR(Nπ)	$BR(N\pi\pi)$ (PDG)	$\sigma_{\rm R}(1\pi) \; ({ m mb})$
N(1440)	65%	30-40%	1.5 ± 0.4
N(1520)	55%	20-30%	1.9 ± 0.3
N(1535)	46%	3-14%	0.15 ± 0.02
N(1650)	80%	8-36%	$< 0.8 \pm 0.1$
N(1675)	45%	50-60%	$< 1.65 \pm 0.3$
N(1680)	65%	30-40%	$< 0.9 \pm 0.2$
N(1720)	20%	>70%	$< 4.4 \pm 0.7$
$\Delta(1700)$	15%	80-90%	0.5 ± 0.2
Δ(1905)	15%	85-95%	$< 0.8 \pm 0.5$

PDecayChannel (PLUTO Class) BR x I N1520 \rightarrow p $\pi^{+}\pi^{-}$ (0.04) (6% x 2/3) N1520 \rightarrow $\Delta^{++}\pi^{-}$ (0.12) (23% x 1/2) N1520 \rightarrow $\Delta^{\circ}\pi^{+}$ (0.04) (23% x 1/6) N1520 \rightarrow p ρ° (0.003) (1% x 1/3)

Simulation

- Double resonance excitation simulation pp \rightarrow RR' \rightarrow pp $\pi^+\pi^-$
- \rightarrow $\Delta^{++}(1232) \, \Delta^{\circ}(1232)$
- \rightarrow $\Delta^{++}(1232) \, N^{\circ}(1440)$
- \rightarrow $\Delta^{++}(1232) \text{ N}^{\circ}(1520)$
- \rightarrow $\Delta^{++}(1232) \text{ N}^{\circ}(1535)$
- \rightarrow $\Delta^{++}(1232) \, N^{\circ}(1650)$
- \rightarrow $\Delta^{++}(1232) \text{ N}^{\circ}(1680)$
- \triangleright $\Delta^{++}(1232) \text{ N}^{\circ}(1720)$
- \rightarrow $\Delta^{++}(1232) \Delta^{\circ}(1700)$

The BR(N π) for the second resonance are the same as in 1 π analysis

• Direct ρ production simulation

 σ = 70 µb (from existing data)

Angular Distribution Model

Angular distributions need to be implemented (isotropic in PLUTO)

1R production:

$$t = (P_R - P_{beam})^2 if \cos \theta_R < 0$$

$$t = (P_R - P_{target})^2 if \cos \theta_R > 0$$

$$\frac{p}{p}$$
 π p

$$t_{w} = \frac{1}{t^{a}}$$

(4-momentum transfer)

2R production:

$$t = (P_{R_1} - P_{beam})^2 if \cos \theta_{R_1} < 0$$

$$t = (P_{R_1} - P_{target})^2 if \cos \theta_{R_1} > 0$$
p

$$t_{w} = \sqrt{\frac{1}{t^{\alpha_{1}}} \frac{1}{t^{\alpha_{2}}}}$$

p production:

Phase space

The simulation is weighted by the tw

Before applying Acc. cuts

4. Analysis Results

Invariant Masses

One peak in 1R (Dashed green) due to N⁺(1520) and a large peak due to N⁺(1675), N⁺(1680), Δ ⁺(1700).

3 peaks in 2R (blue) one due to Δ^{++} (1232), another to N°(1520), and another to N°(1680)

Invariant Masses

2R (blue) Strong dominance of Δ^{++} (1232), no significant contribution of heavier Δ^{++} resonances.

No clear evidence of direct ρ production

AngularDistributions

Angular distribution Gives information on the production mecanism.

The angular distribution model for 1R and 2R production is quite valid.

Cross Sections

List of simulated 1R with the used branching ratios and the given cross section

List of simulated 2R with the used branching ratios and the given cross section

1 Resonance	$BR(N\pi\pi)$	σ (2 π anal.) (mb)	σ (1 π anal) (mb)	2 Resonances	BR(Nπ)	σ (mb)
				Δ^{++} (1232)N°(1440)	70%	0.95 ± 0.2
N+(1440)	30%	1.3 ± 0.2	1.5 ± 0.4			
N+(1520)	30%	1.6 ± 0.3	1.8 ± 0.3	Δ^{++} (1232)N°(1520)	55%	1.5 ± 0.2
N ⁺ (1535)	10%	0.1 ± 0.05	0.15 ± 0.015	Δ ⁺⁺ (1232)N°(1535)	46%	0.3 ± 0.2
N+(1650)	11%	0.3 ± 0.1	$< 0.81 \pm 0.13$	Δ ⁺⁺ (1232)N°(1650)	70%	0.05 ± 0.04
N+(1675)	45%	1.9 ± 0.2	$<1.65\pm0.27$			
N+(1680)	35%	1.6 ± 0.2	$< 0.9 \pm 0.15$	Δ^{++} (1232)N°(1680)	65%	0.4 ± 0.1
N+(1720)	80%	0.06 ± 0.03	$< 4.4 \pm 0.7$	Δ^{++} (1232)N°(1720)	15%	0.05 ± 0.02
$\Delta^{+}(1700)$	55%	0.45 ± 0.1	0.45 ± 0.16	Δ++ (1232) Δ°(1700)	15%	0.06 ± 0.02
$\Delta^{+}(1905)$	90%	0.01 ± 0.01	$< 0.85 \pm 0.53$	$\Delta^{++} (1232) \Delta^{\circ} (1232)$	100%	4.2 ± 0.2

 $[\]checkmark$ The resonance cocktail reproduces both 1π and 2π production. It gives additional consistency to the former dielectron analysis.

[✓] Based on the cocktail we estimate the total cross section pp \rightarrow pp $\pi^+\pi^-$: $\sigma \sim 3.9 \pm 0.4$ mb

Comparing to Existing Data

J. Aichelin, Nucl. Phys. A573, (1994) 587.

- Total cross section compatible with existing data. (HADES σ ~3.9 mb)
- $\sigma(\Delta\Delta)=1.3$ mb, compatible with OBE model

Comparing to Theoretical Models

OPER: One Pion Exchange Reggiezed

A.P Jerusalimov et al. ArXiv:1203.3330v1 [nucl-th]

- Cross section adjusted to measured yield.
- Minv(p $\pi^+\pi^-$) distribution shows a too large production of $\Delta(1600)$ and resonances with mass > 1.7 GeV

 $M_{inv}(p\pi^{-})$ (GeV)

Comparing to Theoretical Models

Xu Cao effective Lagrangian model

Comparing to Theoretical Models

Xu Cao effective Lagrangian model

- > Only one 2R excitation contribution: Δ^{++} (1232) Δ° (1232)
- ➤ Too large yield from N*(1710) and N*(1720) decaing to Np.
- $ightharpoonup N^*
 ightharpoonup N\rho$ is less probable than expected.

M_{inv}(pπ⁻) (GeV)

 $M_{inv}(p\pi^+)$ (GeV)

5. Tracking down the ρ meson

Search for the direct "ρ"

Apply kinematical cuts to reduce the baryonic resonance excitation background.

 $M(\rho) = 775 \text{ MeV}$ $\Gamma(\rho) = 149 \text{ MeV}$

Search for the direct "ρ"

Search for the direct "ρ"

• "ρ" Angular Distribution

Evaluate σ_P in bins of $\mathit{Cos}_\mathit{CM}(\theta)(\pi^+\pi^-)$

✓ Good backward/forward symetry

"p" angular distribution

Fit with Legendre Polynomials:

$$\frac{d\sigma_{\rho}}{d\Omega} = (7.1 \pm 0.1)P_0 + (3.7 \pm 0.6)P_2 - (1.3 \pm 0.7)P_4$$

MC

b)

---- mesonic current

----- nucleonic current

MC > NC

NC > MC

 θ_{cms} [deg]

60.0

120.0

180.0

—total

• • • • ρ

Perspectives

34

Next channel: pp \rightarrow pp $\pi^+\pi^+\pi^-\pi^-$ investigation for d*(2380) (D₃₀ dibaryon)

$$pp \rightarrow D_{30} \pi^- \pi^- \rightarrow \Delta^{++} \Delta^{++} \pi^- \pi^- \rightarrow pp\pi^+ \pi^+ \pi^- \pi^-$$

Volume 13, Numb	er 26	P	HYSICAL REV	IEW LETTERS	28 December 1964
	Table I.	Y = 2 st	tates with zero strange	eness predicted by the $\underline{490}$ multi	plet.
Particle	T	J	SU(3) multiplet	Comment	Predicted mass
D_{01}	0	1	<u>10</u> *	Deuteron	A
D_{10}	1	0	<u>27</u>	Deuteron singlet state	\boldsymbol{A}
D_{12}	1	2	27	S-wave N - N * resonance	A+6B
D_{21}	2	1	<u>35</u>	Charge-3 resonance	A + 6B
D_{03}	0	3	10*	S -wave N^* - N^* resonance	A + 10B
D_{30}	3	0	28	Charge-4 resonance	A + 10B

Baryon Full Listings DIBARYONS

1988 PDG

NN(2250) ELASTICITY NN(2250) REFERENCES 0.21 NN - NNT Deck + reso-Tatischeff Berthet Combes Didelez+ +Konig Kroli (WUPP) PL 1438 509 0 11 to 0.13 STRAKOVSKII +Kravtsav Ryskin 10 SHAMU 40 429 0 096 ± 0 012 Kraytsov Tyskin Strakovskii BHANDAR PR D27 296 *** We do not use the following data for averages. fits limits etc *** Bhandari (NMSU) (PUCB) +Mungulo +Tjon BHANDARI PL 1148 409 +Kravisov Lobachev Makarov Medvedev-(LENI) NN(2250) POLE POSITION Dakhna Kravisov Lobachev Makarov+ 36 143 NP A377 505 +Kroll REAL PART SHAMU PR D25 2008 +Soga Shilts Lisowski (WMIU LASL) Approximately equals the Breit Wigner mass UEDA 82 PL 1198 281 (OSAK)

Perspectives

Next channel: pp \rightarrow pp $\pi^+\pi^+\pi^-\pi^-$ investigation for d*(2380) (D₃₀ dibaryon)

$$pp \rightarrow D_{30} \pi^- \pi^- \rightarrow \Delta^{++} \Delta^{++} \pi^- \pi^- \rightarrow pp\pi^+ \pi^+ \pi^- \pi^-$$

Complementary study to WASA experiment

Isospin factors

$$pp \to \pi^{-}\pi^{-}d^{4+} \to \pi^{-}\pi^{-}\Delta^{++}\Delta^{++} \to pp\pi^{+}\pi^{+}\pi^{-}\pi^{-} \quad \mathbf{1}$$

$$pp \to \pi^{+}\pi^{-}d^{2+} \to \pi^{+}\pi^{-}\Delta^{++}\Delta^{0} \to pp\pi^{+}\pi^{+}\pi^{-}\pi^{-} \quad \mathbf{2} \cdot \left(\frac{\mathbf{1}}{\mathbf{15}}\right)$$

$$pp \to \pi^{+}\pi^{+}d^{0} \to \pi^{+}\pi^{+}\Delta^{+}\Delta^{-} \to pp\pi^{+}\pi^{+}\pi^{-}\pi^{-} \quad \left(\frac{\mathbf{1}}{\mathbf{15}}\right)$$

35

- This analysis confirms the presence of three channels:
 One and double baryonic resonance production , direct ρ production.
- The results show consistency between one and two pion production within the "HADES resonance model".
- The results present valuable inputs for theoretical models.
- ρ signal was extracted by applying the necessary kinematical cuts.

Sometimes the public says, "What's in it for Numero Uno? Am I going to get better television reception? Am I going to get better Internet reception?" Well, in some sense, yeah. ... All the wonders of quantum physics were learned basically from looking at atom-smasher technology. ... But let me let you in on a secret: We physicists are not driven to do this because of better color television. ... That's a spin-off. We do this because we want to understand our role and our place in the universe.

Dr Michio Kaku

