E12-06-114: Diffusion Compton Profondément Virtuelle au Jefferson Lab, Hall A

Vendredi 1^{er} Décembre

Frédéric Georges

Institut de Physique Nucléaire d'Orsay

CNRS-IN2P3 Université Paris-Sud, 91406 Orsay, France

Plan

- Introduction Motivations physiques
- DVCS à Jlab, Hall A Objectifs
- Configuration expérimental
- Aperçus de l'analyse de données en cours (liste non exhaustive)
 - Calibration optique du spectromètre
 - Calibration π^0 du calorimètre
- Résumé et perspectives

Structure interne du proton

Distributions Généralisées de Partons (GPDs)

DIS Parton Distribution Functions

Elastic Form Factors

No information on the spatial location of the constituents

No information about the underlying dynamics of the system

- Diffusion élastique ($ep \rightarrow e'p'$) \rightarrow Facteurs de Forme
- Diffusion inélastique (ep \rightarrow e'X) \rightarrow Fonctions de Distribution de Partons \rightarrow Distribution en impulsion
- DVCS (ep \rightarrow e'p' γ)

→ GPDs

- → Distribution spatial
- → Corrélations position-impulsion

& Structure en spin

Diffusion Compton Profondément Virtuelle (DVCS)

Section efficace DVCS \rightarrow GPDs \rightarrow Description de la structure interne du proton.

DVCS et Bethe-Heitler

At leading twist:

$$d^{5} \overrightarrow{\sigma} - d^{5} \overleftarrow{\sigma} = \Im (T^{BH} \cdot T^{DVCS})$$

$$d^{5} \overrightarrow{\sigma} + d^{5} \overleftarrow{\sigma} = |BH|^{2} + \Re e (T^{BH} \cdot T^{DVCS}) + |DVCS|^{2}$$

$$\downarrow$$

Connu à 1%

Jefferson Lab

• Jlab : Accélérateur d'électrons de 12 GeV + 4 Halls expérimentaux (A, B, C, D)

DVCS à Jefferson Lab, Hall A – Objectifs

• Acquisition des données entre l'automne 2014 et l'automne 2016

kinematic	Q^2 (GeV ²)	X _B
kin36_1	3.2	0.36
kin36_2	3.6	0.36
kin36_3	4.5	0.36
kin48_1	2.7	0.48
kin48_2	4.4	0.48
kin48_3	5.3	0.48
kin48_4	6.9	0.48
kin60_1	5.5	0.60
kin60_2	6.1	0.60
kin60_3	8.4	0.60
kin60_4	9.0	0.60

100 jours de faisceau (88 + 12 calibration)

- Objectifs de l'expérience E12-06-114 :
 - Étude de la dépendance en Q² : larges scans en Q² à x_B fixés (Plus grands bras de levier en Q² & pour plusieurs valeurs de x_B)
 - Séparation des parties réelle et imaginaire de l'amplitude DVCS

DVCS à Jefferson Lab, Hall A – Appareillage

- Faisceau d'électrons : e
- Cible d'hydrogène liquide : p
- Spectromètre : détecte e'
- Calorimètre : détecte γ
- Proton de recul p' non détecté

Masse manquante et exclusivité

Masse manquante : ep \rightarrow e'X γ

 $Mx^{2} = (e + p - e' - \gamma)^{2}$

γ non détecté

 $\pi^{(}$

L'exclusivité du processus DVCS est assurée par une coupure sur la masse manquante

γ détecté

Calibration optique du Spectromètre à Haute Résolution (HRS)

Le plan focal du spectromètre

HRS

Plan focal : "photographie" de l'évènement ayant eu lieu dans la cible

Électron détecté au plan focal, mesure :

- Position (x_{fp}, y_{fp})
- Direction $(dx_{fp}/dz_{fp}, dy_{fp}/dz_{fp}) = (\theta_{fp}, \phi_{fp})$

Au niveau de la cible, reconstruction :

- Vertex (= position) y_{tg}
- Angles de diffusion de l'électron (θ_{tg}, ϕ_{tg})
- Impulsion de l'électron δ_{tg}

4 variables dans le repère du plan focal

4 variables dans le repère de la cible 12

La matrice optique

Approximation au 1^{er} ordre :

$$\begin{bmatrix} \delta \\ \theta \\ y \\ \phi \end{bmatrix}_{tg} = \begin{bmatrix} \langle \delta | x \rangle & \langle \delta | \theta \rangle & 0 & 0 \\ \langle \theta | x \rangle & \langle \theta | \theta \rangle & 0 & 0 \\ 0 & 0 & \langle y | y \rangle & \langle y | \phi \rangle \\ 0 & 0 & \langle \phi | y \rangle & \langle \phi | \phi \rangle \end{bmatrix} \begin{bmatrix} x \\ \theta \\ y \\ \phi \end{bmatrix}_{fp}$$

Expression polynomiale à l'ordre 4 :

$$y_{tg} = \sum_{j,k,l} \sum_{i=1}^{m} C_{i}^{Y_{jkl}} x_{fp}^{i} \theta_{fp}^{j} y_{fp}^{k} \phi_{fp}^{l}$$

 $i+j+k+l \leq 4$

 $C_i^{Y_{jkl}}$ Coefficients de la matrice optique

- Calibration requise si modification du réglage des aimants.
- Printemps 2016 : dysfonctionnement d'un aimant. ¹³

Étape 1 : calibration de la reconstruction du vertex

- Utilisation d'une cible composée de 5 feuilles de carbones (1mm d'épaisseur) → Vertex attendu y_{tq}^0 , corrélé à des zones précises du plan focal
- → Calcul des nouveaux coefficients optiques $C_i^{Y_{jkl}}$ par minimisation de la fonction d'aberration $\Delta(y)$

14

Étape 2 : calibration de la reconstruction des angles

- Epaisse plaque de métal percée de multiples trous insérée devant l'entrée du spectromètre (Sieve)
- → Trous = valeur attendue pour les angles de diffusion θ_{tg} et ϕ_{tg} , corrélées à des zones précises du plan focal
- → Calcul de nouveaux coefficients optiques par minimisation des fonctions d'aberration $\Delta(\theta)$ et $\Delta(\phi)$

Étape 3 : calibration de la reconstruction de l'impulsion

- Utilisation d'une cible d'hydrogène liquide, diffusion élastique ep \rightarrow e'p'
 - Système contraint : angle de diffusion connu = impulsion connue
- "Delta Scan"
 - Angle du spectromètre fixé
 - 5 runs en variant l'impulsion centrale du spectromètre (impulsion centrale, $\pm 2\%$, $\pm 4\%$)
 - Corrélation impulsion-angle de diffusion élastique → chaque valeur d'impulsion est corrélée à une zone spécifique du plan focal
- → Valeurs attendue pour l'impulsion δ_{tg} , corrélées à des zones précises du plan focal
- → Calcul de nouveaux coefficients optiques par minimisation de la fonction d'aberration $\Delta(\delta)$

Premiers résultats de la calibration optique

Correction optique imparfaite

- Longueur reconstruite de la cible trop courte (~ 13-14cm au lieu de 15 cm).
- Déformation de la distribution du vertex (écrasement sur les bords).

Problème résiduel avec la reconstruction du vertex sur les bords de la cible.

Calibration optique – illumination du plan focal

Runs de calibration optique pris à petit angle → des régions du plan focal n'ont pas été illuminées
 →Mauvaise calibration des régions non illuminées

→Mauvaise reconstruction du vertex sur les bords de la cible lorsque le spectromètre est à grand angle

Retour sur la matrice optique

Expression polynomial d'ordre $\times 2$:

 \mathbf{m}

$$y_{tg} = \sum_{j,k,l} \sum_{i=1}^{m} C_i^{Y_{jkl}} x_{fp}^i \theta_{fp}^j y_{fp}^k \phi_{fp}^l \qquad \text{Avec } i+j+k+1 \le \mathbb{X}^2$$

- Polynôme d'ordre élevé : très bon fit des zones calibrées, mais rapide déviation pour les zones non calibrées
- Polynôme d'ordre inférieur : Moins bon fit des zones calibrés, mais déviation plus faible pour les zones non calibrées.
- \rightarrow Gain : meilleur reconstruction du vertex sur les bords de la cible
- \rightarrow Prix à payer : dégradation de la résolution sur le vertex (simulation : facteur ~2)

Calibration optique – résultats finaux

- Résolution sur le vertex : $\sigma = 3.5$ mm, avec le spectromètre à 15.18 deg
- Résolution relative en impulsion : $\sigma_{dp/p} = 10^{-3}$

Reconstruction du vertex complètement corrigé Perte de résolution < facteur 2

Calibration élastique du calorimètre

- 208 cristaux de PbF₂ + Photomultiplicateurs
- Mesure l'énergie déposée par les photons dans chaque cristal

Calibration élastique du calorimètre :

- Diffusion élastique : $ep \rightarrow e'p'$
- p' dans le spectromètre \rightarrow énergie de l'électron $E_{e'}$
- e' dans le calorimètre \rightarrow énergie de l'électron $E_{e'}$
- Ajuste le gain de chaque bloc pour que $E_{e'} = E_{e'}$
- Résolution en énergie : 3.6% à 4.2 GeV

• Dégâts dus aux radiations : les cristaux de PbF₂ s'assombrissent

\rightarrow Diminution du gain

 \rightarrow Besoin de calculer des coefficients de correction

→Calibration π^0 , basée sur la reconstruction de la masse des π^0

- $\pi^0 \rightarrow \gamma_1 + \gamma_2$
- $m_{\pi}^2 = 2E_{\gamma 1}E_{\gamma 2}(1 \cos\theta_{\gamma 1\gamma 2})$

Pourquoi ne pas faire d'avantages de calibrations élastiques ?

- Calibration élastique :
 - Longue (~1 jour).
 - Nécessite une modification du dispositif expérimental.
 - Pas de données DVCS pendant cette calibration.
- La calibration π^0 utilisent des π^0 détectés pendant l'acquisition des données DVCS.
 - Peut-être effectuée régulièrement, et après la prise des données.
 - Pas de perte de temps de faisceau.

25

- Coefficients de correction \rightarrow optimise valeur moyenne & résolution de la masse invariante π^0 .
- Minimisation :

$$F = \sum_{i=1}^{N} (m_i^2 - m_{\pi^0}^2)^2 + \lambda \sum_{i=1}^{N} (m_i^2 - m_{\pi^0}^2)^2$$

• Perte de gain : $\sim 30\%$ à la fin de l'expérience

 Perte de gain du calorimètre parfois trop rapide pour être complètement corrigée par la calibration π⁰

- Approximation : perte de gain similaire pour tous les blocs
- \rightarrow Variation de la masse invariante π^0 proportionnelle à la variation des coefficients de calibration
- \rightarrow Correction empirique des coefficients de calibration π^0 run par run

Résumé et perspectives

- Fin de l'acquisition des données à l'automne 2016 avec une statistique satisfaisante.
- Analyse des données en cours
 - Calibrations terminées
 - Nombreuses corrections/études préliminaires (non présentées) terminées
 - Prochaines étapes : soustraction de la contamination π^0 (en cours), calcul de l'acceptance du spectromètre (simulation Monte-Carlo), extraction des sections efficaces DVCS, évaluer les incertitudes systématiques.
 - Sections efficaces DVCS préliminaires ~mai 2018

Backup

DAQ du calorimètre

- Jlab : Luminosité très importante → Challenge : **Pile-up**.
- Analog Ring Sampler : Numériseurs électroniques à1GHz, échantillons de 128 ns.

→Permet une identification précise des photons DVCS et la séparation des pile-up.

→ Challenge : Création d'une très grande quantité de données, besoin d'un trigger 'intelligent'.

Trigger

- Niveau 1 Trigger sur l'électron dans le Spectromètre :
 - Coïncidence : Scintillateur + détecteur Cherenkov gazeux
- Si niveau 1 déclenché → Niveau 2 Coïncidence avec le Calorimeter :
 - 'Gel' des cartes ARS du calorimètre
 - Recherche d'un évènement dans le calorimètre
 - Seuil en énergie
- Si niveau 2 déclenché → évènement enregistré (encodage des ARS lent → dead time)
- Si niveau 2 NON déclenché → évènement NON enregistré (pas d'encodage des ARS → rapide)
- Puis, 'dégel' des cartes ARS et reprise de l'acquisition

Soustraction de la contamination π^0 (travail en cours)

Rappel

Soustraction de la contamination π^0

Principe :

- Identification des évènements ep \rightarrow e'p π^0
- Pour chaque π^0 détecté : simulation de 5000 désintégrations $\pi^0 \rightarrow \gamma\gamma$ (direction et énergie des γ aléatoires)
- Evaluation de la proportion d'évènements simulés où un seul γ est détecté
- \rightarrow Contamination π^0

- D'après des travaux précédents, cette méthode possède une faible efficacité dans les coins du calorimètre.
- → Coupures géométriques (à déterminer) nécessaires pour assurer une soustraction π^0 efficace.