$t\bar{t}+ \geq 1b$ modeling studies for the $t\bar{t}H(b\bar{b})$ analysis and b-tagging upgrade studies for the ATLAS tracker

Nihal BRAHIMI

Journées de Rencontres des Jeunes Chercheurs 2017

November 29, 2017

Niha	I BRA	١H	MI

JRJC 2017

- Introduction: LHC, ATLAS and Higgs discovery
- $t\bar{t}H(b\bar{b})$ analysis and $t\bar{t}$ modeling studies.
- B-tagging upgrade studies for the ATLAS tracker @HL-LHC.
- Summary

The Large Hadron Collider (LHC)

- 27 km ring, collides two beams of protons at high center of mass energies.
- LHC Run phases: Run 1 (2010-2013) @7-8 TeV, Long Shut down (LS1) 2013-2015, Run 2 (2013-2018) @13 TeV.
- 4 main experiments: ATLAS and CMS (general purpose), ALICE (Quark Gluon Plasma), LHCb (B physics)

The ATLAS experiment

- ATLAS reconstructs physics objects (electrons, photons, jets, MET) based on a combination of subdetectors: tracker, electromagnetic and hadronic calorimeters, muon spectrometer.
- ATLAS probes phenomena within the SM and beyond (SUSY, Dark matter,..)
- Within the SM sector, the main focus of ATLAS is the search for the Higgs boson and measurements of its properties.

Nihal BRAHIMI

Higgs boson discovery

 In July 2012, ATLAS and CMS announced the Higgs boson discovery. This led to the 2013 physics Nobel prize.

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

November 29, 2017 5 / 30

Higgs boson discovered... Yay!!!!

\Rightarrow Well ... not quite!!!

3

Higgs boson measurements

- Higgs mass \approx 125 GeV, spin (0), parity (+).
- $H \rightarrow \gamma \gamma$, WW^{*}, ZZ^{*}, $\tau \tau$ (discovered).
- Evidence for Higgs coupling to bottom quarks and "VH" production (arXiv:1708.03299).
- Only indirect constraints on the top Yukawa coupling (ggF, H → γγ) assuming no BSM contributions to loops. A direct observation is yet evading measurement :-(!!!
- So far, all measurements are consistent with the SM.

Nihal BRAHIMI

JRJC 2017

November 29, 2017 7 / 30

Part I

ttH(bb) analysis and tt modeling studies

Nihal BRAHIMI

JRJC 2017

November 29, 2017 8 / 30

- ∢ 🗗 ▶

Nihal BRAHIMI

Top Yukawa coupling and the $\mathrm{t\bar{t}H}$ channel

- In the SM, the top Yukawa coupling (y_t) is the strongest (heaviest particle... as heavy as a Gold atom!!!).
- A sensitive probe with great potential to shed light on new physics beyond the SM.
- Targeting processes where the Higgs boson is produced in association with top quarks is the only way to observe directly this coupling \Rightarrow ttH

In the search for $t\bar{t}H(b\bar{b})$: Strategy

- tt̃H(bb̄) channel exploits the large branching ratio of H → bb (58%) and the leptonic decays of top quarks ⇒ distinctive signature.
- Two channels based on the number of leptons in the final state: single lepton, dilepton.
- To increase sensitivity, events are further categorized based on the number of jets and how likely these are to contain a B hadron "b-tagged" ⇒ Signal -rich (-depleted) regions.
- $t\bar{t}H(b\bar{b})$ channel is overwhelmed with the $t\bar{t} + jets$ background ($t\bar{t} + \ge 1b$: irreducible background)

10 / 30

In the search for $t\bar{t}H(b\bar{b})$: Main challenge

Uncertainty source	Δ	μ
$t\bar{t} + \geq 1b$ modelling	+0.46	-0.46
background model statistics	± 0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modelling	+0.22	-0.05
$t\bar{t} + \geq 1c$ modelling	+0.09	-0.11
JVT, pileup modelling	+0.03	-0.05
Other background modelling	+0.08	-0.08
$t\bar{t} + \text{light modelling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \ge 1b$ normalisation	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalisation	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

ATLAS-CONF-2017-076

Limiting factor of the analysis \Rightarrow the poor modeling of the $t\bar{t} + jets$ $(t\bar{t} + \geq 1b)$ by the available "state of the art" MC generators.

Nihal BRAHIMI

$\mathrm{t}\bar{\mathrm{t}}$ modeling studies for $\mathrm{t}\bar{\mathrm{t}}\mathrm{H}(\mathrm{b}\bar{\mathrm{b}})$ -I

- $t\bar{t} + jets$ events are categorized based on the flavor of additional jets into : $t\bar{t} + \geq 1b$, $t\bar{t} + \geq 1c$ and $t\bar{t} + light$.
- Large differences between $t\bar{t}$ generators were observed before due to the definition of these fractions.
- Detailed studies have been performed to investigate the definition impact (on the analysis) and have shown that the differences among tt generators are fairly stable against various definitions ⇒ crucial point for the analysis.

$t\bar{t}$ modeling studies for $t\bar{t}H(b\bar{b})$ -II

- In-depth studies of the modeling of $t\bar{t}+ \geq 1b$ related kinematics have been undergone to understand better the differences between the available predictions.
- Kinematic differences between B hadrons and b-jets from parton shower and matrix element have been closely examined.

(日) (同) (三) (三)

$\mathrm{t\bar{t}+\geq 1b}$ studies for differential measurements analysis

- A method to reconstruct the top quarks based on the final state objects needs to be developed.
- This method is essential as separating b-jets from tt and bb is crucial to measure pure kinematic distributions and be more sensitive to differences among generators.

Matching separation

Results: Evidence for $t\bar{t}H$!!!

Signal Strength:
$$\mu = \frac{\sigma_{obs}}{\sigma_{SM}}$$

- Results compatible with the SM.
- Significance w.r.t background only hypothesis: 1.4σ (exp: 1.6σ)
- Evidence for ttH(bb) when combining with other decay modes (H \rightarrow ZZ \rightarrow 4I, H $\rightarrow \gamma\gamma$): 4.2 σ (exp: 3.8 σ)

э

(日) (同) (三) (三)

Part II

B-tagging upgrade studies for the ATLAS tracker (ITk) @HL-LHC

HL-LHC upgrade (I)

- High Luminosity LHC upgrade planned during LS3 (2024-2026).
- \Rightarrow Luminosity reflects how many collisions (p-p) will take place in the accelerator.

3

(日) (同) (三) (三)

HL-LHC upgrade (II)

Challenges:

- \Rightarrow x10 increase in integrated luminosity (4*ab*⁻¹) \rightarrow radiation damage.
- \Rightarrow Pileup increase: 25 @LHC \rightarrow 200 @HL-LHC \rightarrow better tracking needed.

 \Rightarrow ATLAS will replace the ID with the Inner Tracker (ITk) to cope with HL-LHC extreme conditions.

INIDA	г вв.	ΔH	
1 1 1 1 1 4			

ATLAS Phase II upgrade: Inner Tracker

- \Rightarrow All Silicon detector with coverage up to $|\eta| < 4$:
- \Rightarrow Strip detector: outer part, consists of 4 barrel layers and 6 End-Cap disks ($|\eta| < 2.7$).
- \Rightarrow Pixel detector: inner part, consists of 5 barrel layers.

ATL-TDR-025

B-tagging in a nutshell

- Crucial tool for all analyses having b-jets in the final state e.g $t\bar{t}H(b\bar{b})$.
- To identify b-jets, b-tagging exploits the long lifetime of B hadrons ~ 1.5 ps:
 - B hadron decay vertex displaced w.r.t the primary vertex(PV): secondary vertex (SV)
 - Massive SV (up to 5 GeV)
 - Tracks from B decays have large impact parameters (incompatible with PV) (*d*₀, *z*₀).
- These information are fed to the b-tagging algorithms (e.g IP3D) to distinguish b-jets from those originating from c quarks (c-jets) and light jets (g,u,d,s)

IPTag track categorization I

- The IP3D weight is computed based on the Log Likelihood Ratio (LLR) formalism which utilizes tracks categorization.
- Run 2 tracks categories (14) were designed such that each track is assigned a quality criterion based on its hit pattern ⇒ dependent on the ID geometry (IBL).

IPTag track categorization II

⇒ For ITk, these categories need to be redefined in a way that is consistent with the ITk geometry

Nihal BRAHIMI	JRJC 2017	November 29, 201

22 / 30

IPTag optimization for ITk I

• 3 track categorizations, consistent with ITk geometry, were defined combining tracks kinematic and hit pattern criteria.

23 / 30

Example: γ separation in configuration 3

γ reflects how much multiple scattering a track undergoes.

Nihal BRAHIMI

b-tagging performance with each configuration

• For each configuration, the b-tagging performance was checked to choose a baseline categorization.

25 / 30

IPTag optimization for ITk II

• Configuration 4 is adopted as the basline for the ITk pixel studies (Technical Design report TDR).

Nihal BRAHIMI

JRJC 2017

November 29, 2017 26 / 30

Gain in b-tagging performance

- ⇒ MV2 is a b-tagging discriminant based on training Boosted Decision Trees (BDT) and incorporates IP3D as input.
- ⇒ Making use of the ITk categories enhances greatly the performance: up to 100% @70% b-tagging efficiency.

Nihal BRAHIMI

Gain in b-tagging performance w.r.t Run 2

- Adopting the new track categorization for ITk not only recovers the Run 2 b-tagging performance but also exceeds it.
- These plots are included in the ITk pixel TDR (currently in the review process).

Nihal BRAHIMI

JRJC 2017

Summary and outlooks

$t\bar{t}+\geq 1\mathrm{b}$ modeling for the $t\bar{t}H(\mathrm{b}\bar{\mathrm{b}})$ analysis

- \Rightarrow The top Yukawa coupling is a great probe to shed light on new physics.
- \Rightarrow ttH(bb) grants direct access to observe the top Yukawa coupling.
- \Rightarrow The bottleneck of this analysis is the poor modeling of the overwhelming $t\bar{t}+jets$ $(t\bar{t}+\geq 1b$) background.
- $\Rightarrow \text{ In depth studies of the } t\bar{t}+\geq 1b \text{ process have been carried out to understand better the differences among the available MC predictions.}$
- ⇒ Providing differential measurements of $t\bar{t}$ + ≥ 1b is becoming critical to provide inputs for theorists to improve the modeling of this process.

B-tagging upgrade studies for ITk

- \Rightarrow ATLAS will replace the ID with ITk to cope with HL-LHC extreme conditions.
- ⇒ B-tagging is a crucial tool for analyses involving b-jets and it has to be optimized taking into account the new tracker geometry.
- ⇒ New track categorization has been designed and optimized in terms of b-tagging performance for IP3D. It results in even better performance w.r.t to Run 2 with ID.

Nihal BRAHIMI

JRJC 2017

▲□→ ▲ □→ ▲ □→

Backups

Nihal BRAHIMI

November 29, 2017 31 / 30

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

backup

Poor modeling of $\mathrm{t}\overline{\mathrm{t}}$

3

Nihal BRAHIMI