

Importance of the electron calibration in ATLAS and a case of study: the VH, H→bb analysis

<u>Ilaria Luise</u>

JRJC - Angers 28th November 2017

The Higgs boson in the Standard Model

- In the Standard Model, the Higgs mechanism provides masses to bosons and fermions
- The Higgs boson discovery in 2012 opened the way to the study of new sectors of the SM, Lagrangian

H→bb as missing piece of the Higgs "puzzle"

- The Higgs boson decays in bb quarks 58% of the times.
- Most direct way to have access to the coupling to down type quarks.
- Still a lot of space for new physics hidden out there. The more Higgs boson decays we see, the less "space" for new physics we leave.

Related problems

Why is H → bb so difficult?

 Jets containing b-hadrons are copiously produced at the Large Hadron Collider

- Without additional handles other than the two b-jets, signal overwhelmed by background by many orders of magnitude
- Production modes with additional signatures can help reduce the backgrounds

VH, H→bb: a very special production mode

Associated production with W/Z:

Exploit leptonic signatures for trigger, and suppression of multi-jet background.

First part: Electron Calibration

- Why we use JPsi→ee peak for electron calibration
- Event selection and Methodology
- Residual energy scales measurements
- JPsi→ee to study the resolution term
- Residual resolution term measurements

Second Part: *b-taggers for the VH, H→bb*

- Summary of VH, H→bb analysis
- B-taggers in VH, H→bb
- Results and validation

Electron calibration with $J/\psi \rightarrow ee$

Why do we need a good energy calibration?

- The <u>mass value</u> is a good value to identify a particle (quite) uniquely.
- We reconstruct the properties (including the mass value) of short living particles going "back in time" from their decay products.

Useful quantity: the invariant mass

(valid in the center of mass frame)

- The better we determine the energy of the "child" particles, the better we identify the mother.
- Detector used to measure the electron energy: LAr EM calorimeter, Not perfect!

Electron calibration

Calibration chain used for all electrons and photons in ATLAS:

Data-based calibrations:

To account for not perfect LAr modeling in simulations

Z→ee based calibration

The Zee based calibration is applied to all the electrons and photons in ATLAS, no matter which is their energy range

$J/\psi \rightarrow ee$ Event Selection

- At energies <u>far</u> from the Z peak we have a SM candle suitable for the simultaneous fit method: the J/ψ (m = 3.1 GeV, Γ = 92 keV).
- J/ ψ > ee electrons (avg. E_T ~11 GeV) <u>not</u> overlapping with Z → ee (avg. E_T ~40 GeV) ones.
- all the Z→ee corrections applied prior to the measurement: Look for "residual" effects.

Sample Selection:

- Pass dedicated low energies di-electron triggers.
- 2 opposite charge electrons
- Electrons pass tight identification requirement
- pT > 5 GeV
- $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$
- from primary vertex
- invariant mass in [2.1, 4.1] GeV

Pseudo proper time fit

J/ψ can be produced in:

"prompt mode"

Coming from the hard collision. (Primary Vertex)

"Non-prompt mode"
Coming from a b-decay.

(Secondary Vertex)

- · Need to extract the fraction of the two components directly from data.
- Main discriminant: Pseudo-proper time

$$au\coloneqqrac{L_{xy}m^{J/\psi}}{p_{\mathrm{T}}^{J/\psi}}$$

Leading E _T	f_{prompt}
[GeV]	[%]
[5,7]	$0.83^{+0.09}_{-0.09}^{+0.08}_{-0.11}$
[7,9]	$0.76^{+0.04}_{-0.04}{}^{+0.10}_{-0.06}$
[9,14]	$0.68^{+0.03}_{-0.03}^{+0.02}_{-0.05}$
[14,30]	$0.68^{+0.01}_{-0.01}^{+0.01}_{-0.04}$

The invariant mass fit

N.B. MC is simulating J/ ψ peak only. Background shape extracted from the fit. ψ (2s) parameters rescaled from J/ ψ ones

- Divide the samples in (η_1, η_2) categories
- Fit the MC ee invariant with a Double Sided Crystal Ball* to fix the MCreco shapes.
- Fit the data mee spectrum:

$DSCB(J/\psi) + DSCB(\psi(2s)) + bkg (Pol2)$

The invariant mass fit

N.B. MC is simulating J/ ψ peak only. Background shape extracted from the fit. ψ (2s) parameters rescaled from J/ ψ ones

- Divide the samples in (η_1, η_2) categories
- Fit the MC ee invariant with a Double Sided Crystal Ball* to fix the MCreco shapes.
- Fit the data mee spectrum:

$DSCB(J/\psi) + DSCB(\psi(2s)) + bkg (Pol2)$

Results

Comparison between J/ ψ -ee energy scales and uncertainties obtained from Z-ee calibration.

Residual energy scale miscalibration in η is up to 0.9% in $\eta = [0.8, 1.37]$.

The residual energy scales are within the Zee systematic uncertainties.

Energy resolution studies with $J/\psi \rightarrow ee$

The EM calorimeter resolution has *three* terms. But **not all** of them contribute significantly

@ $J/\psi \rightarrow ee$ energies:

If we consider **c** and **b** as well known from other measurements, the *residual* resolution term can be interpreted as:

$$\frac{\sigma_{data}}{E} = \frac{\sigma_{MC}}{E} \oplus \frac{\Delta a}{\sqrt{E}}$$
 Residual sampling term

We have a direct access to miscalibrations in the sampling term, which are not accessible with $Z \rightarrow ee$ or pile-up only events.

Methodology

- · Idea: include the resolution variables as free parameters in the mee fit
- Process in two steps, first we extract the scales and then the residual term
- Signal + background PDF changed to:

BW⊗2Gaussians + DSCB(ψ2s)+ Pol(2)

- Caveat: sensitive only to <u>positive</u> values of Δa : \rightarrow when data resolution > MC resolution
- Technical details:
 - The resolution Gaussians param. are defined as:

$$\mu_{data} = \left(1 + \frac{\alpha_i + \alpha_j}{2}\right) \mu_{MC}$$

$$\sigma_{data} = \left(1 + \frac{\alpha_i + \alpha_j}{2}\right)^2 \left(\sigma_{MC}^2 + \mu_{MC}^2 \frac{c_i^2 + c_j^2}{4}\right)$$

- With: $c_j^2 = \frac{a_j^2}{\langle E \rangle}$
- a_i extracted from c_i² averaging the energy distribution per eta bin

Average electron Energy distribution vs eta

Results

Residual resolution term generally compatible with zero.

With uncertainties rising up to 4% (5.5%) in barrel (EC) including the b term uncertainty (100MeV/E_T).

No significant degradation of the value of a, determined in test beams*:

$$a = 10\% \pm 0.1$$

VH, H→bb analysis

How do we reconstruct the Higgs?

- Again, starting from the invariant mass of the decay products.
- Quarks are complicated objects to see in the detector. Nasty property: hadronization!

- · We need a way to recognize if jets are coming from a b, c or I quark.
- · In this case we need a "b-tagger": an algorithm to distinguish b from the other jets.

"B-tagging" in ATLAS:

- Separate b-jets from light (u,d,s,g) and charm jets using specific b-hadron properties:
 - Mass of b-hadrons (5 GeV)
 - Large lifetime (~1.5 ps) → Secondary Vertex and tracks with large IP.
 - In ~42% of the cases the b-hadron decays semi-leptonically, in ~11% directly (b $\rightarrow \ell$) and in ~10% indirectly (b \rightarrow c $\rightarrow \ell$) where ℓ =e or μ . \rightarrow search for "soft" muons in the SV

Information from different low-level taggers (exploiting different properties) combined into a single high-level one

Intermezzo: What is a "Working point"?

- Problem: the b-tagger is distributed from [-1,1], but
 we need to convert this information in a bool: "is
 tagged? yes, no!" Solution: cut on a certain value of
 this distribution (if > → is tag!).
- How do we define a WP? Find the b-tagger score for which the b-jet is identified with a X% efficiency* (i.e. cut at 0.8244 to have 70% WP, at 0.9349 for 60% WP etc..)

BDT Cut Value	<i>b</i> -jet Efficiency [%]	c-jet Rejection	Light-jet Rejection	τ Rejection
0.9349	60	34	1538	184
0.8244	70	12	381	55
0.6459	77	6	134	22
0.1758	85	3.1	33	8.2

VH, H→bb event selection

Associated production with W/Z:

Exploit leptonic signatures for trigger, and suppression of multi-jet background.

• Exactly 2 b-tagged jets as Higgs candidate (2 or ≥3 in 2lep)

• Channels denoted by the number of charged leptons (e or μ)

2-lepton channel:

VH, H→bb event selection

Associated production with W/Z:

Exploit leptonic signatures for trigger, and suppression of multi-jet background.

• Exactly 2 b-tagged jets as Higgs candidate (2 or ≥3 in 2lep)

• Channels denoted by the number of charged leptons (e or μ)

1-lepton channel:

23

VH, H→bb event selection

Associated production with W/Z:

Exploit leptonic signatures for trigger, and suppression of multi-jet background.

• Exactly 2 b-tagged jets as Higgs candidate (2 or ≥3 in 2lep)

• Channels denoted by the number of charged leptons (e or μ)

0-lepton channel:

Backgrounds:

- Normalization driven by a region, with appropriate extrapolation uncertainties
- Main backgrounds: ttbar, W+HF, Z+HF.
- ttbar contribution is very different in 0- and 1- lepton to 2-lep case:
 - In 0- and 1- lepton, we have missed and object (jet or lepton) → one common normalization
 - In 2-lepton → we need a control region

Signal extraction (MVA)

Mbb is the most discriminating variable for VHbb signal:

 Construct BDT of several variables to have better discrimination (141 BDT bins in 14 regions.)

• Mbb, dRBB and P_T^V are in order the most important variables

Separate trainings for each region

Were you..

mBB?

Signal extraction (MVA)

The Analysis in a nutshell

Main steps:

- Use Multivariate Analysis (BDT) to combine a set of observables. (mBB, dRBB and pTV the most powerful)
- Use *control regions* enriched in one of the backgrounds to constrain the normalizations.
- Use a binned likelihood fit on the BDT distribution to extract the significance.

Validation:

- Cross check using a cut-based approach on mBB. (No BDT)
- Validate the BDT analysis with VZ(bb) events.
 Same chain, but different cuts: observed at 5.8σ

2017 Results: Evidence @ 13 TeV!

Note: what is the "expected" significance?

The "Expected" sensitivity iquantifies how sensitive is the experiment to to see the signal, under assumption of a SM Higgs ($\mu = 1$).

The "observed" significance is what we actually measure.

Note: Why 3"sigma" is so important?

The null hypothesis to have a background fluctuation as great or greater than the observed number of signal events is "really" unlikely (probability of 1.35 10-3), which expressed in Gaussian statistic corresponds to 3 standard deviations from the mean value. Reaching this value is commonly defined as "**observation**", the "**discovery**" is reached at "5sigma", which corresponds to a probability of 1.23 10-7.

Results:

- Cut based analysis: 3.5σ (3σ exp.)
- Combination with Run1: 3.6σ (4σ exp.)

Conclusions

Electron Calibration with $J/\psi \rightarrow ee$:

- We validated the calibration chain with another SM "candle" at low energies. Useful to all the analyses involving electrons.
- Es: Higgs mass CONF Note is including J/ ψ -ee validation plots:
 - https://cds.cern.ch/record/2271145

VH, H→bb Analysis:

- An example of complex analysis in which electrons (and muons) are fundamental to reduce the QCD background.
- Observation reached just recently, because of the different challenges of the final state (es. b-tagging).
- First look to the coupling with fermions: it seems compatible with Standard Model predictions!
- Stay tuned: looking forward to reach 5σ ...

Backup

$J/\psi \rightarrow ee$ kinematic distributions

J/ψ -ee systematic uncertainties

We varied the parameters involved in the fit to estimate the systematic uncertainties

- pseudo proper time settings
- eta reweighting

- PDF shapes
- ranges

Mass Fit Variations:

Thresholds

Signal Shape:

- N1 in Crystal Ball 1
- N2 in CrystalBall 2
- CB + Gauss

Background Shape:

- Chebychev Pol1
- Expo Background

Tau Fit Variations:

- Fit Ranges
- PDF Model (4 cases)
- MC Template

Reweighting variations:

- NoEtaRwt
- 1DEtaRwt
- · 2DEtaRwt

We recompute the scales applying just one variation:

Sampling term: Error calculation

 An eventual change in the sampling term value equal to the uncertainty on the residual sampling term would have a relative impact of:

$$\Delta = \frac{\sqrt{d\Delta a^2 + a^2}}{a}$$

- Assuming a = 10 %, this is relative change quantified to be: 1% in the <u>barrel</u> and 7% in the <u>endcaps</u>.
- Another source of uncertainty is coming from the uncertainty on the noise term (100 MeV/ E_T , 200 MeV/ E_T in the region [1.4, 1.8]). The equivalent uncertainty on the sampling term is:

$$\frac{\Delta a}{\sqrt{E}} = \frac{\Delta b}{E_{\rm T}} \qquad \qquad d\Delta a = \frac{100 \text{ MeV}}{E_{\rm T}} \sqrt{E}$$

- Considering an ET~12 GeV (14 GeV) in the barrel (endcaps), and E as in slide 11 (~12 GeV and 28 GeV) we get: 2.9% (3.8%) respectively.
- Summing in quadrature these effects we have an **overall uncertainty on the relative** sampling term of 4% (5.5%), which translates in a 8% (14%) possible relative change on a.