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Journées	de	Rencontres	Jeunes	Chercheurs	2017,	La	Pommeraie,				28	Novembre	2017

 seen by an LHC experimentalist…

*	Many	thanks	to	N.	Morange	for	useful	material
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You’re certainly 
all familiar 

with the SM* I’m sure you’re all
SM* experts

Beginning of the talk

Towards the end of the talk

*SM stands for Standard Model

During neutrinos introduction in JRJC2017, 26th November 2017
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Let’s now pass to the students presentations!
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• Matter consists of elementary particles, which interact with each other via forces 
• The theory describing matter and its interactions is the Standard Model
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• Le monde microscopique est constitué de particules de matière, qui interagissent entre 
elles via des forces (interactions)

• La théorie décrivant la matière et ses interactions est le Modèle Standard

The	Standard	Model



The	theore:cal	framework
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1st element: special relativity
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2nd element: quantum mechanics

It replaces the classical notion of a single, unique 
classical trajectory, with a sum over an infinity of 
quantum-mechanically possible trajectories to compute 
a quantum amplitude.

https://en.wikipedia.org/wiki/Probability_amplitude


The	theore:cal	framework
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Special Relativity + Quantum Mechanics ⇒ Quantum Field Theory 

➡ QFT is the only known way to reconcile QM and SR
- Relativistic wave equations are not sufficient
- We need to change number and types of particles in 

particle interactions
- Need for fields and quantise them “quantum fields”

➡ Particles = Excitations (quanta) of fields
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Special Relativity + Quantum Mechanics ⇒ Quantum Field Theory 

➡ QFT is the only known way to reconcile QM and SR
- Relativistic wave equations are not sufficient
- We need to change number and types of particles in 

particle interactions
- Need for fields and quantise them “quantum fields”

➡ Particles = Excitations (quanta) of fields

A theory is born : Standard Model
The local SU(3)×SU(2)×U(1) gauge symmetry defines the SM

QCD Electroweak
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➡ Elegant theory
‣ Lagrangian formulation
‣ A few free parameters
‣ Contains both EW and QCD
‣ Re-normalisable
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mass (the “mass problem”)
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➡ Elegant theory
‣ Lagrangian formulation
‣ A few free parameters
‣ Contains both EW and QCD
‣ Re-normalisable
‣ Gauge bosons have to be of zero 

mass (the “mass problem”)

Higgs mechanism to 
reconcile the theory 
with the observations



Higgs	mechanism
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At the very early age of the universe
• The Higgs field fills all space 

without any effect on the 
particles

• Particles are moving at the speed of 
light, being mass-less
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At the universe age of ~10-10 s : 
• The Higgs field that fills all the 

space, acquires a vacuum 
expectation value (VEV) that 
is non zero

• Some particles interact with the 
Higgs field and as a result they’re 
slowed down ( = acquiring mass)

- Mass is not an intrinsic property of particles, but results from an 
interaction with the Higgs field that fills the space!!

- The Higgs boson is the particle corresponding to the Higgs field

Higgs	mechanism
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Higgs	mechanism

Higgs VEV of 246 GeV
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QCD	and	jets
• LHC primarily a pp collider: QCD theory plays a critical role
‣ SU(3) gauge group, describes the strong interaction
‣ 8 gluons, 6 known quarks
‣ Asymptotic freedom between quarks and gluons

✦ At high energy q/g interact weakly allowing perturbative calculations
✦ At low energy interaction becomes strong resulting into the confinement of 

quarks and gluons to composite hadrons 

• In the experiments we are measuring jets
‣ A proxy to the initial quark or gluon
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QCD	and	jets
• LHC primarily a pp collider: QCD theory plays a critical role
‣ SU(3) gauge group, describes the strong interaction
‣ 8 gluons, 6 known quarks
‣ Asymptotic freedom between quarks and gluons

✦ At high energy q/g interact weakly allowing perturbative calculations
✦ At low energy interaction becomes strong resulting into the confinement of 

quarks and gluons to composite hadrons 

• In the experiments we are measuring jets
‣ A proxy to the initial quark or gluon
‣ Jets are produced abundantly in LHC
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What	are	jets?
• Jets are the outputs of 

clustering algorithms 
that group inputs, typically 
calorimeter energy 
clusters
✦ A proxy to the hard scattered 

parton (quark or gluon)
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What	are	jets?
• Jets are the outputs of 

clustering algorithms 
that group inputs, typically 
calorimeter energy 
clusters
✦ A proxy to the hard scattered 

parton (quark or gluon)

• The challenge of jets comes 
from QCD physics: 
parton shower and 
hadronization
✦ The particles we measure -π, 
Κ, p, n, etc- are not the 
particles from the hard 
scattering

hard scattering

parton shower 
evolution

hadronization

hadron decays
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Jet	algorithms
• Naively, jet algorithms are the inverse of the parton shower
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Jet	algorithms
• Naively, jet algorithms are the inverse of the parton shower

• But the parton shower is actually not invertible!

• There is no correct jet algorithm. Choice depends 
on the physics case
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Jet	algorithms
• Naively, jet algorithms are the inverse of the parton shower

• But the parton shower is actually not invertible!

• There is no correct jet algorithm. Choice depends 
on the physics case

• Anti-kT family of jet algorithms: the standard at 
LHC experiments

✦ Regular shape objects (easy to calibrate, more 
resilient to pile-up)

✦ Jet size based on the event kinematics



The	Large	Hadron	Collider
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• Primarily a p-p collider of 27km circumference situated at CERN



The	Large	Hadron	Collider

31

-This year peak lum. 20.6 nb-1 : ~250 W→lv events/s 
- 2 times larger than LHC design luminosity!!!

Outstanding LHC performance!!!



The	price	of	high	lumi:	pile-up
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Mean Number of Interactions per Crossing
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• 25 pile-up vertices, can you tell which candidate event is it??



The	Large	Hadron	Collider
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50 /fb

40 /fb

20 /fb

• Tevatron had collected 10 /fb in 
10 years

• We expect another ~50 /fb next 
year, for a total of ~150 /fb at 
the end of Run-2 (2015-2018)

• Future goals
‣ 300 /fb until 2023
‣ >3000 /fb at the end or the HL-

LHC to start in 2026

• Collisions happening every 25 ns (40 MHz)

• Collisions: 



Main	LHC	experiments
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ATLAS	-	CMS
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• Excellent vertex and tracking system
✦  Our best handle against pileup

• Large coverage of muon detection
• Excellent calorimetry with extended coverage to enable accurate jet and 

transverse missing energy measurements



(Transverse)	missing	energy
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v1

v2
v1

v2

• ETinitial = ETfinal   ⇔

• 0 = ETfinal   ⇔

• 0 = ETdetectable + ETundetectable   ⇔

• ETundetectable = - ETdetectable   ⇔

• ETmiss = - ETdetectable   ⇔

for this simplified example
• ETmiss = - (ETmuon1 + ETmuon2)
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• A plethora of SM 
measurements in 
ATLAS & CMS 
reveal a very good 
agreement with the 
SM predictions to 
our current 
knowledge

SM,	“jusqu’ici	tout	va	bien”
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Top	physics
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stat
total uncertainty

total  stat

 syst)± total (stat ± topm        Ref.s

ATLAS, l+jets (*) 7 TeV  [1] 1.35)± 1.55 (0.75 ±172.31 
ATLAS, dilepton (*) 7 TeV  [2] 1.50)± 1.63 (0.64 ±173.09 
CMS, l+jets 7 TeV  [3] 0.97)± 1.06 (0.43 ±173.49 
CMS, dilepton 7 TeV  [4] 1.46)± 1.52 (0.43 ±172.50 
CMS, all jets 7 TeV  [5] 1.23)± 1.41 (0.69 ±173.49 

LHCtopWGLHC comb. (Sep 2013) 7 TeV  [6] 0.88)± 0.95 (0.35 ±173.29 
World comb. (Mar 2014) 1.96-7 TeV  [7] 0.67)± 0.76 (0.36 ±173.34 
ATLAS, l+jets 7 TeV  [8] 1.02)± 1.27 (0.75 ±172.33 
ATLAS, dilepton 7 TeV  [8] 1.30)± 1.41 (0.54 ±173.79 
ATLAS, all jets 7 TeV  [9] 1.2)± 1.8 (1.4 ±175.1 
ATLAS, single top 8 TeV  [10] 2.0)± 2.1 (0.7 ±172.2 
ATLAS, dilepton 8 TeV  [11] 0.74)± 0.85 (0.41 ±172.99 
ATLAS, all jets 8 TeV  [12] 1.01)± 1.15 (0.55 ±173.72 
ATLAS, l+jets 8 TeV  [13] 0.82)± 0.91 (0.38 ±172.08 

)l+jets, dil.
Sep 2017(ATLAS comb.  7+8 TeV  [13] 0.42)± 0.50 (0.27 ±172.51 

CMS, l+jets 8 TeV  [14] 0.48)± 0.51 (0.16 ±172.35 
CMS, dilepton 8 TeV  [14] 1.22)± 1.23 (0.19 ±172.82 
CMS, all jets 8 TeV  [14] 0.59)± 0.64 (0.25 ±172.32 
CMS, single top 8 TeV  [15] 0.95)± 1.22 (0.77 ±172.95 
CMS comb. (Sep 2015) 7+8 TeV  [14] 0.47)± 0.48 (0.13 ±172.44 
CMS, l+jets 13 TeV  [16] 0.62)± 0.63 (0.08 ±172.25 

[1] ATLAS-CONF-2013-046
[2] ATLAS-CONF-2013-077
[3] JHEP 12 (2012) 105
[4] Eur.Phys.J.C72 (2012) 2202
[5] Eur.Phys.J.C74 (2014) 2758
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• LHC is a top factory, a lot of measurements of cross section and mass

• Top is the heaviest known particle. If new physics exists, it’s expected to couple with the mass
• Top sensitive to new physics 
• Top rare processes ttZ, ttbb, … are important background for various analyses (ttH)

Nicolas Tonon
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Higgs	Physics
• Higgs boson discovery announced in July 2012 by both ATLAS and CMS
• Most sensitive channels: H→γγ and H→ZZ*→4l 

• ATLAS and CMS combined 
measurement of its mass gives 
a precessions of 2 per mile!

• Precision will be improved in 
Run 2

Saskia Falke

• Results consistent to SM 
predictions within 
uncertainties
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Higgs	Physics
ggF:σ=19.2 pb

VBF:σ=1.6 pb

ZH:σ=0.4 pb

ttH: σ=0.13 pb

WH:σ=0.7 pb
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• Given a fixed mH, all the couplings, production mode and decay rates 
can be calculated

• Gluon fusion being the main decay mode in LHC
• H→bb the highest branching ratio, accessible via VH production mode
• ttH the only way to mesure directly the Higgs boson coupling to the 

heaviest known elementary particle (top quark)
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Higgs	Physics
JRJC 2016… (pardon my french :)  )



46

Higgs	Physics
JRJC 2016… (pardon my french :)  )

VH(bb)
I. Luise

ttH saga
- N. Brahimi 
- H. Nguyen 
- Z. Guo

JRJC 2017
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Is	SM	enough?
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 so different?
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Is	SM	enough?
neutrinos 

have
 mass, yo 
dumb SM!
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 masses are
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Is	SM	enough?
neutrinos 

have
 mass, yo 
dumb SM!

Why particle
 masses are
 so different?

Find New 
Physics 

particles!!!
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OK,	let’s	find	some	new	par:cles…
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back-up
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Eletroweak

7 TeV



Comment	détecter	les	par:cules	produites	?
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E=mc2
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Relativité restreinte

E2 = m2c4 + p2c2 (p: quantité de mouvement)
→ transformation énergie cinétique - masse

Création de particules «lourdes» lors 
de collisions de particules plus légères: 

Désintégration de particules lourdes 
instables en particules plus légères: 
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Faire des expériences dans les mêmes conditions que 10-10 s après le Big Bang ! 
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Diving into the 
infinitely small

Difference in 
dimensions

=
galaxies


