LAr Phase-1 upgrade demonstrator and resonance searches in the dilepton final state at the ATLAS experiment

Journées de Rencontre des Jeunes Chercheurs 2017 Instrumentation session

Peter Falke

LAPP / CNRS

27th November 2017

The ATLAS experiment

Figure from CERN CDS

Upgrade of the trigger system: LAr Phase-1 upgrade demonstrator

ATLAS LAr calorimeter

- Electromagnetic (EM) and hadronic endcap/forward calorimeter
 - ▶ Measures energy of various physics objects $(e, \gamma, \text{ jets}, \tau, ...)$
- Absorbers (e.g. lead in the barrel) are used to let particles loose energy
- Ionization signal is created in layers of liquid Argon (LAr)

Figures from LAr detector status

Trigger system

- LHC collision rate too high to record all events
 - lacktriangle Need to be selective ightarrow trigger

ATLAS trigger system overview

Figure from ATLAS DAQ public plots

Phase-1 Upgrade boundary conditions

- Expected LHC parameters in Run-3
 - ► ×2 higher instantaneous luminosity than in 2017
- ATLAS status
 - ► Level-1 (hardware) trigger limited to 100 kHz until end of Run-3
 - \rightarrow out of this: $20-30\,\mathrm{kHz}$ for single EM trigger
 - \rightarrow need more complex selection with luminosity increase
 - lacktriangle Currently trigger has limited granularity ightarrow Phase-1 Upgrade

Trigger readout: From Trigger Towers to Supercells

- Cannot process full cell granularity on Level-1 calorimeter trigger level
 - ► Currently based on 5.4 k trigger towers

Current: Trigger Towers After upgrade: Supercells (SCs)

Example of $70\,\mathrm{GeV}$ electron shower

Figure from ATLAS LAr Phase-1 Upgrade TDR

- 34 k supercells (SCs) after upgrade
 - ▶ Consist of 4-8 LAr cells in the barrel (110 k cells available in total)
 - ► Will provide higher granularity, better resolution and longitudinal shower information
 - Partial exchange and extension of electronics needed

Expected performance gains

- Current criteria at Level-1 hardware trigger: Energy and isolation
 - ► Improving energy measurement helps to reduce rate
 - ightarrow can cut closer to desired $E_{
 m T}$ threshold
 - Additionally: finer granularity and layer information
 - \rightarrow more information about shower development
 - \rightarrow can be used to distinguish between electrons and jets

Figures from ATLAS LAr Phase-1 Upgrade TDR

Expected performance gains

- Current criteria at Level-1 hardware trigger: Energy and isolation
 - ► Improving energy measurement helps to reduce rate
 - ightarrow can cut closer to desired E_{T} threshold
 - ► Additionally: finer granularity and layer information
 - \rightarrow more information about shower development
 - \rightarrow can be used to distinguish between electrons and jets

Figures from ATLAS LAr Phase-1 Upgrade TDR

Demonstrator for LAr Phase-1 upgrade electronics

- In-situ demonstrator installed in ATLAS
 - ► Available since July 2014
 - ▶ Part of LAr barrel, covering a region of $9\pi/16 < \varphi < 11\pi/16$ and $0 < \eta < 1.52$
 - ► Allows to collect data and validate energy reconstruction under LHC conditions
- Pre-prototype of Phase-1 electronics

ABBA board

Calibration electronics of the LAr detector

- Need to calibrate demonstrator system before further data analysis
 - lacktriangle Cell energy unknown ightarrow need ADC
 ightarrow MeV conversion

- Can inject known signals with calibration board
 - lacktriangle Allow to derive ADC ightarrow MeV conversion factor
 - ▶ Need correction due to different pulse shape of physics signals

Calibration procedure

- Calibration carried out by performing three types of runs
 - ▶ Pedestal runs obtain baseline ADC value and noise autocorrelation
 - ► Delay runs allow precise sampling of pulse shape
 - ▶ Ramp runs relate ADC counts to an injected current
- ullet Runs are encoded in so-called pulsing patterns (o next slide)

Calibration patterns

- Developed special pulsing pattern for supercells
 - ► General calibration cabling scheme developed for cells (i.e. do not want to pulse nearby cells to measure the cross-talk)
 - ► Need to pulse all cells in supercell at the same time
 - ► Trying to minimize impact of cross-talk between supercells

Demonstrator calibration

- Calibration data-taking
 - Measured the data mostly "by-hand" at CERN
 - ► Need to ensure good data quality to be able to calibrate all SCs
- Calculation of calibration coefficients
 - Processing of data done within Athena framework of ATLAS

Calibration pulse shape with example of measurements

Pulse shapes with increasing amplitude from a ramp run

Timing alignment

- Crucial for trigger: Provide right timing for event consistent with the LHC bunch crossing (every 25 ns)
- Timing with respect to reference calculatued using OFCs a_i and b_i : $A = (\sum_{i}^{N_{\text{samples}}} (s_i - p) a_i)$ and $At = (\sum_{i}^{N_{\text{samples}}} (s_i - p) b_i)$
- Final timing distribution well aligned when using proper reference
 - ► Width small enough to identify bunch-crossing

Middle layer example

Energy correlation

- ullet Comparison done between $E_{
 m SC}$ and $\sum_{
 m SC} E_{
 m cells}$
 - Supercell signals are summed and then calibrated
 - ► Cell signals are calibrated and result summed
 - ► Should give the same result within the expected noise level
- Good agreement of my calibration with main readout can be observed
 - Perfectly sufficient for trigger purposes

Front layer

Middle layer

Figures from summary page for LAr Phase-1 Upgrade public plots

Event displays

- Demonstrator physics data collected in parallel to LAr main read-out
 - lacktriangle Can compare with summed main read-out cells ightarrow dummy supercells
 - ► Event displays allow to visualise shower development
- ullet Highest supercell energy in event, $E_{
 m max}^{
 m SC}$, typically within $\sim 5\%$
- ullet Total plotted energy, $E_{
 m total}$, typically within $\sim 10\%$

Figures from summary page for LAr Phase-1 Upgrade public plots

Search for dilepton resonances

Figure from ATLAS Preliminary Figures from 2010 Collision Data at 7 TeV

New energy frontiers unveiled new resonances in dileptons (e.g. J/ψ , Z) New phenomena could be hiding...

Figure from ATLAS Preliminary Figures from 2010 Collision Data at 7 TeV

New energy frontiers unveiled new resonances in dileptons (e.g. J/ψ , Z) New phenomena could be hiding at higher masses...

Figure from ATLAS Preliminary Figures from 2010 Collision Data at 7 TeV

New energy frontiers unveiled new resonances in dileptons (e.g. J/ψ , Z) New phenomena could be hiding at higher masses or lower cross-sections

Search for dilepton resonances

- Part of the ATLAS exotics program
 - ► Fast search for an excess above the DY-dominated spectrum
- Inclusive selection to keep independent of model
 - lacktriangle \geq 2 same flavour charged leptons with $p_{\mathrm{T}} > 30\,\mathrm{GeV}$ and loose isolation
 - ► Only in muon case opposite charge required

Dielectron mass spectrum

Figures from JHEP 10 (2017) 182

Dimuon mass spectrum

- Backgrounds: Drell-Yan (Z/γ^*) , $t\bar{t}$, dibosons and QCD/W+jets
 - ► Diphoton background contribution estimated to be negligible

Channel comparison

- Electron channel yields stronger limits than muon channel because of
 - ► Better mass resolution
 - ► Higher acceptance and efficiency

Obtained mass resolution

Final acceptance × efficiency curve

Figures from JHEP 10 (2017) 182

Theoretical motivation and obtained limits

- Various models predict new dilepton resonances
 - lacktriangledown $Z'_{
 m SSM}$ has the same properties as the Z boson, but higher mass
 - ► More physical models e.g. E₆ symmetries in grand unified theories
 - ▶ Results can be reinterpreted into Gravitons, black holes, dark matter, ...
- \bullet Analysis using $36.1\,\mathrm{fb}^{-1}$ excluded Z'_SSM until pole-mass of $4.5\,\mathrm{TeV}$
 - ▶ Paper published in JHEP (JHEP 10 (2017) 182)
 - ► Previous ATLAS result: 4.05 TeV (using 13.3 fb⁻¹, cp. here)
 - ► Most recent CMS result: 4.0 TeV (using 13.0 fb⁻¹, cp. here)

Obtained cross-section limits O Figures from JHEP 10 (2017) 182

Observed generic limit

Reinterpretation in heavy vector triplet model

- W'/Z' heavy vector triplet (HVT)
 - g_l and g_q are the couplings to leptons and quarks
 - ▶ Coupling to Higgs field described by g_φ
 - Allows to compare to other channels such as dibosons, $\tau\tau$, $I\nu$
- Used generic limits to calculate Z'-only results in HVT model

$$\begin{split} \mathcal{L}_W &= -\frac{1}{2} [D_\mu W_\nu]^a [D^\mu W^\nu]_a + \frac{1}{2} [D_\mu W_\nu]^a [D^\nu W^\mu]_a \right. \\ &+ g_2 W_\mu^a W_a^\mu \phi^\dagger \phi - g_i W_a^\mu \overline{l}_i \gamma_\mu \frac{\sigma^a}{2} l_i - g_q W_a^\mu \overline{q}_i \gamma_\mu \frac{\sigma^a}{2} q_i \\ &- \left(i g_\phi W_a^\mu \phi^\dagger \frac{\sigma^a}{2} D_\mu \phi + \text{h.c.} \right) + \frac{1}{2} g_W \epsilon_{abc} W_\mu^a W_\nu^b W_{\mu\nu}^c \end{split}$$

Lagrangian of HVT model

Limit plot from reinterpretation

Summary and outlook

Summary and outlook

- LAr Phase-1 upgrade demonstrator
 - Performed calibration of the system
 - ► Comparison with the main readout shows good agreement
 - Results available as public plots (see here)
 - ▶ New demonstrator will be installed in 2018
- Search for dilepton resonances
 - ► Presented analysis of 2015/16 data (JHEP 10 (2017) 182)
 - ightarrow excluded $Z'_{\rm SSM}$ until pole-mass of 4.5 ${
 m TeV}$
 - Reinterpretation of ATLAS limits in HVT model

Backup

Energy correlation

- ullet Comparison done between $E_{
 m SC}$ and $\sum_{
 m SC} E_{
 m cells}$
 - ► Supercell signals are summed and then calibrated
 - ► Cell signals are calibrated and result summed
 - ▶ Should give the same result within the expected noise level
- Good agreement of my calibration with main readout can be observed
 - Perfectly sufficient for trigger purposes

Presampler

Back layer

Figures from summary page for LAr Phase-1 Upgrade public plots