Presampler layer calibration

Journées de Rencontre des Jeunes Chercheurs 2017 27/11/2017

Ahmed Tarek

Outline

- Calorimeters : A crash course
- The ATLAS experiment
- Overview of EM calorimeter
- The ATLAS electron/photon calibration
 - The presampler scale recipe
 - Upstream material corrections $A(\eta)$
 - PS/Accordion material effects $b_{1/2}(\eta)$
 - PS scale stability
 - Conclusions

Calorimeters: a crash course

Calorimeters

- Common detector in particle/nuclear physics where the particles are fully absorbed by the detector (destructive)
- Particles deposit energy in various ways : heat, scintillation, Cherenkov radiation ...
- "Detection" is the conversion the incident particle energy to a response in the detector
- Location of energy deposit is used to "track" neutral particles

Electromagnetic calorimeter

- Dominant process at high energies : pair production, bremsstrahlung
- Radiation length X_0 : when the energy of incident particle reduces by 1/e
- Two main designs :

a simple shower development model

Homogenous

ATLAS

- A Toroidal Lhc ApparatuS
- One of two general purpose detectors at the Large Hadron Collider in CERN
- The biggest LHC experiment with ~ 3000 physicists

ATLAS

ATLAS electromagnetic calorimeter

Lead liquid Aragon (LAr) sampling calorimeter with accordion geometry

- Divided into two regions
- Barrel (EMEB) 0<|η|<1.475
- Endcap (EMEC) 1.375<|η|<3.2
- HV system provides (1 kV/mm) to ionise electrons

ATLAS electromagnetic calorimeter -2

- S0 (Presampler)
- S1 (Strips) : γ/π^0 separation
- S2 (Middle) : Main energy deposit
- \$3 (Back) : High energy showers

- The Presampler (PS) recovers part of the energy for particles that started showering before reaching the calorimeter
 - Does not contain any absorber material
 - Covers |η| <1.8
 - $0<|\eta|<1.52$ Barrel, $1.5<|\eta|<1.8$ Endcaps

Calibration scheme

MC based calibration 1- calibrate EM clusters

1- calibrate EM clusters to original electron/ photon energy using multivariate analysis

- 2- Equalise scales of different longitudinal layers between data/MC
- Intercalibration of the first and Second layer and the presampler
- 3- Apply MC response (from MVA) on data/MC clusters

Data based calibration photon/electron energy scale adjusted to EM scale Z->ee events

J/ψ → ee Z → IIγ data-driven scale validation

Validation

Validate method with election candidate at low energy

uniformity

corrections

PS scale determination

Introduction

Presampler scale: The ratio of the presampler energy between data and simulation

- Energy deposited in the PS is very sensitive to the presence of extra material ahead of the calorimeter
- Different material between data and simulation will bias the scale estimation

PS scale determination

Challenges

Muons are insensitive to upstream material but the energy deposit is too low in the PS (MIP)

⇒ Scale is determined from electrons from Z decays.

More Material \rightarrow Early shower development \rightarrow Larger energy deposits in L1 compared to L2 <u>Solution</u>: Use information from the ratio first and second layers energies E₁/E₂ (E_{1/2})!

⚠ There's also material (cables) between PS and L1

Solution: Use unconverted photons with low PS activity to probe this region

PS scale determination

Recipe

Proof of principle

 E_0 and $E_{1/2}$ show similar patterns between data and simulation

PS scale
$$\alpha_{PS}(\eta) = \frac{E_0^{data}(\eta)}{E_0^{corr}(\eta)}$$

Corrected MC

where Material correction:

$$\frac{E_0^{corr}(\eta)}{E_0^{nom}(\eta)} = 1 + A(\eta) \left(\frac{E_{1/2}^{data}(\eta)}{E_{1/2}^{nom}(\eta) b_{1/2}(\eta)} - 1 \right)$$

 $A(\eta)$: E₀, E_{1/2} Correlation slope

 $b_{1/2}(\eta)$: Material after the PS correction

Upstream material correction $A(\eta)$

- $A(\eta)$ is the slope of the linear fit of the correlation between $E_{1/2}$ and E_0
- Estimated from geometry variations upstream the calorimeter

_	Config	ID	ID-EC	Pixel S	SCT S	SCT/TRT-EC	PS/S1-B	PS/S1-EC	Cryo 1	Calo-EC	
-	A	5%	-	-	-	-	-	-	-	-	
	N	-	-	-	-	-	-	5%	-	-	
	C'+D'	-	-	10%	10%	-	-	-	_	-	
al	E'+L'	-	-	_	_	7.5%	-	_	5%	_	
	F'+M+X	-	7.5%	-	-	-	5%	-	-	30%	
	G'	5%	7.5%	10%	7.5%	5%	5%	5%	5%	30%	
-	IBL	Improved IBL geometry									

Samples with material after the PS

IBL Improved IBL geometry
PP0 50% increase in IBL + pixel services

ex. **Config A** MC15 geometry. **5%** ID materials scale

Upstream material correction $A(\eta)$

- $A(\eta)$ is the slope of the linear fit of the correlation between $E_{1/2}$ and E_0
- Estimated from geometry variations upstream the calorimeter

Upstream material correction $A(\eta)$

$E_{1/2}$, E_0 correlation plot

• Example of correlation plots :

PS/Accordion material effects $b_{1/2}(\eta)$

- Use photo samples from different sources (different p_T ranges)
 - Hight p_T : Single photon samples
 - Low p_T : Radiative-Z samples
- Select only unconverted photons and veto events $E_0 < 1.2 \text{ GeV}$

HV Investigation

- Unexpected discrepancy observed with the simulation when PS veto is applied
 - No extra material is added in the region PS-strips

- Discrepancy in HV mapping between data and simulation found!
 - Real situation : one HV line power two gaps of one cell
 - Simulation : one HV line power one gap of two cells (similar to the rest of the calorimeter)

Closure test using G' sample

- Closure test on the recipe was performed using distorted geometry G' MC
- α_{PS} is calculated from the formula

0.9

0.2 0.4 0.6 0.8

1 1.2 1.4 1.6

PS scale

$$\alpha_{PS}^{closure} = \frac{E_0^{G'}(\eta)}{E_0^{corr}(\eta)}$$
 where:

17

0.9

0.2 0.4 0.6 0.8

lηl

PS scale

Combining E_0 , $E_{1/2}$ with fitted values of $b_{1/2}$ the total material correction is derived

Final α_{PS} values using 2015+2016 data

PS scale stability along ϕ

- PS scale along ϕ
 - performing ϕ dependent material correction for $\frac{E_0^{\mathrm{corr}}(\eta,\phi)}{E_0^{\mathrm{nom}}(\eta,\phi)} = 1 + A(\eta) \left(\frac{E_{1/2}^{\mathrm{data}}(\eta,\phi)}{E_{1/2}^{\mathrm{nom}}(\eta,\phi)b_{1/2}(\eta)} 1 \right)$ each η bin

using A(η), $b_{1/2}(\eta)$

Material mis-modeling $\eta \approx 0.6$

- Periodic structure was observed along phi for $\eta \approx 0.6$
- Material effect is corrected using using PS scale material correction ⇒ doesn't affect
 PS scale
- Data-MC discrepancy in E0 and E12 indicate material issue

• Material estimates in terms of ΔX_0 :

Material mis-modeling η =0.6

- The mis-modelling is related to Transition Radiation Tracker services
 - Aluminium "pillars" used to slide the TRT barrel in case of LAr leakage
 - Exact TRT services budget is not included in the simulation

Conclusions

- PS scale can be measured by using the correlation with the strips and the second layer and estimate $A(\eta)$
- Unconverted photons with low PS activity can probe material after the presampler $b_{1/2}(\eta)$
- Combining $A(\eta)$, $b_{1/2}(\eta)$ and $E_{1/2}(\eta)$ removes material effect and the PS scale is measured
- PS scale is found symmetric along η , ϕ

Back up

PS/Accordion material effects $b_{1/2}(\eta)$

- Radiative Z samples $(Z \rightarrow \mu \mu \gamma)$
 - μ p_T > 12 GeV, γ p_T > 10 GeV
 - FSR : $m_{\mu\mu} \in [50-83]$ GeV, $m_{\mu\mu\gamma} \in [80-100]$ GeV
 - $f_1 > 0.1$
- Inclusive photon ntuples (v12)
 - p_T > 147 GeV
- Tight, FixedcutTight Isolation and unconverted
- Remove PS HV faulty cells
- E₀ veto

24

Impact of E1/E2 layer intercalibration

- Introducing η dependent E_{1/2} mis-calibration $\alpha_{1/2}(\eta) = E_{1/2}^{muons}(\eta)$ to $E_{1/2}^{G',miscal} = E_1^{G'}/(\alpha_{1/2}E_2^{G'})$ to both electrons and photons ($b_{1/2}$) of MC G' [mis-calibration taken from data]
- Material correction formula implemented in order to cancel out $E_{1/2}$ inter-calibration corrections between electrons and photons $\frac{E_0^{\rm corr}(\eta)}{E_0^{\rm nom}(\eta)} = 1 + A(\eta) \left(\frac{E_{1/2}^{\rm G'}(\eta)/E_{1/2}^{\rm nom}(\eta)}{b_{1/2}^{barrel,EC}} 1 \right)$

 $\overline{\mathbb{V}}$

 $b_{1/2}$ is fitted, hence $E_{1/2}$ inter-calibration corrections don't fully cancel

PS scale stability along η

• PS scale found symmetric along η

Dataset selection and configuration

	Electrons 2016 Data (All year (A-L) Lumi: 33.9 fb ⁻¹) data16_13TeV.*.physics_Main.merge.DAOD_EGAM1.f694_m1583_p2667						
DS	2015 Data data15_13TeV.*.physics_Main.merge.DAOD_EGAM1.r7562_p2521_p2667*						
	MC nominal geo.: mc15_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.merge.DAOD_EGAM1.e3601_s2576_s2132_r7725_r7676_p2666 modified geo.: list in backup						
GRL	data16_13TeV.periodAllYear_DetStatus-v83-pro20-15_DQDefects-00-02-04_PHYS_StandardGRL_All_Good_25ns.xml data15_13TeV.periodAllYear_DetStatus-v79-repro20-02_DQDefects-00-02-02_PHYS_StandardGRL_All_Good_25ns.xml						
Trigger	HLT_2e17_lhvloose_nod0						
Likelihood	Medium						
Isolation	Loose						
PRW	Conf file: CalibrationSelection/user.turra.mc15_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.merge.AOD.e3601_s2576_s2132_r7725_r7676_prw.root LumiCalc: CalibrationSelection/ilumicalc_histograms_None_297730-308084_OflLumi-13TeV-005.root						
ESM model	es2016PRE						
η	$ \eta < 2.47$						
pτ	p _T > 27 GeV						
PV Zmax	150						
Z ⁰	2 opposite charge electrons, 80 < m _{ee} < 100 GeV						