	0000000000	00000000	00000000	
[Faculté de physique et ing Université de Strasbourg	Jénierie		* **** *******************************
D	éveloppement c de Hubble à	l'une méthode c partir des para	le détermination de mètres des sources	e la constante d'ondes

Florian Aubin

gravitationnelles détectées par Virgo et LIGO

Master Physique Subatomique et Astroparticules

13/06/2017

Encadré par Damir Buskulic

Madàl

Introduction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Sommaire					

- 3 Paramètres de l'analyse
- 4 Discussions des résultats

Introduction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Introduct	ion				

- Première observation d'Ondes Gravitationnelles (OG) par LIGO le 14 septembre 2015 [8].
- Récentes mesures de la constante de Hubble H₀ :
 - télescope spatial Hubble $H_0 = 71.9^{+2.4}_{-3.0}$ (V. Bonvin et al. [2]).
 - satellite Planck $H_0 = 67.8 \pm 0.9$ (Planck Collaboration et al. [10]).
- Prévision d'une mesure à 10 km.s⁻¹.Mpc⁻¹ près avec 100 fusion d'étoiles à neutrons (Taylor [12]).

Introduction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Introduct	ion				

- Première observation d'Ondes Gravitationnelles (OG) par LIGO le 14 septembre 2015 [8].
- Récentes mesures de la constante de Hubble H₀ :
 - télescope spatial Hubble $H_0 = 71.9^{+2.4}_{-3.0}$ (V. Bonvin et al. [2]).
 - satellite Planck $H_0 = 67.8 \pm 0.9$ (Planck Collaboration et al. [10]).
- Prévision d'une mesure à 10 km.s⁻¹.Mpc⁻¹ près avec 100 fusion d'étoiles à neutrons (Taylor [12]).
- Trois (ou quatre) événements avec des trous noirs.
- Facteur 3 en sensibilité dans les prochaines années \Rightarrow Observation $\approx~100$ fusions d'ici quelques années.
- Peut-on estimer la valeur de H₀ avec ces observations par une étude de population ?

Introduction	Modèle	Paramètres de l'analyse	Discussions des résultats	Conclusion	Bibliographie
	0000000000				
Rappels sur les OG					

2 Modèle

• Rappels sur les OG

- Effet du redshift
- Définition de l'observable
- Effets du détecteur

3 Paramètres de l'analyse

4 Discussions des résultats

5 Conclusion

Introduction	Modèle o∙ooooooooo	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Rappels sur les OC	i				
Rappels	sur les OG				

Équations d'Einstein linéarisées

$$egin{aligned} R_{\mu
u} &-rac{1}{2}Rg_{\mu
u} = 8\pi\,T_{\mu
u}\ g_{\mu
u} &= \eta_{\mu
u} + h_{\mu
u}\ ar{h}_{\mu
u} &= h_{\mu
u} -rac{1}{2}\eta_{\mu
u}h^{\mu}_{\ \mu} \ \ \ \ \partial_{\mu}ar{h}_{\mu
u} = 0\ \Boxar{h}^{\mu
u} &= -16\pi\,T_{\mu
u} \end{aligned}$$

Solutions

- Dans le vide $\Box \bar{h}^{\mu\nu} = 0$ \Rightarrow Équation de d'Alembert
- Système binaire : $h(t) = \frac{\mathcal{M}^{5/3}}{\chi} \Theta(\pi f)^{2/3} \cos[\Phi_0 + \Phi(t)]$

Introduction	Modèle o●○○○○○○○○	Paramètres de l'analyse 00000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Rappels sur les OG					

Rappels sur les OG

Équations d'Einstein linéarisées

$$egin{aligned} &R_{\mu
u}-rac{1}{2}Rg_{\mu
u}=8\pi\,T_{\mu
u}\ &g_{\mu
u}=\eta_{\mu
u}+h_{\mu
u}\ &ar{h}_{\mu
u}=h_{\mu
u}-rac{1}{2}\eta_{\mu
u}h^{\mu}_{\ \mu}\ ;\ &\partial_{\mu}ar{h}_{\mu
u}=0\ &oxdot ar{h}^{\mu
u}=-16\pi\,T_{\mu
u} \end{aligned}$$

Solutions

- Dans le vide $\Box \bar{h}^{\mu\nu} = 0$ \Rightarrow Équation de d'Alembert
- Système binaire : $h(t) = \frac{\mathcal{M}^{5/3}}{\chi} \Theta(\pi f)^{2/3} \cos[\Phi_0 + \Phi(t)]$

Masses

$$M=m_1+m_2$$
 ; $\mu=rac{m_1m_2}{M}$ $\mathcal{M}=\mu^{3/5}M^{2/5}$

Introduction	
minoquelloi	

00000000000

Rappels sur les OG

Rappels sur les OG

Équations d'Einstein linéarisées

Modèle

$$egin{aligned} R_{\mu
u} &-rac{1}{2}Rg_{\mu
u} = 8\pi\,T_{\mu
u}\ g_{\mu
u} &= \eta_{\mu
u} + h_{\mu
u}\ ar{h}_{\mu
u} &= h_{\mu
u} -rac{1}{2}\eta_{\mu
u}h^{\mu}_{\mu} ~~;~~\partial_{\mu}ar{h}_{\mu
u} = 0\ &\Boxar{h}^{\mu
u} &= -16\pi\,T_{\mu
u} \end{aligned}$$

Solutions

- Dans le vide $\Box \bar{h}^{\mu\nu} = 0$ \Rightarrow Équation de d'Alembert
- Système binaire : $h(t)=rac{\mathcal{M}^{5/3}}{\gamma}\Theta(\pi f)^{2/3}\cos[\Phi_0+\Phi(t)]$

Masses

$$M = m_1 + m_2$$
 ; $\mu = rac{m_1 m_2}{M}$
 $\mathcal{M} = \mu^{3/5} M^{2/5}$

5 / 38

Introduction	Modèle ○○● ○ ○○○○○○	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Effet du redshift					

2 Modèle

• Rappels sur les OG

• Effet du redshift

- Définition de l'observable
- Effets du détecteur

3 Paramètres de l'analyse

4 Discussions des résultats

5 Conclusion

Introduction	Modèle ○○○●○○○○○○	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Effet du redshift					
Effet du re	edshift				

Redshift z

Paramètre d'expansion de l'Univers :
$$a(t)=rac{R(t)}{R_0}$$
 $1+z=rac{1}{a}$

Introduction	Modèle ○○○●○○○○○○	Paramètres de l'analyse 00000000	Discussions des résultats 00000000	Conclusion	Bibliographie
Effet du redshift					
Effet du re	edshift				

Redshift z

Paramètre d'expansion de l'Univers :
$$a(t)=rac{R(t)}{R_0}$$
 $1+z=rac{1}{a}$

Effet du redshift sur les échelles de temps

Expansion de l'Univers durant la propagation des ondes : $\delta t_{event} \neq \delta t_{obs}$:

$$\delta t_{obs} = (1+z) imes \delta t_{event}$$

Introduction	Modèle ○○ ○●○ ○○○○○○	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Effet du redshift					
Effet du	redshift				

Redshift z

Paramètre d'expansion de l'Univers : $a(t)=rac{R(t)}{R_0}$ $1+z=rac{1}{a}$

Effet du redshift sur les échelles de temps

Expansion de l'Univers durant la propagation des ondes : $\delta t_{event} \neq \delta t_{obs}$:

$$\delta t_{obs} = (1+z) imes \delta t_{event}$$

Effet sur les masses observées (S.A. Hughes, D.E. Holz [6])

Une masse *m* impacte une échelle de temps $\delta t = \frac{Gm}{c^3}$ Masse observée différente de masse réelle :

$$m_{obs} = (1+z) imes m$$

On observe des masses redshiftées et des distances de luminosité : $D_L \approx \frac{1}{H_0} z = fct(H_0)$

Introduction	Modèle ○○ ○○ ●○○○○○○	Paramètres de l'analyse 000000000	Discussions des résultats	Conclusion	Bibliographie
Effet du redshift					

Effet du redshift sur les masses perçues

 FIGURE – Effet du redshift sur les distributions de masse

Introduction	Modèle	Paramètres de l'analyse	Discussions des résultats	Conclusion	Bibliographie
	0000000000				
Définition de l'observal	ole				

Modèle

- Rappels sur les OG
- Effet du redshift
- Définition de l'observable
- Effets du détecteur

Définition	Définition de l'observable							
Définition de l'obser	rvable							
Introduction	Modèle ○○○○○ ○ ●○○○○	Paramètres de l'analyse 00000000	Discussions des résultats 00000000	Conclusion	Bibliographie			

Nombre d'événements par unité de temps, de masse chirp perçue (redshiftée), de distance de luminosité et de SNR (intensité du signal par rapport au bruit).

$$\frac{d^4N}{dtdD_Ld\mathcal{M}_zd\rho} = \frac{1}{1+z}\frac{\partial z}{\partial D_L}\frac{\Theta}{\rho}\frac{d^4N}{dtdzd\mathcal{M}d\Theta}$$

Introduction	Modéle ○○○○○O●○○○○	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Définition de l'obse	ervable				
Définitio	n de l'observ	able			

Nombre d'événements par unité de temps, de masse chirp perçue (redshiftée), de distance de luminosité et de SNR (intensité du signal par rapport au bruit).

$$\frac{d^4N}{dtdD_Ld\mathcal{M}_zd\rho} = \frac{1}{1+z}\frac{\partial z}{\partial D_L}\frac{\Theta}{\rho}\frac{d^4N}{dtdzd\mathcal{M}d\Theta}$$

Nombre d'événements par unité de temps, de redshift, de masse chirp et de position angulaire. Distribution "physique".

Introduction	Modèle ○○○○○ ○ ●○○○○	Paramètres de l'analyse 00000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Définition de l'observat	ble				
Définition	de l'observa	ble			

Nombre d'événements par unité de temps, de masse chirp perçue (redshiftée), de distance de luminosité et de SNR (intensité du signal par rapport au bruit).

$$\frac{d^4N}{dtdD_Ld\mathcal{M}_zd\rho} = \frac{1}{1+z}\frac{\partial z}{\partial D_L}\frac{\Theta}{\rho}\frac{d^4N}{dtdzd\mathcal{M}d\Theta}$$

Redshift des masses.

Introduction	Modéle ○○○○○○●○○○○	Paramètres de l'analyse	Discussions des résultats	Conclusion	Bibliographie
Définition de l'obs	ervable				
Définitio	n de l'observ	able			

Nombre d'événements par unité de temps, de masse chirp perçue (redshiftée), de distance de luminosité et de SNR (intensité du signal par rapport au bruit).

$$\frac{d^4N}{dtdD_L d\mathcal{M}_z d\rho} = \frac{1}{1+z} \frac{\partial z}{\partial D_L} \frac{\Theta}{\rho} \frac{d^4N}{dtdzd\mathcal{M} d\Theta}$$

Relation entre z et D_L .

$$zpproxrac{1}{2(1-rac{3}{4}\Omega_M)}\left[\sqrt{1+4(1-rac{3}{4}\Omega_M)rac{D_L}{c/H_0}}-1
ight]$$

Définition de l'observable							
Définition de l'observable Définition de l'observable							

Nombre d'événements par unité de temps, de masse chirp perçue (redshiftée), de distance de luminosité et de SNR (intensité du signal par rapport au bruit).

$$\frac{d^4N}{dtdD_Ld\mathcal{M}_zd\rho} = \frac{1}{1+z}\frac{\partial z}{\partial D_L}\frac{\Theta}{\rho}\frac{d^4N}{dtdzd\mathcal{M}d\Theta}$$

Effet du détecteur et des angles traduit en terme de SNR

Introduction	Modèle ○○○○○ ○ ●○○○○	Paramètres de l'analyse 00000000	Discussions des résultats 00000000	Conclusion	Bibliographie
Définition de l'obse	ervable				
Définitio	n de l'observ	able			

Nombre d'événements par unité de temps, de masse chirp perçue (redshiftée), de distance de luminosité et de SNR (intensité du signal par rapport au bruit).

$$\frac{d^4 N}{dt dD_L d\mathcal{M}_z d\rho} = \frac{1}{1+z} \frac{\partial z}{\partial D_L} \frac{\Theta}{\rho} \frac{d^4 N}{dt dz d\mathcal{M} d\Theta}$$
$$= \frac{1}{1+z} \frac{\partial z}{\partial D_L} \frac{dV_c}{dz} \frac{h(z)}{1+z} P_{\mathcal{M}} \left(\frac{\mathcal{M}_z}{1+z}\right) P_{\rho}(\rho | \mathcal{M}_z, D_L)$$

Nombre d'événements dans un volume dV_c à un redshift z. $\frac{dV_c}{dz} = \frac{4\pi\chi^2(z)c/H_0}{H(z)/H_0} \quad ; \quad \dot{n}(z) = \frac{d^2N}{dt_{event}dV_c} = (1+z) \times \frac{d^2N}{dt_{obs}dV_c}$

Introduction	Modèle ○○○○○○	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Définition de l'obser	rvable				
Définition	n de l'observ	able			

Nombre d'événements par unité de temps, de masse chirp perçue (redshiftée), de distance de luminosité et de SNR (intensité du signal par rapport au bruit).

$$\frac{d^4 N}{dt dD_L d\mathcal{M}_z d\rho} = \frac{1}{1+z} \frac{\partial z}{\partial D_L} \frac{\Theta}{\rho} \frac{d^4 N}{dt dz d\mathcal{M} d\Theta} \\ = \frac{1}{1+z} \frac{\partial z}{\partial D_L} \frac{dV_c}{dz} \frac{\dot{h}(z)}{1+z} P_{\mathcal{M}} \left(\frac{\mathcal{M}_z}{1+z}\right) P_{\rho}(\rho | \mathcal{M}_z, D_L)$$

Distribution en masse chirp des binaires de trous noirs. Supposée indépendante du redshift à petites distances (ici $z \le 0.3$) (Taylor [12]).

Introduction	Modèle ○○○○○○●○○○○	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Définition de l'observat	le				
Définition	de l'observab	ole			

Nombre d'événements par unité de temps, de masse chirp perçue (redshiftée), de distance de luminosité et de SNR (intensité du signal par rapport au bruit).

$$\frac{d^4 N}{dt dD_L d\mathcal{M}_z d\rho} = \frac{1}{1+z} \frac{\partial z}{\partial D_L} \frac{\Theta}{\rho} \frac{d^4 N}{dt dz d\mathcal{M} d\Theta}$$
$$= \frac{1}{1+z} \frac{\partial z}{\partial D_L} \frac{dV_c}{dz} \frac{\dot{n}(z)}{1+z} P_{\mathcal{M}} \left(\frac{\mathcal{M}_z}{1+z}\right) P_{\rho}(\rho | \mathcal{M}_z, D_L)$$

Probabilité que l'événement de masse M_z à distance D_L soit détecté avec un SNR ρ suffisant (en pratique $\rho \ge 8$).

Introduction	Modèle ○○○○○○●○○○	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Effets du détecteur					

Modèle

- Rappels sur les OG
- Effet du redshift
- Définition de l'observable
- Effets du détecteur

Introduction	Modèle ○○○○○○○●○○	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Effets du détecteur					

Orientation et polarisation

Une variable pour toutes les dépendances angulaires : $\Theta = 2[F_+^2(1 + \cos^2 \iota)^2 + 4F_\times^2 \cos^2 \iota]^{1/2}$ $0 < \Theta < 4$ Deux polarisations : $F_{+} = \frac{1}{2}(1 + \cos^{2}\theta)\cos 2\phi\cos 2\psi$ $-\cos\theta\sin 2\phi\sin 2\psi$ $F_{\times} = \frac{1}{2}(1 + \cos^2 \theta) \cos 2\phi \cos 2\psi$ $+\cos\theta\sin 2\phi\sin 2\psi$

Paramètres de l'ana 000000000 Discussions des résultats

Conclusion

Bibliographie

Effets du détecteur

Réponse en fréquence du détecteur

Modèle ○○○○○○○○○

Définition du SNR

Variable évaluant la ressemblance entre le signal observé (bruité) et des modèles paramétrés (L.S Finn, D.F. Chernoff [4]).

$$\rho = 8\Theta \frac{r_0}{D_L} \left(\frac{\mathcal{M}_z}{1.2}\right)^{5/6} \sqrt{\zeta(f_{max})}$$

Introduction		
	Introd	luction
	111100	luction

Paramètres 0000000 Discussions des résultats

Conclusion

Bibliographie

Effets du détecteur

Réponse en fréquence du détecteur

Modèle

Définition du SNR

Variable évaluant la ressemblance entre le signal observé (bruité) et des modèles paramétrés (L.S Finn, D.F. Chernoff [4]).

$$\rho = 8\Theta \frac{r_0}{D_L} \left(\frac{\mathcal{M}_z}{1.2}\right)^{5/6} \sqrt{\zeta(f_{max})}$$

 r_0 : distance comparant avec une binaire d'étoiles à neutrons de $1.4M_{\odot}$, ζ : effet de la bande passante du détecteur.

$$r_0^2 = \frac{(GM_{\odot})^{5/3}}{c^3} \frac{1.2^{5/3}}{8^2} \frac{5}{96\pi} \int_0^{+\infty} \frac{df\pi^2}{(\pi f)^{7/3} S_n(f)} \approx (75 \ Mpc)^2$$
$$\zeta(f_{max}) = \int_0^{2f_{max}} \frac{df\pi^2}{(\pi f)^{7/3} S_n(f)} / \int_0^{+\infty} \frac{df\pi^2}{(\pi f)^{7/3} S_n(f)}$$

Paramètres de l'analyse 00000000 Discussions des résultats 000000000 Conclusion

Bibliographie

Effets du détecteur

Réponse en fréquence du détecteur

Modèle

Définition du SNR

Variable évaluant la ressemblance entre le signal observé (bruité) et des modèles paramétrés (L.S Finn, D.F. Chernoff [4]).

$$\rho = 8\Theta \frac{r_0}{D_L} \left(\frac{\mathcal{M}_z}{1.2}\right)^{5/6} \sqrt{\zeta(f_{\max})}$$

 r_0 : distance comparant avec une binaire d'étoiles à neutrons de $1.4M_{\odot}$, ζ : effet de la bande passante du détecteur.

$$r_0^2 = \frac{(GM_{\odot})^{5/3}}{c^3} \frac{1.2^{5/3}}{8^2} \frac{5}{96\pi} \int_0^{+\infty} \frac{df\pi^2}{(\pi f)^{7/3} S_n(f)} \approx (75 \ Mpc)^2$$
$$\zeta(f_{max}) = \int_0^{2f_{max}} \frac{df\pi^2}{(\pi f)^{7/3} S_n(f)} / \int_0^{+\infty} \frac{df\pi^2}{(\pi f)^{7/3} S_n(f)}$$

Introduction	Modèle ○○○○○○○○○	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Effets du détecteur					
Marginal	isation sur le	s angles			

Intégration sur Θ (Taylor [12])

$$P_{\Theta}(\Theta) pprox \left\{ egin{array}{cc} rac{5}{256} \Theta(4-\Theta)^3, & {
m sin} & 0 < \Theta < 4 \ 0, & {
m sinon} \end{array}
ight.$$

Paramètres de l'an 000000000 Discussions des résultats 000000000 Conclusion

Bibliographie

Effets du détecteur

Marginalisation sur les angles

00000000000

Modèle

FIGURE – Valeur du paramètre instrumental

$$x = \frac{\rho_0}{8} \frac{D_L}{r_0} \left(\frac{1.2}{\mathcal{M}_z}\right)^{5/6} \left(\sqrt{\zeta \left(f_{max}\left(M,z\right)\right)}\right)^{-1}$$

Introduction	Modèle	Paramètres de l'analyse	Discussions des résultats	Conclusion	Bibliographie
		00000000			
Résumé des paramètres	s importants				

3 Paramètres de l'analyse

• Résumé des paramètres importants

- Le taux d'événements
- Les distributions de masses
- Corrélation entre la masse chirp et la masse totale

4 Discussions des résultats

5 Conclusion

Introduction	Modèle 0000000000	Paramètres de l'analyse o●○○○○○○○	Discussions des résultats 00000000	Conclusion	Bibliographie
Résumé des paramètres	importants				

Résumé des paramètres importants

Forme finale de l'observable

$$\frac{d^{3}N}{dtdD_{L}d\mathcal{M}_{z}}\left(\mathcal{M}, M, z, D_{L}\right) = \frac{4\pi\chi^{2}(z)D_{H}}{\chi(z)E(z) + D_{H}(1+z)}\frac{\dot{n}(z)}{(1+z)^{2}}\mathcal{P}_{\mathcal{M}}\left(\frac{\mathcal{M}_{z}}{1+z}\right)$$
$$C_{\Theta}\left(\frac{\rho_{0}}{8}\frac{D_{L}}{r_{0}}\left(\frac{1.2}{\mathcal{M}_{z}}\right)^{5/6}\left(\sqrt{\zeta\left(f_{max}\left(M,z\right)\right)}\right)^{-1}\right)$$

Introduction	Modèle 0000000000	Paramètres de l'analyse ००●0००००	Discussions des résultats 000000000	Conclusion	Bibliographie
Le taux d'événements					

Modèle

3 Paramètres de l'analyse

• Résumé des paramètres importants

• Le taux d'événements

- Les distributions de masses
- Corrélation entre la masse chirp et la masse totale

4 Discussions des résultats

5 Conclusion

Introductio	
Incloauctio	

Paramètres de l'analyse

Discussions des résultats

Conclusion

Bibliographie

Le taux d'événements

Le taux d'événements

Modèle

 $\label{eq:FIGURE} FIGURE - \mathsf{Prédictions} \ \text{des taux} \ d'événements \\ en fonction \ du \ redshfit$

(Dominik et al. [3])

18 / 38

Introduction	Modèle 0000000000	Paramètres de l'analyse ○○○○●○○○○	Discussions des résultats 000000000	Conclusion	Bibliographie
Les distributions de ma	isses				

Modèle

3 Paramètres de l'analyse

- Résumé des paramètres importants
- Le taux d'événements

• Les distributions de masses

• Corrélation entre la masse chirp et la masse totale

4 Discussions des résultats

5 Conclusion

Introduction	Modèle 00000000000	Paramètres de l'analyse	Discussions des résultats 000000000	Conclusion	Bibliographie
Les distributions d	e masses				
Les distr	ibutions de n	nasses			

Distribution de masses des trous noirs

Differents modèles : fonctions de masses initiales de Salpeter (Salpeter [11]) $P_m(m) = m^{-\alpha} \mathcal{H}(m-5) \mathcal{H}(50-m) \qquad \alpha = 2.35 \qquad (Kovetz et al. [7])$ $P_m(m) \to P_m(m) \times Gauss(\mu, \sigma = 2M_{\odot})$

Introduction	Modèle 0000000000	Paramètres de l'analyse	Discussions des résultats 000000000	Conclusion	Bibliographie
Les distributions d	e masses				
Les distr	ributions de n	nasses			

Distribution de masses des trous noirs

Differents modèles : fonctions de masses initiales de Salpeter (Salpeter [11]) $P_m(m) = m^{-\alpha} \mathcal{H}(m-5) \mathcal{H}(50-m)$ $\alpha = 2.35$ (Kovetz et al. [7]) $P_m(m) \rightarrow P_m(m) \times Gauss(\mu, \sigma = 2M_{\odot})$

 $\rm FIGURE$ – Masses observées et modèle en loi de puissance $\mu = 0 M_{\odot}$
Introduction	Modèle 00000000000	Paramètres de l'analyse	Discussions des résultats 000000000	Conclusion	Bibliographie
Les distributions de	e masses				

Les distributions de masses

Distribution de masses des trous noirs

Differents modèles : fonctions de masses initiales de Salpeter (Salpeter [11]) $P_m(m) = m^{-\alpha} \mathcal{H}(m-5) \mathcal{H}(50-m)$ $\alpha = 2.35$ (Kovetz et al. [7]) $P_m(m) \rightarrow P_m(m) \times Gauss(\mu, \sigma = 2M_{\odot})$

20 / 38

Introduction	Modèle 0000000000	Paramètres de l'analyse	Discussions des résultats 000000000	Conclusion	Bibliographie
Les distributions d	e masses				
Limites of	de ces distrib	utions			

De nombreux effets physiques méconnus

Plus hautes masses pour les trous noirs vus par OG !

- Faibles masses plus difficiles à détecter (effet de l'instrument).
- Éjection des faibles masses dans les zones denses (Park et al. [9]).
- Fusions multiples (Gerosa et al. [5]).

Introduction	Modèle	Paramètres de l'analyse	Discussions des résultats	Conclusion	Bibliographie
	00000000000	000000000	00000000		
Les distributions de mas	ses				

Limites de ces distributions

De nombreux effets physiques méconnus

Plus hautes masses pour les trous noirs vus par OG !

- Faibles masses plus difficiles à détecter (effet de l'instrument).
- Éjection des faibles masses dans les zones denses (Park et al. [9]).
- Fusions multiples (Gerosa et al. [5]).

FIGURE – Plusieurs modèles à différentes masses

Introduction	Modèle	Paramètres de l'analyse	Discussions des résultats	Conclusion	Bibliographie
		000000000			
Corrélation entre la n	nasse chirp et la masse tot	ale			

3 Paramètres de l'analyse

- Résumé des paramètres importants
- Le taux d'événements
- Les distributions de masses
- Corrélation entre la masse chirp et la masse totale

4 Discussions des résultats

5 Conclusion

Paramètres de l'analyse

Discussions des résultats

Conclusion

Bibliographie

Corrélation entre la masse chirp et la masse totale

Modèle

Fréquence maximale de l'OG et Masse totale

Le paramètre C_{Θ} est sensible au paramètre de bande passante du détecteur $\zeta(f_{max})$, où f_{max} est la fréquence maximale de rotation de la binaire.

Paramètres de l'analyse

Discussions des résultats 00000000 Conclusion

Bibliographie

Corrélation entre la masse chirp et la masse totale

Modèle

Fréquence maximale de l'OG et Masse totale

Le paramètre C_{Θ} est sensible au paramètre de bande passante du détecteur $\zeta(f_{max})$, où f_{max} est la fréquence maximale de rotation de la binaire.

Expression de la fréquence maximale de l'OG f_{max}^{GW} $f_{max}^{GW} = 2f_{max} = \frac{1570}{1+z} \frac{2.8}{M}$ Relation entre la masse chrip \mathcal{M} et la masse totale M: $\mathcal{M}(m_1, m_2) =$ $\mu^{3/5}(m_1, m_2)M^{2/5}(m_1, m_2)$

Paramètres de l'analyse

Discussions des résultats

Conclusion

Bibliographie

Corrélation entre la masse chirp et la masse totale

Modèle

Fréquence maximale de l'OG et Masse totale

Le paramètre C_{Θ} est sensible au paramètre de bande passante du détecteur $\zeta(f_{max})$, où f_{max} est la fréquence maximale de rotation de la binaire.

Expression de la fréquence maximale de l'OG f_{max}^{GW}

$$\begin{split} f^{GW}_{max} &= 2f_{max} = \frac{1570}{1+z}\frac{2.8}{M}\\ \text{Relation entre la masse chrip }\mathcal{M} \text{ et la}\\ \text{masse totale }M:\\ \mathcal{M}(m_1,m_2) =\\ \mu^{3/5}(m_1,m_2)M^{2/5}(m_1,m_2) \end{split}$$

FIGURE – Corrélation masse chirp \mathcal{M} et masse totale M

Introduction	Modèle 0000000000	Paramètres de l'analyse 000000000	Discussions des résultats	Conclusion	Bibliographie
Forme générale des dist	tributions				

4

Paramètres de l'analyse

Discussions des résultats

• Forme générale des distributions

- Effet de la valeur de H_0
- Limites de la méthode et introduction à une analyse bayésienne

5 Conclusion

				.1					
	17	12	m	7 1		12	11	m	m
			\sim		•		•	0	

Paramètro

Ilyse Discuss

Discussions des résultats

Conclusion

Bibliographie

Forme générale des distributions

Distribution en masse basse ($\mu = 0$)

Sans les effets instrumentaux

Modèle

- Suit la forme de la distribution de masse.
- Augmentation du nombre d'événements avec la distance de luminosité : Volume considéré plus grand.
- Décalage Vers des plus hautes masses et élargissement quand D_L et z augmentent.

Modèle

Paramètres de l'analyse

Discussions des résultats

Conclusion

Bibliographie

Forme générale des distributions

Distribution en masse basse ($\mu = 0$)

Sans les effets instrumentaux

- Suit la forme de la distribution de masse.
- Augmentation du nombre d'événements avec la distance de luminosité : Volume considéré plus grand.
- Décalage Vers des plus hautes masses et élargissement quand D_L et z augmentent.

Avec les effets instrumentaux

- Diminution du nombre d'événements à basse masse et grande distance de luminosité.
- Maximum de la distribution vers 400 Mpc et 10 M_{\odot} !

Introduction
Incloauction

Modèle 00000000000 Paramètres de l'analyse

Discussions des résultats

Conclusion

Bibliographie

Forme générale des distributions

Distribution en haute basse $(\mu = 10)$

• Effets du redshift plus importants

Para 00000 000

ramètres de l'analyse

Discussions des résultats

Conclusion

Bibliographie

Forme générale des distributions

Modèle

Distribution en haute basse ($\mu = 10$)

Avec les effets instrumentaux

- Effet du détecteur moins important.
- Beaucoup d'événements entre 400 et 1000 *Mpc* vers $20 25 M_{\odot}$.

Introduction	Modèle 0000000000	Paramètres de l'analyse 000000000	Discussions des résultats	Conclusion	Bibliographie
Effet de la valeur de <i>H</i> ()				

Modèle

4

3 Paramètres de l'analyse

Discussions des résultats

• Forme générale des distributions

• Effet de la valeur de H_0

• Limites de la méthode et introduction à une analyse bayésienne

5 Conclusion

Modèle 000000000 Paramètres de l'analyse 000000000 Discussions des résultats

Conclusion

Bibliographie

Effet de la valeur de H_0

Effet sur le maximum de la distribution

Masse associée au maximum de la distribution $\mu = 0$

Effet du redshift plus important pour H_0 élevé.

Masse plus important avec les effets du détecteur. Plus de bruit car tirage de \mathcal{M} puis de M.

Introduction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats	Conclusion	Bibliographie
Effet de la valeur o	de <i>H</i> 0				
Masses r	olus élevées				

Masse associée au maximum de la distribution $\mu = 10$

Effet du redshift plus important. Effets du détecteur moins important

Masses plus élevées

Masse associée au maximum de la distribution $\mu = 10$

Effet du redshift plus important. Effets du détecteur moins important

Masse associée au maximum de la distribution $\mu = 20$

Effet du redshift allant jusqu'à quelques masses solaires. Précision actuelle sur les masses entre 3 et 20 M_{\odot} !

Effet du détecteur presque inexistant. Moins de bruit car plus forte corrélation entre M et M.

Distance de luminosite DI en Mpc

Introduction	Modèle	Paramètres de l'analyse	Discussions des résultats	Conclusion	Bibliographie
			000000000		
Limites de la métho	ode et introduction à une an	alyse bayésienne			

Modèle

4

3 Paramètres de l'analyse

Discussions des résultats

- Forme générale des distributions
- Effet de la valeur de H_0
- Limites de la méthode et introduction à une analyse bayésienne

5 Conclusion

Paramètres de l'ar 000000000 Discussions des résultats

onclusion

Bibliographie

Limites de la méthode et introduction à une analyse bayésienne

Modèle

Corrélation entre les distributions de masse et la valeur de H_0

FIGURE - Sans les effets instrumentaux

 \mathbf{Figure} – Avec les effets instrumentaux

Effets des distributions de masses et de la valeur de H_0 sur le maximum de la distribution dN

Effet des masses comparable à celui de H_0 . Pour décorréler, il faut mieux connaitre les distributions en masses.

Effet du détecteur augmente les difficultés à différencier les distributions.

Introduction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats	Conclusion	Bibliographie		
Limites de la mé	éthode et introduction à une an	alyse bayésienne					
Vers un	e analyse bayé	ésienne?					
Loi de	probabilité						
		La détection suit u	ne loi de Poisson :				
	Probabilité p_i au bin <i>i</i> de détecter n_i événements avec un modèle μ qui en prévoit $r_i(\vec{\mu})$:						
		$p_i(n_i ec{\mu}) = rac{(r_i ec{\mu})}{ec{\mu}}$	$\frac{(\vec{\mu}))^{n_i} e^{-r_i(\vec{\mu})}}{n_i!}.$				

luction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats	Conclusion	Bibliographi
es de la méthode «	et introduction à une an	alyse bayésienne			
rs une a	nalyse bayé	sienne?			
Loi de prob	pabilité				
Prol	pabilité <i>p</i> i au bin	La détection suit u <i>i</i> de détecter n_i événem $p_i(n_i \vec{\mu}) = \frac{(r_i)}{r_i}$	ne loi de Poisson : ents avec un modèle μ qu $(\vec{\mu}))^{n_i} e^{-r_i(\vec{\mu})} \over n_i!$.	i en prévoit $r_i(ec{\mu})$:
Vraisembla	nce L				
$egin{aligned} & \mathcal{N}_{ec{\mu}} = ext{no} \ & ec{\lambda_i} = (\mathcal{M}_z, \end{aligned}$	mbre total d'évér $D_L)_i,\;r(ec\lambda_iertec\mu)=0$	$\mathcal{L}(ec{\Lambda}ec{ec{ec{\Lambda}}}ec{ec{\mu}})=e^{-N_{ m f}}$ nements prévus, N_{0} nom $dN(\mathcal{M}_{z},D_{L})$	$\vec{x}\prod_{i=1}^{N_0}r(ec{\lambda_i}ertec{\mu})$ ıbre d'événements détectés	5, $ec{\Lambda}=\left(ec{\lambda_1},ec{\lambda_2}, ight)$ (Tay	$(\lambda_{N_0}),$
	vaction rs une a Loi de prob Prob Vraisembla $N_{\vec{\mu}} = no$ $\vec{\lambda}_i = (\mathcal{M}_z, v)$	so de la méthode et introduction à une analyse bayé Loi de probabilité Probabilité p_i au bin Vraisemblance L $N_{\vec{\mu}}$ = nombre total d'évée $\vec{\lambda}_i = (\mathcal{M}_z, D_L)_i, r(\vec{\lambda}_i \vec{\mu}) = 0$	Modele Paramètres de l'analyse coococococo coocococococo coococococo coococococo coococococo coococococo coococococo coococococo coococococo coococococo coococococo coococococo coococococo coococococo coocococococo coococococo coocococococo coocococococo coocococococo coocococococococo coocococococo coocococococo coocococococo coocococococo coocococococo coocococococo coocococococo coocococococococo coocococococo coococococococococo coocococococo coococococococo coocococococo coococococococo coocococococo coocococococo coocococococo coocococococo coocococococo coocococococo coocococococo coocococococo coococococo coococococo coococococo coococococo coococococo coococococo coococococo coococococo coococococo coocococ	Unction Modèle Paramètres de l'analyse Discussions des résultats Se de la méthode et introduction à une analyse bayésienne Discussions des résultats Discussions des résultats rs une analyse bayésienne Image: Se de la méthode et introduction à une analyse bayésienne Discussions des résultats Loi de probabilité La détection suit une loi de Poisson : Probabilité p _i au bin i de détecter n _i événements avec un modèle μ que $p_i(n_i \vec{\mu}) = \frac{(r_i(\vec{\mu}))^{n_i} e^{-r_i(\vec{\mu})}}{n_i!}$ Vraisemblance L $\mathcal{L}(\vec{\Lambda} \vec{\mu}) = e^{-N_{\vec{\mu}}} \prod_{i=1}^{N_0} r(\vec{\lambda}_i \vec{\mu})$ $N_{\vec{\mu}}$ = nombre total d'événements prévus, N_0 nombre d'événements détectés $\vec{\lambda}_i = (\mathcal{M}_z, D_L)_i, r(\vec{\lambda}_i \vec{\mu}) = dN(\mathcal{M}_z, D_L)$	Modèle Paramètres de l'analyse Discussions des résultats Conclusion coocococo coococococo coococococo coocococo coococococo coocococo coococococo coocococo coocococo coocococococo coococococo coococococococococo coococococococococococococococococococ

Introduction	Modèle 00000000000	Paramètres de l'analyse 00000000	Discussions des résultats	Conclusion	Bibliographi
Limites de la méth	ode et introduction à une a	nalyse bayésienne			
Vers une	e analyse bay	ésienne?			
Loi de j	probabilité				
I	^D robabilité <i>p</i> i au bi	La détection suit u n <i>i</i> de détecter n_i événem $p_i(n_i ec{\mu}) = rac{(r_i)}{r_i}$	ne loi de Poisson : ents avec un modèle μ qu $(\vec{\mu})^{n_i} e^{-r_i(\vec{\mu})} \over n_i!$.	ii en prévoit $r_i(ec{\mu})$:
Vraisem	iblance <i>L</i>				
$egin{array}{lll} m{\mathcal{N}}_{ec{\mu}} = \ ec{\lambda}_i = (\mathcal{N}) \end{array}$	nombre total d'év $\mathcal{A}_z, D_L)_i, \; r(ec{\lambda_i} ec{\mu}) =$	$\mathcal{L}(ec{\Lambda}ec{ec{ ho}}ec{ec{ ho}})=e^{-N_{ ho}}$ énements prévus, N_{0} nom $dN(\mathcal{M}_{z},D_{L})$	$\vec{a}\prod_{i=1}^{N_0}r(ec{\lambda_i}ertec{\mu})$ ıbre d'événements détecté	s, $ec{\Lambda}=ig(ec{\lambda_1},ec{\lambda_2},,$ (Tayl	$\vec{\lambda_{N_0}}$), or [12]).
Remarq	ues				
• 0	n peut s'affranchir	des incertitudes sur \dot{n}_0 en	intégrant dessus.		
• At bi	ttention à bien para aisée.	amétrer le détecteur. Sino	n la méthode peut conver	ger vers une solut	ion
In	clusion des paramè	tres distributions de mass	es dans le modèle $ec{\mu}$ avec	des formes à prio	ri.

Introduction	Modèle 0000000000	Paramètres de l'analyse 000000000	Discussions des résultats 000000000	Conclusion	Bibliographie

Conclusion

Résumé des résultats

- Effet du redshift sur les masses observées fonction de *H*₀. Faible effet, demande plus de données.
- Fort effet du détecteur, principalement à basse masse et grande distance de luminosité.
- Distributions de masses très peu connues ! Beaucoup d'effets à prendre en compte et peu de données. Effet de la méconnaissance des distributions comparable à celui de *H*₀.

oduction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats 000000000	Conclusion	Bibliographie

Conclusion

Résumé des résultats

- Effet du redshift sur les masses observées fonction de *H*₀. Faible effet, demande plus de données.
- Fort effet du détecteur, principalement à basse masse et grande distance de luminosité.
- Distributions de masses très peu connues ! Beaucoup d'effets à prendre en compte et peu de données. Effet de la méconnaissance des distributions comparable à celui de *H*₀.

Ouverture

- Analyse bayésienne pour essayer d'obtenir les distributions de masses. Plus d'inconnus demande plus de statistique.
- Multi-messagers (optique et neutrino) pour avoir plus d'informations sur les trous noirs mis en jeu.

Introduction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats 00000000	Conclusion	Bibliographie

Merci de votre attention !

Introduction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats 000000000	Conclusion	Bibliographie
Bibliogra	phie I				

B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and et al.

The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914.

ArXiv e-prints 1602.03842, December 2016.

https://arxiv.org/abs/1602.03842.

V. Bonvin, F. Courbin, S. H. Suyu, P. J. Marshall, C. E. Rusu, D. Sluse, M. Tewes, K. C. Wong, T. Collett, C. D. Fassnacht, T. Treu, M. W. Auger, S. Hilbert, L. V. E. Koopmans, G. Meylan, N. Rumbaugh, A. Sonnenfeld, and C. Spiniello.

H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223 : to 3.8 per cent precision from strong lensing in a flat ACDM model. arXiv 1607.01790, March 2017.

https://arxiv.org/abs/1607.01790.

M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti, T. Bulik, I. Mandel, and R. O'Shaughnessy.

Double Compact Objects. II. Cosmological Merger Rates.

779 :72, December 2013.

https://arxiv.org/abs/1308.1546.

Introduction	Modèle 0000000000	Paramètres de l'analyse 00000000	Discussions des résultats 000000000	Conclusion	Bibliographie

Bibliographie II

L. S. Finn and D. F. Chernoff.

Observing binary inspiral in gravitational radiation : One interferometer.

ArXiv gr-qc/9301003, March 1993.

https://arxiv.org/abs/gr-qc/9301003.

D. Gerosa and E. Berti.

Are merging black holes born from stellar collapse or previous mergers?

ArXiv e-prints 1703.06223, March 2017.

https://arxiv.org/abs/1703.06223.

S. A. Hughes and D. E. Holz.

Cosmology with coalescing massive black holes.

Classical and Quantum Gravity, 20 :S65-S72, May 2003.

http://adsabs.harvard.edu/abs/2003CQGra..20S..65H.

E. D. Kovetz, I. Cholis, P. C. Breysse, and M. Kamionkowski.

The Black Hole Mass Function from Gravitational Wave Measurements.

arXiv 1611.01157, November 2016.

http://adsabs.harvard.edu/abs/2016arXiv161101157K.

Introduction	Modèle 0000000000	Paramètres de l'analyse 000000000	Discussions des résultats 00000000	Conclusion	Bibliographie
Biblio	graphie III				
	LIGO				
	LIGO Open Science Center, 2016				
	https://losc.ligo.org/.				
	D. Park, C. Kim, H. M. Lee, YB	B. Bae, and C. Belczynski.			
	Black Hole Binaries Dynamically	Formed in Globular Clusters.			
	ArXiv e-prints 1703.01568, March	2017.			
	https://arxiv.org/abs/1703.0	1568.			
	Planck Collaboration, P. A. R. Ad	le, N. Aghanim, M. Arnaud, M. As	shdown, J. Aumont, C. Baccigalupi, A.	. J. Banday, R. B. Barreiro	, J. G.
	Bartlett, and et al.				
	Planck 2015 results. XIII. Cosmol	ogical parameters.			
	594 :A13, September 2016.				
	https://arxiv.org/abs/1502.0	1589.			

Edwin E. Salpeter.

The Luminosity function and stellar evolution.

Astrophys. J., 121 :161-167, 1955.

Introduction	Modèle 00000000000	Paramètres de l'analyse 00000000	Discussions des résultats 00000000	Conclusion	Bibliographie
Bibliograp	hie IV				

Stephen Taylor.

Exploring the Cosmos with Gravitational Waves.

PhD thesis, Cambridge U., Inst. of Astron., 2014.

https://gwic.ligo.org/thesisprize/2014/taylor_thesis.pdf.

Autres méthodes de détections

FIGURE – Méthode de mesure par le télescope Hubble

(NASA/ESA, A. Feild (STScI))

 $\mathbf{F}\mathbf{IGURE}$ – Méthode de mesure par Planck

(cosmology.education)

Valeur de la constante de Hubble au fil des mesures

FIGURE – Convergences des mesures de H_0

(John P. Huchra, Harvard)

Virgo

(D. Buskulic)

Sensibilité

Advanced Virgo

(Abbott et al.)

Autres détecteurs

Phases de la fusion

(Myridis, N.E.)

Polarisation

$$\bar{h}_{\mu\nu} = A_{\mu\nu} \exp(i\eta_{\mu\nu}k_{\sigma}x^{\sigma}) = A_{\mu\nu} \exp(i(\omega t - \vec{k}.\vec{x}))$$

$$A_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{11} & A_{12} & 0 \\ 0 & A_{12} & -A_{11} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mu = 1 \text{ et } A_{12} = 0 \text{ : polarisation notée } + \mu = 0 \text{ et } A_{12} = 1 \text{ : polarisation notée } \times \mu = 0$$

 $\begin{array}{l} Figure - \mbox{Polarisation} \\ rectiligne \end{array}$

 $\frac{F_{IGURE}-Polarisation}{circulaire}$

(D. Buskulic)

Modèle Cosmologique I

Première équation de Freidmann

$$rac{\dot{a}^2}{a^2} = H_0^2 \left(rac{\Omega_M}{a^3} + \Omega_\Lambda
ight)$$

Temps-redshift

$$\begin{split} \dot{a}^2 &= H_0^2 \left(\frac{\Omega_M}{a} + \Omega_\Lambda a^2 \right) \Leftrightarrow \ \dot{a} = H_0 \sqrt{\frac{\Omega_M}{a} + \Omega_\Lambda a^2} \\ \Leftrightarrow \frac{d(1/(1+z))}{dt} &= -\frac{dz}{dt} \frac{1}{(1+z)^2} = H_0 \sqrt{\Omega_M (1+z) + \Omega_\Lambda \frac{1}{(1+z)^2}} \\ \Leftrightarrow dt = -\frac{dz}{H_0} \frac{1}{\sqrt{\Omega_M (1+z)^5 + \Omega_\Lambda (1+z)^2}} \end{split}$$
Modèle Cosmologique II

Constante de Hubble

$$dv = cdz = H(z)d\chi$$

 $H = \frac{\dot{a}}{a}$
 $\Leftrightarrow H(z) = H_0 \sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda}$

Distance Comobile

$$ds^{2} = 0 \Leftrightarrow cdt = ad$$
$$\Leftrightarrow d\chi = \frac{cdt}{a}$$
$$\Leftrightarrow \chi(t) = \int_{t}^{t_{0}} \frac{cdt'}{a(t')}$$
$$\Leftrightarrow \chi(z) = \int_{z_{0}=0}^{z} \frac{cdz'}{H(z')}$$

$$\chi(z) \approx \chi(0) + z \left. \frac{\partial \chi}{\partial z} \right|_{z=0} + \left. \frac{z^2}{2!} \left. \frac{\partial^2 \chi}{\partial z^2} \right|_{z=0}$$
$$\Rightarrow \chi(z) \approx D_H \left[z + \frac{3}{4} \Omega_M z^2 \right]$$

Modèle Cosmologique III

Distance de luminosité

 $D_L = (1 + z)\chi$ Dilatation de l'espace pendant le temps de trajet de la lumière.

$$egin{split} D_L(z) &pprox D_H\left[z+(1-rac{3}{4}\Omega_M)z^2
ight] \ &\Leftrightarrow z &pprox rac{1}{2(1-rac{3}{4}\Omega_M)}\left[\sqrt{1+4(1-rac{3}{4}\Omega_M)rac{D_L}{D_H}}-1
ight] \end{split}$$