

Faculté de **physique et ingénierie** 

Université de Strasbourg



## CHARACTERIZATION OF DETECTORS FOR THE INNER TRACKING SYSTEM OF THE ALICE EXPERIMENT ON THE LHC

Natalia Emriskova, M2 PSA

Master thesis supervised by Felix Reidt and Boris Hippolyte | June 13, 2017

## OUTLINE



#### 1. ALICE ITS UPGRADE

- ALICE collaboration
- Current detector and ITS
- Upgrade motivations
- ITS upgrade layout
- ALPIDE pixel chip

#### **2. TEST BEAM FRAMEWORK**

- Test beam setup
- One telescope plane
- Analysis software

#### 3. ANALYSIS STEPS

- Efficiency profile
- Multiple scattering
- Pixel response from data
- Pixel response model
- 4. PIXEL MATRIX EDGE
- 5. DEAD DOUBLE COLUMN

#### **CONCLUSION & OUTLOOKS**



#### 1.1 ALICE collaboration



#### ALICE = A Large Ion Collider Experiment

- International collaboration
- 1800 members 174 institutes 42 countries
- Studying Quantum Chromodynamics (QCD) and Quark-Gluon Plasma (QGP)
- Experiment at the Large Hadron Collider (LHC) at CERN



1.2 Current Inner Tracking System





#### 1.3 Upgrade motivations

#### ALICE physics program:

- Thermalization and hadronization of charm and beauty in QGP
- In-medium (QGP) parton energy loss
- Quarkonia dissociation



#### ITS upgrade goals:

- Highly efficient tracking with special emphasis on very low momenta.
- Very precise reconstruction of secondary vertices from decaying charm and beauty hadrons.



#### 1.4 ITS upgrade layout



- Beam pipe diameter 29.8 mm  $\rightarrow$  19.2 mm
- First detection layer 39 mm  $\rightarrow$  22 mm
- $\circ \quad \begin{array}{l} \text{Number of layers} \\ 6 \rightarrow 7 \end{array}$
- Silicon pixel sensors resolution: 5 μm
- Read out rate
  1kHz → 50 kHz (Pb-Pb)
  200 kHz (p-p)
- Low material budget



#### 1.5 ALPIDE pixel chip







1.5 ALPIDE pixel chip – detection principle





1.5 ALPIDE pixel chip – two important features







ALICE

2.2 One telescope plane







2.3 Analysis software



1. ANALYSIS PROCESSOR: Include the borders





2.3 Analysis software





Х

edge

column 1023

2.3 Analysis software



column 850



Х

2.3 Analysis software





















#### 3.2 Multiple scattering model





#### 3.2 Multiple scattering model



#### 3.3 Cluster shapes



ALICE

ALICE ITS | Master thesis defense | June 13, 2017 | Natalia EMRISKOVA 22



#### 3.4 Pixel response from cluster shapes

![](_page_22_Figure_4.jpeg)

- → Systematic uncertainty dominating
- $\rightarrow$  Residual misalignment of the data

![](_page_23_Picture_2.jpeg)

#### 3.4 Pixel response from cluster shapes

![](_page_23_Figure_4.jpeg)

## ALICE

## **3 ANALYSIS**

#### 3.5 Pixel response model

![](_page_24_Figure_4.jpeg)

4

**PIXEL MATRIX EDGE** 

![](_page_25_Figure_1.jpeg)

#### $(24.1^{+1.6}_{-1.3})\%$ last pixel Efficiency 0.8 0.6 0.4 Data Model 0.2 Eff. loss from multiple scattering Eff. loss from the guard ring 0 29.94 29.9 29.92 X (mm)

## **5 DEAD DOUBLE COLUMN**

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

![](_page_27_Picture_1.jpeg)

## CONCLUSION

- In-pixel response study of the ALPIDE chip using test beam data
- The sensor edge:
  - Multiple scattering minor effect
  - Pixel response dominant
  - Efficiency loss du to the guard ring ~ 24 %
  - Only in the last pixel column
- Dead double column:
  - Efficiency loss ~ 73 %
  - Charge sharing can recover ~ 27 %

![](_page_28_Picture_1.jpeg)

## **THANK YOU**

![](_page_28_Picture_3.jpeg)

# **BACK UPS**

![](_page_30_Picture_1.jpeg)

## **RUNS USED IN THE ANALYSIS**

| Run number | Number of events |
|------------|------------------|
| 3180       | 15 251           |
| 3181       | 65 017           |
| 3182       | 169 399          |
| 3183       | 40 107           |
| 3184       | 40 440           |
| 3185       | 40 149           |
| 3186       | 35 873           |
| 3187       | 40 140           |
| 3189       | 39 838           |
| 3190       | 39 767           |
| 3191       | 39 172           |
| 3192       | 39 956           |
| 3193       | 40 159           |
| 3195       | 40 297           |
| TOTAL      | 685 562          |

![](_page_31_Picture_1.jpeg)

### **EFFICIENCY ERROR CALCULATION**

![](_page_31_Figure_3.jpeg)

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_33_Picture_1.jpeg)

## **RESIDUAL GAUSSIAN FIT**

![](_page_33_Figure_3.jpeg)

![](_page_34_Picture_1.jpeg)

#### 3.3 Cluster shapes

![](_page_34_Figure_4.jpeg)

## CHI<sup>2</sup> CALCULATIONS

![](_page_35_Picture_2.jpeg)

#### Data vs. pixel response from cluster shapes

$$\chi^{2} = \sum_{k=1}^{5} \frac{\left(\varepsilon_{data}(k) - \varepsilon_{pix}(k)\right)^{2}}{\sigma_{data}^{2}(k) + \sigma_{pix}^{2}(k)}$$

![](_page_35_Figure_5.jpeg)

Pixel response from cluster shapes vs. model

$$\chi^{2} = \sum_{k=1}^{10} \frac{\left(\varepsilon_{pix}(k) - \varepsilon_{model}(k)\right)^{2}}{\sigma_{pix}^{2}(k)}$$

![](_page_35_Figure_8.jpeg)

## **EFFICIENCY LOSS CALCULATIONS**

![](_page_36_Picture_2.jpeg)

#### Pixel matrix edge

| Effect              | Integral (µm)                                     | Efficiency loss (%)                                |
|---------------------|---------------------------------------------------|----------------------------------------------------|
| Total               | $7.20 \stackrel{+}{-} \stackrel{0.46}{_{-} 0.39}$ | $24.6 \begin{array}{c} + 1.6 \\ - 1.3 \end{array}$ |
| Multiple scattering | 0.15                                              | 0.5                                                |
| Guard ring          | $7.05 \stackrel{+}{-} \stackrel{0.46}{_{-} 0.39}$ | $24.1 \stackrel{+ 2.0}{_{- 1.7}}$                  |

#### Dead double column

| Effect             | Integral (µm)                                   | Efficiency loss (%)   |
|--------------------|-------------------------------------------------|-----------------------|
| Dead double column | $42.9 \stackrel{+}{-} \stackrel{1.2}{_{-} 1.0}$ | 73.4 $^{+2.0}_{-1.7}$ |

![](_page_37_Picture_1.jpeg)

## DEAD DOUBLE COLUMN ASYMMETRY

![](_page_37_Figure_3.jpeg)

![](_page_38_Picture_1.jpeg)

## **BETHE-BLOCH FORMULA**

![](_page_38_Figure_3.jpeg)