

Soutenance

Recherche de nouvelle physique : violation de la saveur leptonique et impact pour les neutrinos stériles

CLOÉ GIRARD-CARILLO

ENCADRÉ PAR ANA TEIXEIRA & JEAN ORLOFE

Introduction

Sommaire

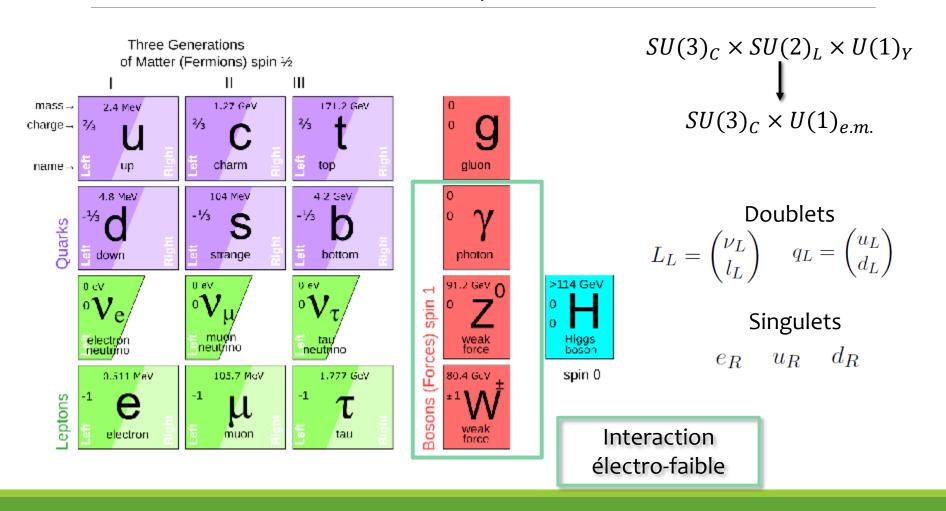
- Le Modèle Standard et au-delà
- La masse des fermions
- Oscillation des neutrinos
- Observables cLFV

Travail de stage

- Le 3+1 toy model
- Étude phénoménologique
- Résultats et discussion
- Conclusion et perspectives

Le Modèle Standard de la physique des particules

Le Modèle Standard décrit les particules et leurs interactions

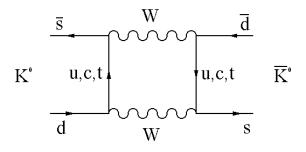


Au-delà du Modèle Standard

Les problèmes observationnels du Modèle Standard

Asymétrie matière/ antimatière

Oscillation des mésons K



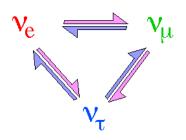
Violation CP

La masse des neutrinos

1933

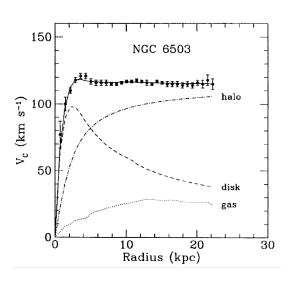
1957

Oscillation des neutrinos



La matière noire

Vitesse de rotation des galaxies



Dans le modèle Standard: les quarks

Terme de masse dans la base d'interaction:
$$\mathcal{L}^{\text{mass}} = -\frac{v}{\sqrt{2}} \, \overline{q}'_L \, Y^{'q} \, q'_R + h.c.$$

But: obtenir des états de masse déterminés Diagonalisation vers la base physique (M et Y diagonales)

$$V_L^{q\dagger} Y^{\prime q} V_R^q = Y^q$$

$$q_R = V_R^{\dagger} q_R' \qquad q_L = V_L^{\dagger} q_L'$$

$$\mathcal{L}^{\text{mass}} = -\frac{v}{\sqrt{2}}\overline{q}_L Y^q q_R + h.c. = -m_q \overline{q}_L q_R + h.c.$$

Redéfinition du courant chargé

$$\mathcal{L}^{W^{\pm}} = gW^{\pm}_{\mu} \, \overline{u}_L \gamma^{\mu} V_{CKM} d_L$$

Mélange des quarks

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= V_L^{u\dagger} V_L^d$$

Matrice de mélange Source de CPV

Dans le modèle Standard : les leptons

$$\mathcal{L}^{\text{mass}} = -\frac{v}{\sqrt{2}} \overline{L}'_L Y^{l'} l'_R + h.c.$$

La matrice de Yukawa des leptons $m_{\nu}=0$ chargés peut toujours être rendue diagonale dans la base d'interaction

$$\mathcal{L}_{L}^{W} = -\frac{g}{\sqrt{2}}\overline{\nu}_{L}^{\prime}\gamma^{\mu}l_{L}^{\prime}W_{\mu}^{+} + h.c.$$

Le courant chargé conserve la saveur leptonique

Violation de la saveur leptonique interdite dans le MS

Doublet Singulet
$$L_L = egin{pmatrix}
u_L \\
l_L \end{pmatrix} \quad l_R$$

Au-delà du Modèle Standard : les neutrinos

Observation — Oscillation des neutrinos — Neutrinos massifs

Quel mécanisme de génération de masse?

Plusieurs possibilités qui dépendent de la nature des neutrinos

Au-delà du Modèle Standard : les neutrinos

Quel mécanisme de génération de masse?

Des particules de Dirac — Comme pour les autres fermions

Ajout neutrino RH Singulet
$$SU(3) \times SU(2) \times U(1)$$

Neutrinos stériles
$$\mathcal{L}_Y^{\nu} = -\frac{v}{\sqrt{2}} \overline{\nu}_L' Y^{'\nu} \nu_R' + h.c.$$

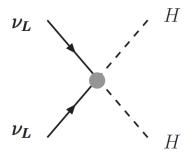
 $Y^{\nu} \ll Y^{l}$

Au-delà du Modèle Standard : les neutrinos

Quel mécanisme de génération de masse?

Des particules de Majorana Particule = antiparticule $\rightarrow \nu = \nu^c$

Approche effective _____ 3 façons de donner une masse aux neutrinos



- Singulet v_R Seesaw type I
- Triplet scalaire Δ Seesaw type II
 Triplet fermionique Σ Seesaw type III.

Au-delà du Modèle Standard : les neutrinos

$$\mathcal{L}^{\mathrm{mass}} = -\frac{v}{\sqrt{2}}\overline{L}_L'Y^{l'}l_R' + h.c.$$
 Transformation bi-unitaire $Y^l = V_L^{\dagger}Y^{l'}V_R$

Champs leptoniques dans la base de masse (physique):

$$L_L = V_L^{\dagger} L_L^{'}$$
 et $l_R = V_R^{\dagger} l_R^{'}$

Pour les neutrinos

$$\nu_L = U_L^{\nu \dagger} \nu_L'$$

Courant leptonique chargé:

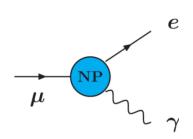
$$\mathcal{L}_L^W = -\frac{g}{\sqrt{2}} \overline{\nu}_L \gamma^\mu U_{PMNS} l_L W_\mu^+ + h.c. \quad -$$

$$\mathcal{L}_{L}^{W} = -\frac{g}{\sqrt{2}} \overline{\nu}_{L} \gamma^{\mu} U_{PMNS} l_{L} W_{\mu}^{+} + h.c. \qquad U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = U_{L}^{\nu \dagger}$$

Il n'existe aucune base dans laquelle les deux matrices M_l et M_{ν} sont simultanément diagonales

Violation de la saveur leptonique

- Oscillation des neutrinos
- Processus cLFV ($\mu \rightarrow e\gamma ...$)



Oscillation des neutrinos

Dans le vide

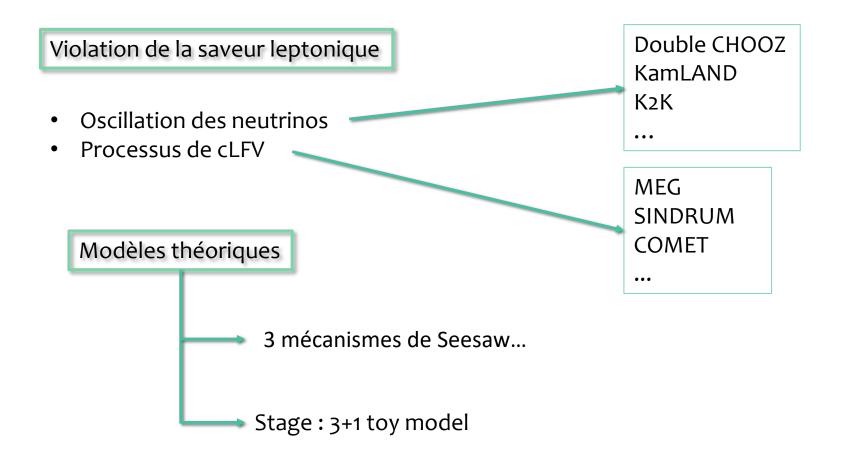
Probabilité d'oscillation:

$$\mathcal{P}_{\mu \to e}(t) = \sin^2 2\theta \sin^2 \frac{\Delta m^2}{2E} L$$

Mesure — 3 angles de mélanges 2 différences de masses

- Oscillations entre 3 saveurs
- Au moins 2 neutrinos massifs
- Extension minimale du MS: 2 neutrinos stériles

Cadre théorique



Le 3+1 toy model

Indépendant de tout mécanisme de Sénération de masse

Première approche phénoménologique

Ajout d'un seul neutrino stérile de Majorana

Courants modifiés

$$\mathcal{L}_{W^{\pm}} = -\frac{g_w}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=1}^{3} \sum_{j=1}^{3+n_s} \mathbf{U}_{\alpha j} \bar{l}_{\alpha} \gamma^{\mu} P_L \nu_j + h.c.$$

$$n_s = 1$$

$$\mathcal{L}_{Z^0}^{\nu} = -\frac{g_w}{2\cos\theta_w} Z_{\mu} \sum_{i=1}^{3+n_s} \overline{\nu}_i \gamma^{\mu} (P_L \mathbf{C}_{ij} - P_R \mathbf{C}_{ij}^*) \nu_j \qquad \mathbf{C}_{ij} = \sum_{\alpha=1}^{3} \mathbf{U}_{\alpha i}^* \mathbf{U}_{\alpha j}$$

$$\mathbf{C}_{ij} = \sum_{\alpha=1}^{3} \mathbf{U}_{\alpha i}^{*} \mathbf{U}_{\alpha j}$$

Matrice unitaire (4×4)

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{es} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu s} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau s} \\ U_{s1} & U_{s2} & U_{s3} & U_{ss} \end{pmatrix}$$

$$\bullet \text{ Masse du neutrino stérile } m_4$$

$$\bullet \text{ Angles de mélange actif-stérile } \theta_{14}, \theta_{24}, \theta_{34}$$

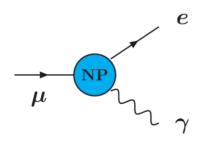
$$\bullet \text{ (Deux phases de Dirac)}$$

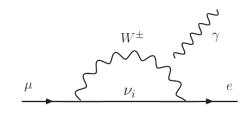
$$\bullet \text{ (Une phase de Majorana)}$$

DDL supplémentaires

Désintégrations radiatives $l_i \rightarrow l_j \gamma$

Désintégration $\mu \rightarrow e \gamma$





Modèle Standard : $BR(\mu \rightarrow e\gamma) \sim O(10^{-54})$

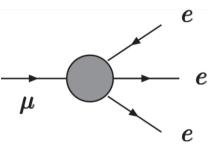
Dans le 3+1 toy model:

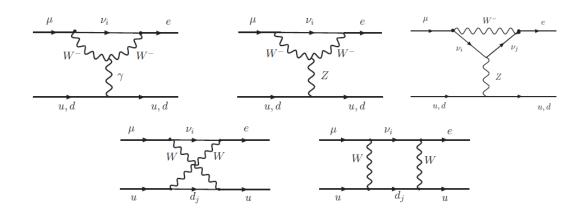
$$Br(l \to l' \gamma) = \frac{\alpha_w^3 \sin \theta_w^3}{256\pi^2} \frac{m_l^4}{M_W^4} \frac{m_l}{M_W} |G_{\gamma}^{ll'}|^2$$

Mélange avec Dépend de la les neutrinos masse du neutrino stérile $G_{\gamma}^{\mu e} = \sum_{i=1}^{3+k} U_{ei} U_{\mu i}^* G_{\gamma}(x_i)$

Désintégrations en trois leptons $l_i o l_j l_k l_m$

Désintégration $\mu \rightarrow eee$



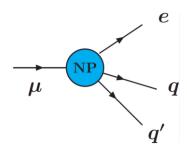


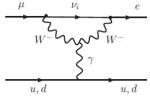
$$\begin{split} Br(l \to l'l'l') &= \frac{\alpha_w^4}{24576\pi^3} \frac{m_l^4}{M_W^4} \frac{m_l}{\Gamma_l} \times \left\{ 2 \left| \frac{1}{2} F_{Box}^{ll'l'l'} + F_{Z}^{ll'} - 2s_w^2 (F_{Z}^{ll'} - F_{\gamma}^{ll'}) \right|^2 + 4s_w^4 \left| F_{Z}^{ll'} - F_{\gamma}^{ll'} \right|^2 \right. \\ &+ 16s_w^2 Re \left((F_{Z}^{ll'} + \frac{1}{2} F_{Box}^{ll'l'l'}) G_{\gamma}^{ll'*} \right) - 48s_w^4 Re \left((F_{Z}^{ll'} - F_{\gamma}^{ll'}) G_{\gamma}^{ll'*} \right) \\ &+ 32s_w^4 \left| G_{\gamma}^{ll'} \right|^2 \left(\ln \frac{m^2}{m_{l'}^2} - \frac{11}{4} \right) \right\} \,, \\ &\qquad \qquad F \propto U_{ei} U_{\mu j} f(m_i) \end{split}$$

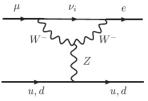
Processus assistés par noyaux

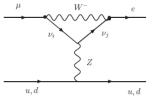
Conversion $\mu \rightarrow e$ dans un atome muonique

Électron remplacé par muon









Dans le 3+1 toy model:

$$\begin{array}{c|cccc} \mu & \nu_i & e \\ \hline & W & W & W \\ \hline & u & d_i & u \end{array}$$

$$CR(\mu \to e,\, N) = \frac{2G_F^2\alpha_w^2 m_\mu^5}{(4\pi)^2\Gamma_{capt}(Z)} \left| 4V^p \left(2\tilde{F}_u^{\mu e} + \tilde{F}_d^{\mu e} \right) + 4V^n \left(\tilde{F}_u^{\mu e} + 2\tilde{F}_d^{\mu e} \right) + s_w^2 G_\gamma^{\mu e} D/(2e) \right|^2$$

$$\tilde{F}_{q}^{\mu e} = Q_{q} s_{w}^{2} F_{\gamma}^{\mu e} + F_{Z}^{\mu e} \left(\frac{I_{q}^{3}}{2} - Q_{q} s_{w}^{2} \right) + \frac{1}{4} F_{Box}^{\mu eqq}$$

 $F \propto U_{ei} U_{\mu j} f(m_i)$

Processus assistés par noyaux

Nouvelle observable (2010):

$$\mu^-e^-
ightarrow e^- \, e^-$$
 dans un atome muonique

Dans le 3+1 toy model:

$$BR(\mu e \to e e, N) = \tilde{\tau}_{\mu} \Gamma(\mu e \to e e, N)$$

$$= 24\pi (Z - 1)^{3} \alpha_{w} \left(\frac{m_{e}}{m_{\mu}}\right)^{3} \frac{\tilde{\tau}_{\mu}}{\tau_{\mu}}$$

$$\times \left(16 \left| \frac{1}{2} \left(\frac{g_{w}}{4\pi}\right)^{2} \left(\frac{1}{2} F_{Box}^{\mu e e e} + F_{Z}^{\mu e} - 2 \sin^{2} \theta_{w} (F_{Z}^{\mu e} - F_{\gamma}^{\mu e}) \right) \right|^{2}$$

$$+ 4 \left| \frac{1}{2} \left(\frac{g_{w}}{4\pi}\right)^{2} 2 \sin^{2} \theta_{w} (F_{Z}^{\mu e} - F_{\gamma}^{\mu e}) \right|^{2} \right),$$

Études expérimentales des processus cLFV

Limites actuelles et sensibilités futures

	Processus cLFV	Limites actuelles	Sensibilités futures
$l o l' \gamma$	$\mu o e \gamma$	$5.7 \times 10^{-13} (MEG)$	6×10^{-14} (MEG II)
	$ au o e\gamma$	3.3×10^{-8} (BaBar)	3×10^{-9} (SuperBelle)
	$ au o \mu \gamma$	4.4×10^{-8} (BaBar)	3×10^{-9} (SuperBelle)
$l \rightarrow l'l'l'$	$\mu \rightarrow eee$	1.0×10^{-12} (SINDRUM)	10 ⁻¹⁶ (Mu3e)
	$ au o \mu\mu\mu$	2.1×10^{-8}	10 ⁻⁹ (SuperBelle)
	au ightarrow eee	2.7×10^{-8}	10 ⁻⁹ (SuperBelle)
$\mu \to e$	$\mu \to e$	4.3×10^{-12} (SINDRUM) 4.6×10^{-11} (SINDRUM) 7×10^{-13} (SINDRUM)	3×10^{-15} (COMET I) 3×10^{-17} (COMET II) 10^{-18} (PRISM/PRIME)

Masse du neutrino stérile $m_4 \rightarrow [10^{-2}, 10^6] \, \text{GeV}$ Angles de mélanges et phases $\rightarrow [0, 2\pi]$

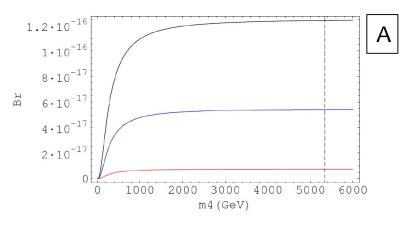
4 points « benchmark »

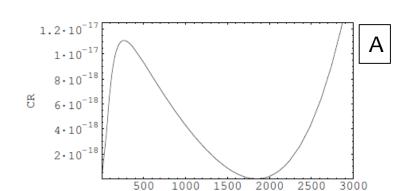
	A	В	С	D
$m_4(\text{GeV})$	5395.11	547.016	8945.4	952.357
s ₁₄	1.046×10^{-5}	4.47×10^{-2}	7.25×10^{-8}	1.161×10^{-3}
s ₂₄	8.57×10^{-3}	9.74×10^{-2}	2.65×10^{-2}	6.22×10^{-3}
834	5.3×10^{-2}	6.64×10^{-4}	1.45×10^{-2}	8.8×10^{-2}
η	1.46×10^{-3}	5.76×10^{-3}	4.58×10^{-4}	3.90×10^{-3}
ϕ_{21}	1.986	4.36×10^{-5}	7.83×10^{-11}	4.01×10^{-14}
ϕ_{31}	8.66×10^{-15}	1.37×10^{-14}	2.63×10^{-10}	4.43×10^{-6}
ϕ_{41}	4.694×10^{-3}	1.02×10^{-8}	0.26	5.94×10^{-12}

Influence des paramètres du neutrino stérile

Influence de m_4 dans des processus $l \rightarrow l' \gamma$

Influence de m_4 sur $CR(\mu \rightarrow e, Al)$





m4 (GeV)

 $-BR(\mu \rightarrow e\gamma)$

$$-BR(\tau \rightarrow e\gamma)$$

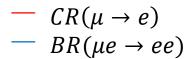
$$-5 \times 10^{-6} \times |G_{\gamma}|^2$$

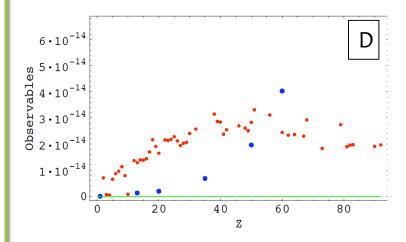
Toutes les valeurs de m_4 ne satisfont pas les contraintes expérimentales

Tests du 3+1 toy model

	Α	В	С	D
$\mu \rightarrow e \gamma$	7.51×10^{-18}	1.30×10^{-8}	3.48×10^{-21}	8.18×10^{-14}
$ au o e\gamma$	5.42×10^{-17}	1.12×10^{-13}	1.94×10^{-22}	3.06×10^{-12}
$\tau \to \mu \gamma$	3.64×10^{-11}	5.31×10^{-13}	2.60×10^{-11}	4.57×10^{-11}
$\mu \rightarrow eee$	2.69×10^{-17}	5.87×10^{-10}	1.21×10^{-20}	8.26×10^{-15}
$\tau \rightarrow eee$	1.94×10^{-16}	5.57×10^{-15}	6.74×10^{-22}	3.23×10^{-13}
$\tau \to \mu \mu \mu$	1.22×10^{-10}	1.71×10^{-14}	2.73×10^{-11}	4.41×10^{-12}
$\mu \to e$ (AI)	1.38×10^{-16}	7.17×10^{-9}	6.10×10^{-20}	1.29×10^{-14}
$\mu e \rightarrow e e$ (AI)	9.55×10^{-20}	9.01×10^{-13}	4.29×10^{-23}	3.20×10^{-17}

Radiative decay	Present bound	Future sensitivity
$\mu \to e \gamma$	5.7×10^{-13}	6×10^{-14}
$\tau \to e \gamma$	3.3×10^{-8}	3×10^{-9}
$\tau \to \mu \gamma$	4.4×10^{-8}	3×10^{-9}
$\mu \to eee$	1.0×10^{-12}	10^{-16}
$ au o \mu\mu\mu$	2.1×10^{-8}	10^{-9}
au ightarrow eee	2.7×10^{-8}	10^{-9}





 $BR(\mu e \rightarrow ee)$ et future sensibilité de COMET phase II

Conclusion

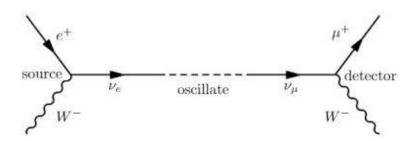
- Plus on a d'observables, plus on peut explorer l'espace des paramètres du neutrino stérile;
- Futures sensitivités
- Le toy model est une première approche phénoménologique qui permet de mieux comprendre certains modèles théoriques plus poussés.

Merci de votre attention

Back up

Oscillation des neutrinos

Effet quantique



Flux de neutrinos solaires -> ~36% du flux attendu

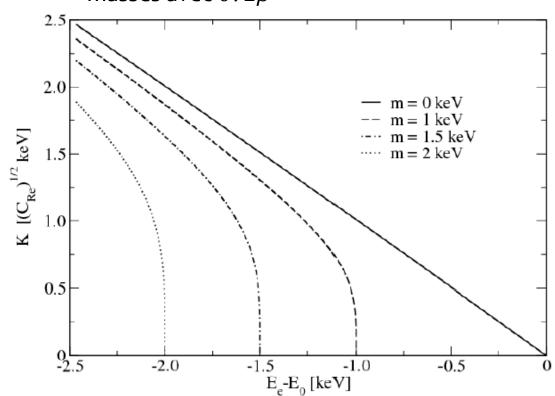
Les neutrinos oscillent si $m_{\nu}=0$ et si les masses sont dégénérées.

Une paramétrisation de U_{PMNS}

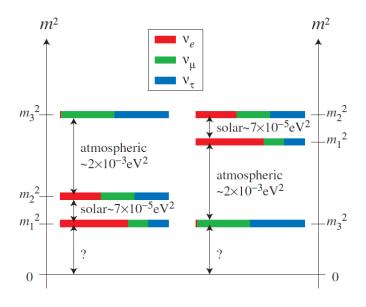
$$U_{PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{pmatrix}$$

Masses des neutrinos

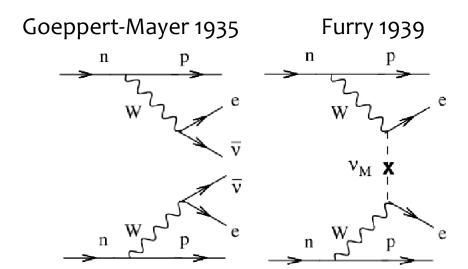
Détermination des valeurs absolues des masses avec $0\nu2\beta$



Ordre des états de masse



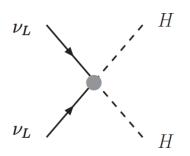
$0\nu 2\beta$



Nombre leptonique total conservé dans le SM <u>mais</u> pas protégé par une symétrie Le terme de masse de Majorana conduit à $\Delta L = 2$

KamLAND-Zen et GERDA

Autorisé uniquement si les neutrinos sont des particules de Majorana



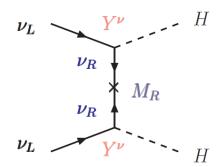
Neutrinos de Majorana

- Approche effective : étude d'un processus à basse énergie
- Lagrangien de dimension d>4 non renormalisable mais possède toutes les symétries du SM
- Cf Théorie de Fermi sur la désintégration beta

[L H L H]

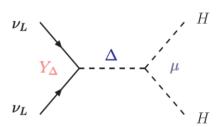
Seesaw I

$$\mathcal{L}^{eff} = -\frac{1}{2} m_R(L_i^T H) (L_j^T H)$$



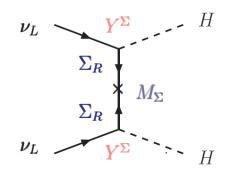
Seesaw II

$$\mathcal{L}^{eff} = -\frac{1}{2} m_{\Delta} (L_i^T \sigma L_j) (H^T \sigma H)$$



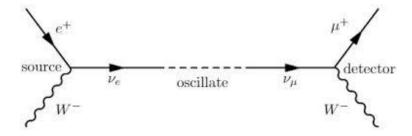
Seesaw III

$$\mathcal{L}^{eff} = -\frac{1}{2} m_{\Sigma} (L_i^T \sigma H) (L_j^T \sigma H)$$



Le mécanisme de GIM

Effet quantique



Conclusion

Effet quantique

