

M2 defense: Creation of a realistic detector response for COMET Phase-I Detector

Dorian Pieters

- Introduction
- COMET Experiment
- Work
- Result
- Outlook

Introduction

Discovery of muons(1936) and neutrinos(1956) \rightarrow Search for neutrino-less decay of muon into electron:

 \rightarrow Not observed : Lepton flavor conservation

Neutrino oscillation(1998) \rightarrow Lepton flavor not conserved Charged lepton flavor violation possible, predict branching ratio around 10^{-54}

Discovery of such a transition \rightarrow New physics discovery

COMET Experiment

The COMET(COherent Muon to Electron Transition) search for

$$\mu^- + N \rightarrow e^- + N$$

Electron energy given by :

$$E_e = m_\mu - B_\mu - E_{
m recoil}$$

 $E_e = 104,97~MeV$ for aluminum target

Layout of COMET Phase-I experiment

Goal:

- Intermediate search with single event sensitivity of 3×10^{-15}
- Check background for Phase-II
- Check muon beam and its performance
- Test detector prototype of Phase-II

COMET Experiment Phase-I detector

Layout of COMET Phase-I detector

Drift Chamber operation principle

Measuring the drift time \rightarrow Greater precision on the tracking

Cylindrical Drift Chamber

Purpose:

- Tracking the signal electron, measurement of the electron momentum
- Avoid low energy electron from muon decays

20 sense layers 4 986 senses wires 14 562 field wires Stereo angle ± 64-75 mrad → resolution of 3 mm along the beams axis

Cylindrical Trigger Hodoscope

Purposes:

- Trigger
- Identify electron from other particles
- Measure electron energy

2 hodoscopes at each end of the cylindrical detector. Each hodoscope composed of 64 triggers hodoscope modules.

Module made of a pair of plastic scintillator and a Lucite Cherenkov counter

Calibration of the CDC using cosmic muon

Experiment setup

Simulation setup

Cosmic muon launch with energy uniformly distributed between 300-700MeV

Readout Electronics

ADC and TDC value.

ADC (Analogue to Digital Converter) $\rightarrow \frac{dE}{dx}$

TDC (Time to Digital Converter) - trigger time \rightarrow Drift time

Signal exemple

Example of adc signal

Signal simulation

Simulation:

- Creation of hit inside the gas with energy deposit . Creation of ionelectron pair according to Poisson law and Gas ionization potential.
- Creation of electron avalanches $\rightarrow N = N_0 \times 10^5$. Where N_0 is the primary number of ion-electron pair. Electron from the same avalanche arrives at the same time.

Combining different hit on the same wire \rightarrow Dirac comb

- Linear conversion (10^{-5}) of the charge into adc unit (volt)
- Pulse multiplied by known adc shape and integrate over dt (33 ns adc clock time)
 300
 300
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280

15

20

10

25

30 time

Results

Hit Map of CDC (z=0)

Results

Efficiency of the track fitting by test layer

Simulation resolution ~ 77 – 98 %

Result

Experimental intrinsic spatial resolution

The composition of total spatial resolution

Goal to achieve the same spatial resolution in the simulation. 3 majors contribution to the uncertainty:

- Primary ion pair statistics
- Electron diffusion in the gas
- Electronics dispersion

Outlook : experiment simulation

Real cosmic distribution or muon event data from CERN or KEK

Outlook : detector response simulation

- Avalanche construction $\rightarrow N(x) = N_0 \exp(\alpha x)$; $\alpha = \frac{1}{l_0}$, where l_0 is the mean free path. Poisson distribution around N(x).
- Smearing of avalanche arrival time \rightarrow current creation
- Create the real electronic answer of the wire \rightarrow

x—Axis [cm]

- Creation of the signal under the magnetic field.

-Axis [cm]

THANK YOU FOR YOUR ATTENTION

Doors open to question

CM22: BACKUP SLIDE

Issue with the drift time and drift distance

When using only the CDC, the truth information give really strange result. As if some of the wires are disconnected or some physics is disable in the CDC only mode.

CDC Single Component x-t relation

Phase-I geometry x-t relation

So for the rest of the study I had to start using the full geometry and withdraw some element that could cause trouble as the cosmic ray veto or the production target

Drift time calculation

We know the drift velocity of electron in the CDC gas, so combining the distance between the hit and the nearest wire, with the electric field of the cells we can deduce the drift time of the hit.

Changement needed for adc

For now the SimDetectorResponse code threat the collected charge and the adc as if they were proportional. But this is only the case for small charge:

The simulation need to use a realistic answer. So the electronic chain has to be taken into consideration:

Issue with current simulation

There is strong issue related to using the adc for tdc. So the tdc should be simulated properly here is an example:

