SDSS DR1ఙ: Object classification \&e analysis

F. Habibi,
M. Moniez, R. Ansari \& JE. Campagne

LSST-Webinaire
June 2017
$\underset{\text { PARIS-SACLAY }}{\text { unive }}$

Cosmological surveys

All sky surveys \rightarrow cosmic structures

Deep surveys \rightarrow structures formation $\&$ evolution

Galaxies are units of cosmic structures

Object classification

Cosmic structures contain galaxies.

- Images talien by surveys include QSOs and foreground stars in addition to galaxies.
- How to separate point-like sources from galaxies?

Nearby galaxies

luminosity spread on CCD: stars ~ 1 arcsec galaxies ~ 10 arcsec .
full moon ${ }^{\sim} 1800$ arcsec

Far/faint galaxies

luminosity spread on ccid:
stars ~. 1 arcsec

\div galaxies ${ }^{\sim} 1$ arcsec

SEDs can separate the three objects

Aim

To separate galaxies from stars and QSOs, in the lack of spectroscopic data.

How?

Including all possible photometric information

Colour indices:
proper "features" for supervised perceptrons

Using automatic classification for big number of data

SDSS DR12 data

Different sub-surveys
Objects selected with both photometric and spectroscopic data available

Stars	Galaxies	QSOs	Total
928,464	$2,484,161$	566,475	$3,979,100$
23%	62%	15%	

SDSS DR12 photometry

- PSF magnitude
- Model magnitude: de Vaucouleurs / exponentiel profile

$$
\begin{aligned}
& \mathrm{I}(\mathrm{r})=\mathrm{I}_{0} \exp \left\{-7.67\left[\left(\mathrm{r} / \mathrm{r}_{\mathrm{e}}\right)^{1 / 4}\right]\right\} \\
& \mathrm{I}(\mathrm{r})=\mathrm{I}_{0} \exp \left(-1.68 \mathrm{r} / \mathrm{r}_{\mathrm{e}}\right)
\end{aligned}
$$

- Composite model magnitude: $\mathrm{F}_{\text {composite }}=\mathrm{fracDeV} \mathrm{F}_{\mathrm{deV}}+(1-\mathrm{fracDeV}) \mathrm{F}_{\mathrm{exp}}$

$$
\text { Size index }=\frac{\text { PSF magnitude }}{\text { cModel magnitude }}
$$

SDSS DR12 data

SDSS DR12 data

Magnitude distributions

Magnitudes: insufficient to separate the objects

Colour-colour diagram

galaxies are redder in average

Multi layer perceptron

 m objects in the training set, $1<i<m$Each object contains n features k number of classes labelled by vector y^{i}

$$
J(\Theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log \left(\left(h_{\Theta}\left(x^{(i)}\right)\right)_{k}\right)+\left(1-y_{k}^{(i)}\right) \log \left(1-\left(h_{\Theta}\left(x^{(i)}\right)\right)_{k}\right)\right]+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{1}} \sum_{j=1}^{s_{l+1}}\left(\Theta_{j, i}^{(l)}\right)^{2}
$$

$$
a_{q}^{l+1}\left(x^{i}\right)=g\left(\sum_{p=0}^{s_{l}} \Theta_{p q}^{l} a_{p}^{l}\left(x^{i}\right)\right)
$$

I $g(z)$: Activation function: Sigmoid, tanh, softmax and etc.

$$
J(\Theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log \left(\left(h_{\Theta}\left(x^{(i)}\right)\right)_{k}\right)+\left(1-y_{k}^{(i)}\right) \log \left(1-\left(h_{\Theta}\left(x^{(i)}\right)\right)_{k}\right)\right]+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(\Theta_{j, i}^{(l)}\right)^{2}
$$

Activation

Sigmoid function

$$
h(z)=\frac{1}{1+e^{-z}}
$$

$z=\theta_{0}+\theta_{1} x_{1}+\ldots+\theta_{n} x_{n}$

Border hyper surface:

$$
h(z=0)=0.5
$$

A single-minimum cost function:

$$
J=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log \left(h_{\theta}\left(\vec{x}^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(\vec{x}^{(i)}\right)\right)\right]
$$

Multi layer perceptron

Dense Neural Net with 2 hidden layers

Training the MLP

efficiency $_{i}=\frac{n_{i \rightarrow i}}{n_{i}}$
$\operatorname{purity}_{i}=\frac{n_{i \rightarrow i}}{n_{i \rightarrow i}+\sum_{j \neq i} n_{j \rightarrow i}}$

Comparing

training and validation sets to find optimum number of objects for training
i : galaxy, star or QSO

Training the MLP

Efficiency and purity of the classification

size index included

	Star	Galaxy	QSO	Total
Efficiency	89.4%	98.1%	81.5%	94%
Purity	94.6%	98.7%	89.3%	-

$$
\text { Size index }=\frac{\text { PSF magnitude }}{\text { cModel magnitude }}
$$

> no size index

	Star	Galaxy	QSO	Total
Efficiency	86.6%	97.5%	78.5%	92%
Purity	93.0%	97.7%	88.1%	-

Random forest

constructing a classification model through feature filtering

Training set

Random forest

Based on large number of decision trees (>10)

Generating different samples of the training set through bootstrapping (sampling with replacement)

Feature (random) bagging at conjunctions

Average over predictions of all trees

Random forest

Efficiency	Star	Galaxy	QSO	Total
RF	86.9%	98.0%	80.2%	93%
NN	89.4%	98.1%	81.5%	94%

Galaxy purity

Star efficiency

\qquad

	Stars	Galaxies	QSOs	Total
Num	160,040	879,792	120,425	$1,160,257$
fraction	14%	76%	10%	
efficiency	95%	99%	90%	98%
purity	94%	99%	94%	

Galaxy misclassifications

Misclassified sub-classes

Galaxy misclassifications

Faint nearby galaxies ==> point-like sources

Star misclassifications

stars with
scattered colours contaminates galaxy sample
deviation from point-like source for faint stars

Star misclassifications

Photometric quality affects the colour measurement accuracy

Star misclassifications

Summary

- Colour indices and apparent angular size can separates galaxies from stars and QSOs
- For SDSS DR12 a 4-layer MLP separates galaxies from the point-like sources by precision better than 98%
- Observational strategy with uniform sky coverage improves the classification efficiency
- Faint nearby galaxies can be misclassified as point-like sources while redshifted galaxies tend less to be misclassified
- M-giant stars, faint red L and T stars mainly contaminate the classified galaxy sample

Classification for the LSST

- Generating different galaxy types according to their luminosity function and the LSST apparent magnitude limits
- Simulating the colour indices according to galaxy redshifted SEDs and LSST pass-band filters
- Including the stars

Backups

QSO purity

QSOs misclassifications

QSOs misclassifications

QSOs misclassifications

	Stars	Galaxies	QSOs	Total
efficiency	95%	99%	90%	98%
purity	94%	99%	94%	
efficiency	90%	99%	90%	97%
purity	96%	98%	96%	

DR1\& VS
 Legacy

Star misclassifications

Star misclassifications

