SDSS DR12: Object classification & analysis

F. Habibi, M. Moniez, R. Ansari & JE. Campagne

LSST-Webinaire June 2017

Cosmological surveys

All sky surveys -> cosmic structures

Deep surveys —> structures formation & evolution

To know about the nature of Dark Matter & Dark Energy

Group

Cluster

Void

Galaxies are units of cosmic structures

Object classification

Cosmic structures contain galaxies.

Images taken by surveys include QSOs and foreground stars in addition to galaxies.

How to separate point-like sources from galaxies?

Nearby galaxies

luminosity spread on CCD: stars ~ 1 arcsec galaxies ~ 10 arcsec

full moon ~1800 arcsec

Far/faint galaxies

luminosity spread on CCD:

stars ~ 1 arcsec

galaxies ~ 1 arcsec

SEDs can separate the three objects

Spectra of two stars

To separate galaxies from stars and QSOs, in the lack of spectroscopic data.

How?

Including all possible photometric information

Colour indices:

proper "features" for supervised perceptrons

Using automatic classification for big number of data

SDSS DR12 data

Different sub-surveys

Objects selected with both photometric and spectroscopic data available

Stars	Galaxies	QSOs	Total
928,464	2,484,161	566,475	3,979,100
23%	62%	15%	

Star fraction

SDSS DR12 photometry

- PSF magnitude
- Model magnitude: de Vaucouleurs / exponentiel profile

 $I(r) = I_0 \exp\{-7.67 [(r/r_e)^{1/4}]\}$ $I(r) = I_0 \exp(-1.68r/r_e)$

• Composite model magnitude: $F_{composite} = fracDeV F_{deV} + (1 - fracDeV) F_{exp}$

Size index =
$$\frac{\text{PSF magnitude}}{\text{cModel magnitude}}$$

SDSS DR12 data

SDSS DR12 data

Multi layer perceptronm objects in the training set, 1 < i < mEach object contains n featuresk number of classes labelled by vector y^i

$$a_q^{l+1}(x^i) = g\left(\sum_{p=0}^{s_l} \Theta_{pq}^l a_p^l(x^i)\right)$$

g(z): Activation function: Sigmoid, tanh, softmax and etc.

Multi layer perceptron

Activation

Sigmoid function

$$h(z) = \frac{1}{1 + e^{-z}}$$

$$z = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Border hyper surface:

$$h(z=0) = 0.5$$

A single-minimum cost function:

$$J = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(\vec{x}^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(\vec{x}^{(i)}))]$$

Multi layer perceptron

Dense Neural Net with 2 hidden layers

Training the MLP

Training the MLP

Efficiency and purity of the classification

size index included

	Star	Galaxy	QSO	Total
Efficiency	89.4%	98.1%	81.5%	94%
Purity	94.6%	98.7%	89.3%	-

Size index = $\frac{\text{PSF magnitude}}{\text{cModel magnitude}}$

no size index

	Star	Galaxy	QSO	Total
Efficiency	86.6%	97.5%	78.5%	92%
Purity	93.0%	97.7%	88.1%	-

Random forest

constructing a classification model through feature filtering

Based on large number of decision trees (>10)

Generating different samples of the training set through bootstrapping (sampling with replacement)

Feature (random) bagging at conjunctions

Average over predictions of all trees

Random forest

EfficiencyStarGalaxyQSOTotalRF86.9%98.0%80.2%93%NN89.4%98.1%81.5%94%

	Stars
Num	160,04
fraction	14%
efficiency	95%
purity	94%

	Galaxies	QSOs	Total
0	879,792	120,425	1,160,257
	76%	10%	
	99%	90%	98%
	99%	94%	

Galaxy misclassifications

Galaxy misclassifications

Faint nearby galaxies ==> point-like sources

Photometric quality affects the colour measurement accuracy

Summary

- Colour indices and apparent angular size can separates galaxies from stars and QSOs
- For SDSS DR12 a 4-layer MLP separates galaxies from the point-like sources by precision better than 98%
- Observational strategy with uniform sky coverage improves the classification efficiency
- Faint nearby galaxies can be misclassified as point-like sources while redshifted galaxies tend less to be misclassified
- M-giant stars, faint red L and T stars mainly contaminate the classified galaxy sample

Classification for the LSST

- Generating different galaxy types according to their luminosity function and the LSST apparent magnitude limits
- Simulating the colour indices according to galaxy redshifted SEDs and LSST pass-band filters
- Including the stars

QSOs misclassifications

QSOs misclassifications

QSOs misclassifications

efficiency
purity
efficiency
purity

Stars	
95%	
94%	
90%	
96%	

Galaxies	QSOs	Tota
99%	90%	98%
99%	94%	
99%	90%	97%
98%	96%	

deviation from point-like source for faint stars