Recent developments in Bogoliubov Many-Body Perturbation Theory

Pierre Arthuis
IRFU, CEA, Université Paris - Saclay
with T. Duguet (CEA Saclay), J.-P. Ebran (CEA DAM), H. Hergert (MSU), R. Roth \& A. Tichai (TU Darmstadt)

Bridging nuclear ab-initio and energy-density-functional theories IPN, Orsay - October 6th 2017

The BMBPT project

Particle-number-restored BMBPT formalism

Exact diagrammatic expansion with symmetry breaking and restoration [Duguet and Signoracci, J. Phys. G 44, 2017]

\downarrow

Formalism actualization

Diagonal version
$\langle\Psi| H|\Phi\rangle$
$\langle\Psi \mid \Phi\rangle$

Off-diagonal version

$$
\begin{gathered}
\langle\Psi| H|\Phi(\phi)\rangle \\
\langle\Psi \mid \Phi(\phi)\rangle
\end{gathered}
$$

Ab initio (This talk)
EDF (Thomas' talk)
Effective H
Low order

The BMBPT project

Outline

(1) From BMBPT equations to diagrams...

- Definition
- Manual derivation up to third order
(2) ... and from BMBPT diagrams back to equations
- Automatic generation of connected diagrams
- Automatic derivation of analytical formulas

Outline

(1) From BMBPT equations to diagrams...

- Definition
- Manual derivation up to third order
(2) ... and from BMBPT diagrams back to equations
- Automatic generation of connected diagrams
- Automatic derivation of analytical formulas

Bogoliubov Many-Body Perturbation Theory

- Bogoliubov vacuum $|\Phi\rangle, \beta_{k}|\Phi\rangle=0 \forall k$
- Grand potential operator $\Omega \equiv H-\lambda A$ in quasiparticle basis

$$
\Omega=\Omega^{00}+\frac{1}{1!} \sum_{k_{1} k_{2}} \Omega_{k_{1} k_{2}}^{11} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}+\frac{1}{2!} \sum_{k_{1} k_{2}}\left\{\Omega_{k_{1} k_{2}}^{20} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger}+\Omega_{k_{1} k_{2}}^{02} \beta_{k_{2}} \beta_{k_{1}}\right\}+\ldots
$$

- Perturbative expansion of ground-state energy $\left(\Omega=\Omega_{0}+\Omega_{1}\right)$

$$
\begin{aligned}
\mathrm{E}_{0}=\langle\Phi| & \left\{\Omega(0)-\int_{0}^{\infty} d \tau_{1} \mathrm{~T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega(0)\right]\right. \\
& \left.+\frac{1}{2!} \int_{0}^{\infty} d \tau_{1} d \tau_{2} \mathrm{~T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega_{1}\left(\tau_{2}\right) \Omega(0)\right]+\ldots\right\}|\Phi\rangle_{c}
\end{aligned}
$$

- Propagators (also anomalous $G^{--(0)}$ for off-diagonal theory)

$$
G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right) \equiv \frac{\langle\Phi| T\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{2}}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=-G_{k_{2} k_{1}}^{-+(0)}\left(\tau_{2}, \tau_{1}\right)
$$

Building blocks of the diagrammatic

- Normal-ordered form of Ω with respect to Φ

- Propagators

$$
G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right) \prod_{k_{1} \tau_{1}}^{k_{2} \tau_{2}} G_{k_{1} k_{2}}^{-+(0)}\left(\tau_{1}, \tau_{2}\right) \prod_{k_{1} \tau_{1}}^{k_{2} \tau_{2}}
$$

- Main diagrammatic rules
\diamond Wick theorem (off-diagonal Wick theorem for off-diagonal theory)
\diamond No external legs
\diamond No oriented loop between vertices
\diamond No self-contraction (anomalous one for off-diagonal theory)
\diamond Propagators go out of the Ω vertex at time 0
\diamond Equivalent lines
\diamond Discard topologically equivalent diagrams

Outline

(1) From BMBPT equations to diagrams...

- Manual derivation up to third order
(2) ... and from BMBPT diagrams back to equations
- Automatic generation of connected diagrams
- Automatic derivation of analytical formulas

Low-order diagrams

- First- and second-order diagrams [Duguet and Signoracci, J. Phys. G 44, 2017]
PE0.1

PE1.1

PE1.2
- Third-order diagrams

Validation of the manual derivation by checking the MBPT limit

Derivation of a third-order diagram

Feynman (time-dependent) and Goldstone (time-integrated) expressions:

$$
\begin{aligned}
\mathrm{PE} 2.6 & =-\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4} k_{8}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{1} k_{2} k_{3} k_{8}}^{04} \breve{\Omega}_{k_{8} k_{4}}^{11} \int_{0}^{\tau} \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2} \theta\left(\tau_{1}-\tau_{2}\right) e^{-\tau_{1}\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{8}}\right)} e^{\tau_{2}\left(E_{k_{8}}-E_{k_{4}}\right)} \\
& =-\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4} k_{5}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{1} k_{2} k_{3} k_{5}}^{04} \breve{\Omega}_{k_{5} k_{4}}^{11}}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{5}}\right)}
\end{aligned}
$$

Status of manual derivation and implementation

- All diagrams derived and numerically implemented up to order 3 [PA, Tichai, Ebran, Duguet]
- Ab initio approach \rightarrow Go to highest possible order
\diamond At least up to order 4 to check convergence patterns
\diamond Derivation time-consuming
\diamond Derivation error-prone

Develop automatic tool

\diamond To generate all possible connected diagrams at order n
\diamond To extract associated time-integrated expressions
\diamond To be both quick and safe

Outline

(1) From BMBPT equations to diagrams...

- Definition
- Manual derivation up to third order
(2) ... and from BMBPT diagrams back to equations
- Automatic generation of connected diagrams
- Automatic derivation of analytical formulas

Why and how?

Our goal

An automatic and systematic way of producing diagrams

Our tool
Adjacency matrices in graph theory

Our challenge

From BMBPT diagrammatic rules to constraints on matrices

Graphs and oriented adjacency matrix

Each Feynman diagram to be represented by an adjacency matrix

- $\tilde{a}_{i j}$ indicate the number of edges going from node i to node j

$$
\tilde{A}=\left(\begin{array}{lll}
0 & 2 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \Leftrightarrow
$$

\diamond Carry detailed information for directed graphs
\diamond Symmetry properties and connectivity properties directly readable

- Only two propagators, readable as one once reading direction is fixed
\diamond Perfectly adapted for diagonal BMBPT
\diamond Extension needed for off-diagonal diagrams with anomalous propagator

Constraints from the diagrammatic rules

Each vertex belongs to $\Omega^{[2]}$ or $\Omega^{[4]}$

For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2 or 4

No self-contraction (not the case for off-diagonal theory)

Every diagonal element is zero

No loop between two vertices

Either $a_{i j}$ or $a_{j i}$ is zero

Every propagator coming out of the vertex at time 0 goes upward
First column of the matrix is zero

Generate BMBPT diagrams

- Generate all possible matrices associated with BMBPT diagrams at order n
\diamond Fill the matrices "vertex-wise"
\diamond Leave first column blank
\diamond Attribute a value to $a_{i j}$ only if $a_{j i}$ is zero
\diamond Check the degree of each vertex before moving on

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & a_{23} \\
0 & a_{32} & 0
\end{array}\right)
$$

- Run some checks to avoid
\diamond Matrices appearing twice
\diamond Matrices associated to vanishing graphs (e.g. loops between vertices)
\diamond Matrices associated to topologically identical diagrams

Draw the generated diagrams

- Matrices encode all the necessary information to draw your graph
\diamond Order n (i.e. number of vertices) determined by its size
$\diamond a_{i j}$ gives the number of propagators to draw from vertex i to vertex j
- Run through the matrix and translate it into drawing instructions

```
\begin{fmfgraph*}(60,60)
\fmftop{v2}\fmfbottom{v0}
\fmf{phantom}{v0,v1}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v0}
\fmf{phantom}{v1,v2}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v1}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v2}
\fmffreeze
\fmf{prop_pm}{v0,v1}
\fmf{prop_pm,right=0.6}{v0,v2}
\fmf{prop_pm}{v1,v2}
\fmf{prop_pm,left=0.5}{v1,v2}
\fmf{prop_pm,right=0.5}{v1,v2}
\end{fmfgraph*}
```


Time to cook some diagrams

Run the code at order 4 with 2 N and 3 N interactions, obtain...

...and 388 others!

Status of the numerical derivation

- Number of diagrams with 2 N interactions (using an HFB vacuum)
$\diamond 8$ (1) diagrams at order 3
$\diamond 59$ (10) diagrams at order 4
$\diamond 568$ (82) diagrams at order 5
$\diamond 6805$ (938) diagrams at order 6
- Number of diagrams with 2 N and 3 N interactions (using an HFB vacuum)
$\diamond 23$ (8) diagrams at order 3
$\diamond 396$ (177) diagrams at order 4
$\diamond 10716$ (5 055) diagrams at order 5
$\diamond 100000+$ diagrams at order 6 ?
- Obtained in only a few minutes...

Outline

(1) From BMBPT equations to diagrams...

- Definition
- Manual derivation up to third order
(2) ... and from BMBPT diagrams back to equations
- Automatic generation of connected diagrams
- Automatic derivation of analytical formulas

Why and how?

- Need to derive automatically the diagrams' expressions
- Feynman diagrams recast different time-orderings
\checkmark Less diagrams to set up
\boldsymbol{x} But time-integrated (Goldstone) expressions are to be coded
- Goldstone diagrams capture each time ordering separately
\checkmark Time-integrated expressions obtained directly from diagrammatic rules
X Many more diagrams to consider
- Challenge: extract time-integrated expressions from Feynman diagrams
\diamond Capture all time ordering at once
\diamond Challenging because of structure of corresponding time integrals
\diamond Undone task to our knowledge (even for standard diagrammatic)
- Determine the time-structure diagram (TSD) associated to BMBPT one
\diamond Propagators carry time-ordering relations
$\diamond \Omega$ vertex at time 0 is a lower limit for time

- Extraction of the time-integrated expression depends on TSD
\diamond If tree, apply the Goldstone-like algorithm based on subdiagrams \checkmark Already implemented and used at all orders
\diamond If non-tree, decompose the diagram in a sum of tree TSDs \checkmark Algorithm figured out at all orders, to be implemented
- One TSD recast several Feynman, even more Goldstone

Conclusion

- BMBPT diagrams now generated automatically
\checkmark Fast and error-safe
\checkmark No intrinsic upper limit on the order
- BMBPT analytical expressions automatically derived to all order as well
\checkmark Feynman expressions for all diagrams
\checkmark Algorithm for Goldstone expressions of (non) tree diagrams (to be) coded
\checkmark Order 4 to be implemented in BMBPT code in near future
- Project still moving on
\diamond Code to be published
\diamond To be extended for off-diagonal BMBPT
\diamond To be extended for Gorkov SCGF developments
\diamond Open to collaborations regarding other diagrammatic methods
- Progress done in numerical implementation in the mean time

Our collaborators

BMBPT Project

P. Arthuis
T. Duguet
J.-P. Ebran

On broader aspects

M. Drissi
J. Ripoche

TECHNISCHE
UNIVERSITÄT
DARMSTADT
A. Tichai
R. Roth

H. Hergert
$\frac{\text { MICHIGAN STATE }}{\text { UN I VERS I T Y }}$

