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Prelude
Nuclear models required for astrophysical applications (e.g.
nucleosynthesis, supernovae, neutron stars) should be:

versatile: applicable to compute various properties (equation of
state, transport properties, reaction rates, etc.) of various
systems (nuclei, nuclear matter) under various conditions/phases
thermodynamically consistent: avoid spurious instabilities
as microscopic as possible: make reliable extrapolations
numerically tractable: systematic calculations over a wide
range of temperatures, pressures, compositions, magnetic fields.

The (single-reference) nuclear energy density functional (EDF) theory
appears to be currently the most suitable approach for astrophysics.

Duguet, Lect. Notes Phys. 879 (Springer-Verlag, 2014), p. 293
Dobaczewski & Nazarewicz, in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.40-60



Route to phenomenological EDFs
For simplicity, we consider semilocal EDFs E =

∫
E(rrr) d3rrr obtained

from generalized Skyrme effective interactions
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νδ(rrr ij )pppij

pairing vπij =
1
2

(1 + Pσ)vπ[nn(rrr),np(rrr),∇∇∇nn(rrr),∇∇∇np(rrr)]δ(rrr ij )

rrr ij = rrr i − rrr j , rrr = (rrr i + rrr j )/2, pppij = −i~(∇∇∇i −∇∇∇j )/2 is the relative
momentum, and Pσ is the two-body spin-exchange operator.

The parameters ti , xi , α, β, γ, ν, Wi are fitted to experimental and/or
microscopic nuclear data.



Why not fitting directly the EDF?

Freely adjusted EDFs will generally contain self-interactions errors
even in the single-reference framework.

Let us consider the simple functional E = C (nn + np)2.

A single nucleon q interacts with itself:

E(rrr) = C|ϕ(q)(rrr , σ)|4 6= 0

The EDF must be supplemented with time-odd densities:

E = C (nn + np)2 − C (sn + sp)2 with sn/p = n↑n/p − n↓n/p

⇒ E = 0 for a single nucleon since nq(rrr)2 = sq(rrr)2 = |ϕ(q)(rrr , σ)|4

The cancellation of self-interaction errors implies that the coupling
coefficients in the functional cannot be completely freely adjusted.
Chamel, Phys. Rev. C 82, 061307(R) (2010).



Fundamental constraints on semilocal EDFs
Most general semi-local EDF with all possible bilinear terms up to 2nd
order in the derivatives:
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Requiring the cancellation of one-particle self-interaction errors:
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Propagation of self-interaction errors

Self-interaction errors in the one-particle limit can contaminate
systems consisting of many particles.

For instance, in polarized neutron matter the error in the energy
density caused by self-interactions is given by

δEpol
NeuM = (Cn

0 + Cn
1 + Cs

0 + Cs
1)n2

If Cn
0 + Cn

1 + Cs
0 + Cs

1 < 0, self-interactions would thus drive a
ferromagnetic collapse of neutron stars.

EDFs obtained from effective interactions are free from one-particle
self-interaction errors but

still contain many-particle self-interaction (and self-pairing) errors
Bender, Duguet, Lacroix, Phys. Rev. C 79, 044319 (2009).

induce additional relations between coupling coefficients.
Dobaczewski&Dudek, Phys.Rev. C52, 1827 (1995);55, 3177(E) (1997).



Nuclear uncertainties

Phenomenological EDFs cannot be uniquely defined due to
experimental and theoretical uncertainties.

How to quantify these uncertainties?

The energy per nucleon of nuclear matter at T = 0 around saturation
density n0 and for asymmetry η = (nn − np)/n, is usually written as

e(n, η) = e0(n) + S(n)η2 + o
(
η4
)

where

e0(n) = av +
Kv

18
ε2 − K ′

162
ε3 + o

(
ε4
)

with ε = (n − n0)/n0

S(n) = J +
L
3
ε+

Ksym

18
ε2 + o

(
ε3
)

is the symmetry energy

The lack of knowledge is embedded in av , Kv , K ′, etc.

To make meaningful comparisons, EDFs with different values of these
parameters should be fitted using the same protocole.



Brussels-Montreal Skyrme EDFs (BSk)

For application to extreme astrophysical environments, functionals
should reproduce global properties of both finite nuclei and
infinite homogeneous nuclear matter.

Experimental data:
all nuclear masses with Z ,N ≥ 8 from Atomic Mass Evaluation
nuclear charge radii
symmetry energy 29 ≤ J ≤ 32 MeV
incompressibility Kv = 240± 10 MeV (ISGMR)
Colò et al., Phys.Rev.C70, 024307 (2004).

Many-body calculations:
equation of state of pure neutron matter
“RATP” and “T6” EDFs from Rayet et al., A&A116,183 (1982)
1S0 pairing gaps in nuclear matter
effective masses in nuclear matter



Phenomenological corrections for atomic nuclei
For atomic nuclei, we add the following corrections to the HFB energy:

Wigner energy

EW = VW exp

{
− λ

(
N − Z

A

)2}
+ V ′W |N − Z | exp

{
−

(
A
A0

)2}

VW ∼ −2 MeV, V ′W ∼ 1 MeV, λ ∼ 300 MeV, A0 ∼ 20
rotational and vibrational spurious collective energy

Ecoll = E crank
rot

{
b tanh(c|β2|) + d |β2| exp{−l(|β2| − β0

2)2}
}

This latter correction was shown to be in good agreement with
calculations using 5D collective Hamiltonian.
Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010).

In this way, these collective effects do not contaminate the
parameters (≤ 20) of the functional.



Brussels-Montreal Skyrme EDFs
. fit to realistic 1S0 pairing gaps (no self-energy) (BSk16-17)

Chamel, Goriely, Pearson, Nucl.Phys.A812,72 (2008)
Goriely, Chamel, Pearson, PRL102,152503 (2009).
Chamel, Phys. Rev. C 82, 014313 (2010).

. removal of spurious spin-isospin instabilities (BSk18)
Chamel, Goriely, Pearson, Phys.Rev.C80,065804(2009)
Chamel & Goriely, Phys. Rev. C 82, 045804 (2010).

. fit to realistic neutron-matter equations of state (BSk19-21)
Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010)

. fit to different symmetry energies (BSk22-26)
Goriely, Chamel, Pearson, Phys.Rev.C88,024308(2013)

. optimal fit of the 2012 AME with standard Skyrme (BSk27*)
Goriely, Chamel, Pearson, Phys.Rev.C88,061302(R)(2013)

. generalized spin-orbit coupling (BSk28-29)
Goriely, Nucl.Phys.A933,68(2015).

. fit to realistic 1S0 pairing gaps with self-energy (BSk30-32)
Goriely, Chamel, Pearson, Phys.Rev. C93,034337(2016).



Empirical pairing EDFs
The pairing EDF is generally assumed to be local and very often
parametrized as

Epair =

∫
d3r Epair(rrr) , Epair(rrr) =

1
4

∑
q=n,p

vπq[nn(rrr),np(rrr)]ñq(rrr) 2

vπq[nn,np] = Vπq
Λ

(
1− ηq

(
n
n0

)αq)
with a suitable cutoff prescription (regularization).
Bertsch & Esbensen, Ann. Phys. 209, 327 (1991).

Drawbacks
Vπq

Λ must be refitted for any change in the cutoff.
experimental nuclear data do not allow for an unambiguous
determination of ηq and αq .
not enough flexibility to fit pairing gaps in nuclei and neutron
matter, as required for reliable calculations of superfluidity in
neutron-star crusts.



Superfluidity in neutron star crusts

Pairing in neutron-star crusts is highly non-local: both bound and
unbound neutrons contribute to superfluidity.
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Chamel et al., in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.284-296.
Chamel et al., Phys.Rev.C81,045804 (2010).



Pairing EDFs from nuclear-matter calculations

Instead, we fit exactly realistic 1S0 pairing gaps ∆q(nn,np) in
infinite homogeneous nuclear matter for each densities nn and np.
Chamel, Phys. Rev. C 82, 014313 (2010)

vπq
Λ = − 8π2

√
µq

(
~2

2M∗q

)3/2 [
2 log

(
2µq
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)
+ Λ

(
εΛ

µq

)]−1

Λ(x) = log(16x) + 2
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1 + x − 2 log
(

1 +
√

1 + x
)
− 4

µq =
~2

2M∗q
(3π2nq)2/3

Regularization: s.p. energy cutoff εΛ above the Fermi level.

no free parameters apart from the cutoff
automatic renormalization of vπq

Λ with εΛ



Accuracy of the “weak-coupling” approximation

These formulas were obtained assuming ∆q � µq and ∆q � εΛ.

They are very accurate at any density because the density of states is
not replaced by a constant as in the usual “weak coupling” approx.

symmetric nuclear matter
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Chamel, Phys. Rev. C 82, 014313 (2010)



Pairing cutoff and experimental phase shifts
In the limit of vanishing density, the pairing strength

vπq[nn,np → 0] = − 4π2
√
εΛ

(
~2

2Mq

)3/2

should coincide with the bare force in the 1S0 channel.

A fit to the experimental 1S0 NN phase shifts yields εΛ ∼ 7− 8 MeV.
Esbensen et al., Phys. Rev. C 56, 3054 (1997).
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The fit to nuclear masses leads to a non
monotonic dependence of the rms error
on the cutoff.
Chamel et al., in ”50 Years of Nuclear BCS”
(World Scientific Publishing Company, 2013),
pp.284-296

For the functionals BSk16-BS29, optimum mass fits were obtained
with εΛ ∼ 16 MeV, while we found εΛ ∼ 6.5 MeV for BSk30-32.



1S0 pairing gaps in neutron and symmetric matter

For consistency, we considered the gaps obtained from extended
BHF calculations since effective masses as well as equations of state
have been also calculated with this approach.
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For comparison, we fitted
functionals to different
approximations for the gaps:

BCS: BSk16
polarization+free spectrum:
BSk17-BSk29
polarization+self-energy:
BSk30-32.

Cao et al.,
Phys.Rev.C74,064301(2006)



Other contributions to pairing in finite nuclei
Pairing in finite nuclei is not expected to be the same as in infinite
nuclear matter because of

Coulomb and charge symmetry breaking effects,
polarization effects in odd nuclei,
coupling to surface vibrations.

In an attempt to account for these effects, we include an additional
phenomenological term in the pairing interaction (only for BSk30-32)

vπ q → vπ q + κq |∇∇∇n|2

and we introduce renormalization factors f±q

vπ q −→ f±q vπ q

Parameters were determined by fitting nuclear masses. Typically
f±q ' 1− 1.2 and f−q > f +

q , and κq < 0.



Ferromagnetic instability
Unlike microscopic calculations, conventional Skyrme functionals
predict a spurious ferromagnetic transition in nuclear matter
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Chamel et al.,
Phys.Rev.C80(2009),065804.

This instability can strongly affect the neutrino propagation in hot
dense nuclear matter and leads to a collapse of neutron stars



Stability of unpolarized matter restored

The ferromagnetic instability at T = 0 can be completely removed by
adding new terms in the standard Skyrme interaction (BSk18)

1
2

t4(1 + x4Pσ)
1
~2

{
p2

ij n(rrr)β δ(rrr ij ) + δ(rrr ij ) n(rrr)β p2
ij
}

+t5(1 + x5Pσ)
1
~2 pppij .n(rrr)γ δ(rrr ij )pppij

Chamel, Goriely, Pearson, Phys.Rev.C80,065804 (2009)

Dropping the J2 terms and their associated time-odd parts (>BSk19)

removes spin and spin-isospin instabilities at any T ≥ 0
prevents an anomalous behavior of the entropy
Rios,Polls, Vidana, Phys. Rev. C 71, 055802 (2005)

considerably improves the values of Landau parameters
(especially G′0) and the sum rules

Chamel & Goriely, Phys.Rev.C82, 045804 (2010)



Landau parameters and the J2 terms

Landau parameters for Skyrme forces fitted without the J2 terms.
Values in parenthesis were obtained by dropping the time-odd
counterparts of the form sss ·TTT .

G0 G′0 GNeuM
0

SGII 0.01 (0.62) 0.51 (0.93) -0.07 (1.19)
SLy4 1.11 (1.39) -0.13 (0.90) 0.11 (1.27)
SkI1 -8.74 (1.09) 3.17 (0.90) -5.57 (1.10)
SkI2 -1.18 (1.35) 0.77 (0.90) -1.08 (1.24)
SkI3 0.57 (1.90) 0.20 (0.85) -0.19 (1.35)
SkI4 -2.81 (1.77) 1.38 (0.88) -2.03 (1.40)
SkI5 0.28 (1.79) 0.30 (0.85) -0.31 (1.30)
SkO -4.08 (0.48) 1.61 (0.98) -3.17 (0.97)
LNS 0.83 (0.32) 0.14 (0.92) 0.59 (0.91)

sss ·TTT terms can be cancelled by fine-tuning a tensor interaction, but
this leads to other instabilities.
Li-Gang Cao, Col‘o, Sagawa, Phys. Rev. C 81, 044302 (2010)



Impact of the J2 terms

Warning:
Adding (SkI2) or removing
(BSk17) a posteriori the J2 terms
without refitting the EDF can
induce large errors on nuclear
properties (e.g. masses)!

Chamel & Goriely, Phys.Rev.C82,
045804 (2010)



Stability of unpolarized matter restored
The ferromagnetic instability at T = 0 can be completely removed by
adding new terms in the standard Skyrme interaction (BSk18)
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ij n(rrr)β δ(rrr ij ) + δ(rrr ij ) n(rrr)β p2
ij
}

+t5(1 + x5Pσ)
1
~2 pppij .n(rrr)γ δ(rrr ij )pppij

Chamel, Goriely, Pearson, Phys.Rev.C80,065804 (2009)

Dropping the J2 terms and their associated time-odd parts (>BSk19)

removes spin and spin-isospin instabilities at any T ≥ 0
prevents an anomalous behavior of the entropy
Rios,Polls, Vidana, Phys. Rev. C 71, 055802 (2005)

considerably improves the values of Landau parameters
(especially G′0) and the sum rules
but also leads to unrealistic effective masses in polarized matter
introduces self-interaction errors

Chamel & Goriely, Phys.Rev.C82, 045804 (2010)



Spin and spin-isospin instabilities
Although functionals >BSk18 are devoid of spurious long-wavelength
instabilities, finite-size instabilities can still arise: e.g. neutron matter
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Neutron-matter equation of state

BSk19, BSk20 and BSk21 were fitted to realistic neutron-matter
equations of state with different of degrees of stiffness:

Goriely, Chamel, Pearson, Phys. Rev. C 82, 035804 (2010).



Neutron-matter equation of state at low densities

All three EDFs yield similar equations of state at subsaturation
densities consistent with ab initio calculations:



Symmetry energy

The EDFs BSk22-26 were fitted to realistic neutron-matter equations
of state but with different values for J = 29− 32 MeV:

Goriely, Chamel, Pearson, Phys.Rev.C 88, 024308 (2013).



Symmetry energy, spin-orbit, pairing
The EDFs BSk30-32 were fitted to realistic pairing gaps and include
improved spin-orbit coupling but with different values for J = 30− 32
MeV:
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Goriely, Chamel, Pearson, Phys.Rev.C 93,034337 (2016).



Potential energy in spin-isospin channels
These EDFs are compatible with the potential energy in the different
(S,T) channels, as predicted by BHF calculations:
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Empirical constraints from heavy-ion collisions
Our EDFs are also consistent with empirical constraints inferred from
heavy-ion collisions:

Danielewicz et al., Science 298, 1592 (2002)
Lynch et al., Prog. Part. Nuc. Phys.62, 427 (2009)



Nucleon effective masses in nuclear matter
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Skyrme EDFs generally predict a
wrong effective-mass splitting.
This can be cured by introducing t4
and t5 terms.

Effective masses from BSk30-32
are consistent with

isovector giant dipole
resonances in finite nuclei,
many-body calculations in
asymmetric nuclear matter.

EBHF calculations from Cao et al.,Phys.Rev.C73,014313(2006).



Properties of finite nuclei

Fits to the 2353 measured masses with Z , N > 8 from the 2012 AME

HFB-30 HFB-31 HFB-32
σ(M) [MeV] 0.573 0.571 0.586
ε̄(M) [MeV] 0.003 -0.004 -0.007
σ(Sn) [MeV] 0.474 0.464 0.489
ε̄(Sn) [MeV] -0.008 0.000 -0.007
σ(Qβ) [MeV] 0.589 0.578 0.601
ε̄(Qβ) [MeV] 0.009 0.006 -0.004
σ(Rc) [fm] 0.026 0.027 0.027
ε̄(Rc) [fm] 0.001 0.002 0.000

σmod(26 θ)[fm] 0.009 0.005 0.012
θ(208Pb)[fm] 0.133 0.151 0.170

Goriely, Chamel, Pearson, Phys.Rev. C93,034337(2016).



Summary for SR-EDF afficionados
Removal of one-particle self-interaction errors can be a useful
guide to guess the time-odd part of the EDF.

Local pairing EDFs fitting 1S0 pairing gaps in nuclear matter can
be constructed analytically.

Introducing density-dependent t4 and t5 terms in the interaction
allows to fit stiff neutron-matter equations of state,
leads to realistic effective masses and potential energy
contributions in the (S,T ) channels,
removes spurious spin-isopin instabilities (at least T = 0, q = 0).

Removing J2 and sss ·TTT terms in the EDF
considerably improves Landau parameters,
removes spin-isopin instabilities at any T ≥ 0 (but not any q > 0),
prevents an anomalous behavior of the entropy,
avoid instabilities in single-particle spectra of finite nuclei.
Lesinski et al., Phys. Rev. C 76, 014312 (2007)



General conclusions

The EDF theory seems to offer the best compromise between
versatility and computational cost for astrophysical applications.
But guidance from ab initio approaches is crucial to make
reliable extrapolations (especially for neutron stars!)
The Brussels-Montreal EDFs were fitted using the same
protocole to a wealth of data trying to span the current lack of
knowledge of nuclear physics.
In this way, the impact of nuclear uncertainties on
astrophysical observables can be consistently assessed.

Assignements to ab initio gurus
We need more inputs to construct consistent EDFs: equation of state
of (un)polarized asymmetric nuclear matter, effective masses, Landau
parameters, pairing gaps, etc.
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Discussions
Time-odd part of the EDF

How to get realistic effective masses in polarized matter?
Finite-size spin-isospin instabilities at n > 0.2 fm−3 would lead to
inhomogeneous ferromagnetic phases in neutron star cores. But
are they physical or spurious?
j2 terms in the EDF play a crucial role for the dynamics of
neutron stars (entrainment between superfluid neutron and
protons). Ab initio calculations of effective masses in asymmetric
nuclear matter?

Pairing part of the EDF

Challenge: neutron superfluidity in neutron-star crusts
Isospin dependence of 1S0 neutron and proton pairing gaps in
asymmetric nuclear matter?
Finite-size contributions to pairing?


