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TAILOR NUCLEAR 

EFFECTIVE INTERACTIONS



(PARTIAL) TIMELINE

1965 1966-1967 … 1970 … 1972-1973 … 1973-1976 … 2015

HF with soft & non-
local potential fitted 
on NN & nuclear 
matter properties

A.K. Kerman et 
al., PR 147, 710

Brink & 
Boecker fitted 
on finite nuclei

Nuc. Phys. 91, 1

SIII Hard & local 
potential fitted 
on finite nuclei

Vautherin and 
Brink PRC 5, 
626; 7, 296

GPT soft & local 
potential fitted 
on NN data

Gogny et al., 
PLB 32, 591

Gogny effective 
interaction fitted on 
nuclei; guidance 
from second order 
Goldstone series 

Realistic potential for HF

Skyrme effective interaction

Gogny effective interaction

SIII

M. Maire PhD 
thesis; D. Gogny
Munich; Trieste 
proceedings



GOGNY, PIRES AND DE TOURREIL REALISTIC 

INTERACTION 

4

1. All the key components of a 

realistic NN interaction.

2. Soft such that convergence can 

be achieved with 

HF+Goldstone series 

(~150MeV)

3. Three Gaussians for short 

repulsive, intermediate and 

long-range (3 fm)

4. But does not fit OPEP

5. Local

𝑉𝑖 𝑟 = 

𝛼

𝑉𝛼𝑒
−  𝑟
2
𝜇𝛼

Spatial dependence are expressed with a sum 

of Gaussian (fit done per channel 𝜒2 =8.4)

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12



GOGNY, PIRES AND DE TOURREIL REALISTIC 

INTERACTION 

Fitting prescriptions:

1. NN phase shifts to be reproduced up to 300 MeV 

and correct deuteron properties.

2. Basic properties of spherical nuclei reproduced at 

HF, particularly radii while E/A expected ~3 MeV 

(higher order bring important corrections).

3. Reasonable saturation properties of nuclear 

matters (not achieved in practice).

Radial dependence of the central part

of the GPT NN potential.

Note that the choice of Gaussian is 

guided by:

1. Will behave like separable 

interaction at HF/HFB level.

2. Soft interaction with UV 

cutoff.

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12



GOGNY, PIRES AND DE TOURREIL REALISTIC 

INTERACTION 

NN scattering phase-shifts analysis.

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12



GOGNY, PIRES AND DE TOURREIL REALISTIC 

INTERACTION 

Deuteron properties with GPT

interaction.

1. No information about 3N and 4N 

systems from which behavior in light 

systems can be inferred.

2. Deuteron is overbound.

3. Tensor force is not that good.

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12



SECOND ORDER CORRECTION TO GPT; INFINITE 

NUCLEAR MATTER

E/A at saturation is way to high 

(25.2 instead of 16 MeV) !

First order (HF)

Second order correction

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12



SECOND ORDER CORRECTION TO GPT; INFINITE 

NUCLEAR MATTER

First order (HF)

Second order correction

Replacing long-range behavior 

with a Yukawa

When including the proper OPEP 

asymptotic, E/A correct at second order…

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12



SECOND ORDER CORRECTION TO GPT; FINITE NUCLEI

Yukawa at long-range

GPT NN potential

GPT 208Pb 2nd order correction 

is similar to infinite matter with 

correct asymptotic 

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12



𝑣12 𝜌 = 

𝑗=1

2

𝑊𝑗 + 𝐵𝑗𝑃𝜎 − 𝐻𝑗𝑃𝜏 −𝑀𝑗𝑃𝜎𝑃𝜏 𝑒
 −(  𝑟1−  𝑟2)
2

𝜇𝑗

+𝑡3 1 + 𝑥0𝑃𝜎 𝛿  𝑟1 −  𝑟2 𝜌
𝛼   𝑟1−  𝑟2

2

+𝑖𝑊𝐿𝑆𝛻12𝛿  𝑟1 −  𝑟2 ∧ 𝛻12  𝜎1 +  𝜎2

SECOND ORDER CORRECTION TO GPT; FINITE NUCLEI

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12

D1 effective interaction “functional” 

GPT NN potential

Second order

Density dependent interaction 

are able to retrieve ESP 

spectrum at HF level…

Hartree-Fock
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𝑣12 𝜌 = 

𝑗=1

2

𝑊𝑗 + 𝐵𝑗𝑃𝜎 − 𝐻𝑗𝑃𝜏 −𝑀𝑗𝑃𝜎𝑃𝜏 𝑒
 −(  𝑟1−  𝑟2)
2

𝜇𝑗

+𝑡3 1 + 𝑥0𝑃𝜎 𝛿  𝑟1 −  𝑟2 𝜌
𝛼   𝑟1−  𝑟2

2

+𝑖𝑊𝐿𝑆𝛻12𝛿  𝑟1 −  𝑟2 ∧ 𝛻12  𝜎1 +  𝜎2

SECOND ORDER CORRECTION TO GPT; CONCLUSIONS

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12

D1 effective interaction “functional” 

GPT NN potential

1. Non-locally is not exploited but a soft 

potential is obtained.

2. Second order reproduced by density 

dependent interaction at HF 

approximation.

3. OPEP is not necessary for finite nuclei 

(probably only true for A ≥ 16). D1 

drops long range 𝑉 𝑟 and use infinite 

matter as a weak constraint.

Gogny D1 parametrization



𝑣12 𝜌 = 

𝑗=1

2

𝑊𝑗 + 𝐵𝑗𝑃𝜎 − 𝐻𝑗𝑃𝜏 −𝑀𝑗𝑃𝜎𝑃𝜏 𝑒
 −(  𝑟1−  𝑟2)
2
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SECOND ORDER CORRECTION TO GPT; CONCLUSIONS

𝑉 𝑟 = 𝑉𝐶 𝑟 + 𝑉𝑇 𝑟 𝑆12 + 𝑉𝐿𝑆 𝑟 𝐿. 𝑆 + 𝑉𝐿𝐿 𝑟 𝐿12

D1 effective interaction “functional” 

GPT NN potential

1. Non-locally is not exploited but a soft 

potential is obtained.

2. Second order reproduced by density 

dependent interaction at HF 

approximation.

3. OPEP is not necessary for finite nuclei 

(probably only true for A ≥ 16). D1 

drops long range 𝑉 𝑟 and use infinite 

matter as a weak constraint.

4. Infinite matter result from realistic 

BHF+GPT is used to give guidance on 

per channel trend.



GOGNY FITTING PROCEDURE
From the PhD thesis of F. Chappert (2008); F. Chappert et al. PRC 91 (2015); N. Pillet et 
al. EPJA 83 (2017)

Datameta-DataMethod

Solution of 

linear 

problem 

4x4

2x2 linear 

problem
Nuclear matter 

properties 

within range 

(expt. Ab initio)

Invert Eq.

B1 free

• Zero pairing in 

magic nuclei

• Moment of inertia

• Behavior of 𝑉 𝑟
in 𝑆 = 0, 𝑇 = 1

• Symmetry energy

• Isotopic drift of 

binding energy 

(e.g. tin isotopes)

14 parameters Minimization 

of an objective function of 7 

variables, 4 𝜇1, 𝜇2, 𝑊𝑙𝑠, 𝑡0
of which are strongly 

constrained closed to initial 

guess.

𝑡0 guessed on N,Z=8 shell gap,

𝑊𝑙𝑠 guessed on 1𝑝  3 2, 1𝑝  1 2 splitting.



GOGNY FITTING PROCEDURE : FIT TO SPHERICAL 
CLOSED SHELL 16O AND 90Zr

Procedure follows the need 

of analytical relations 

between the exchange 

coefficient of the central 

term.

Meta-data used in the fitting 

routine generated from 

correlation function 

between 𝐸𝐻𝐹𝑅 and 𝐸𝐻𝐹.

Solution of 

linear 

problem 4x4

Meta-data: Radii and 

binding energies.



GOGNY FITTING PROCEDURE : PAIRING

Meta-data used in the fitting 

routine generated from 

HFB 𝐸𝑝𝑎𝑖𝑟𝑖𝑛𝑔, ℑ𝑘
𝐼𝐵 and 

shape of 𝑉𝑆=0,𝑇=1 𝑟 .

Zero pairing in 

magic nuclei

Moment of 

inertia

Behavior of 

𝑉 𝑟 in 𝑆 =
0, 𝑇 = 1

2x2 linear 

problem

ℑ𝑘
𝐼𝐵 = 𝑓 𝑉1𝑠 at HFB 

16O

Forbidden 

region

158Sm
Expt.

Radial shape of 

central interaction

D1S

Range tuning

V1S extraction V2S extraction

Analytical solution using 

two pairing matrix elements 

as meta-data.

Meta-data pairing s-wave m.e. in 

S,T=0,1 channel.



GOGNY FITTING PROCEDURE : ISOSPIN

Invert Δℇ =
𝑓 𝑊𝑖 , 𝐵𝑖 , 𝐻𝑖, 𝑀𝑖

Symmetry 

energy

Isotopic drift 

of binding 

energy

One meta-data but fine 

tune to bulk and shell 

properties of nuclei.

Restricted HF is used to 

express Δℇ =
𝑓 𝑊𝑖 , 𝐵𝑖 , 𝐻𝑖 , 𝑀𝑖

Fine tuning on shell closure
Crude tuning on liquid drop model

Meta-data Δℇ is 48Ca proton and 

neutron 2𝑠  1 2 splitting.



Friedman 

Pandharipande

INSTRUCTIVE EXAMPLE: D1N

AIM: introduce a new weak 

constrained on neutron 

matter based on ab initio 

result.

Old

New



INSTRUCTIVE EXAMPLE: D1N

Results: on average 

properties in nuclear matter 

and finite nuclei are 

degraded.

Potential energy by ST channel

Effective mass as function of 

isospin asymmetry

Functional form of the Gogny

interaction is too weak to sustain all 

the constraints.



TOWARDS GENERALIZED FINITE RANGE INTERACTION

To make room for 

additional constrained, the 

density dependent term can 

be generalized

𝑉𝑑𝑒𝑛𝑠 = 𝑊3 + 𝐵3𝑃𝜎 − 𝐻3𝑃𝜏 −𝑀3𝑃𝜎𝑃𝜏
𝑒
−
𝑟1−𝑟2

2

𝜇3
2

𝜇3 𝜋
3

𝜌𝛼  𝑟1 +𝜌
𝛼  𝑟2

2

Finite range density dependent term in D2

Advantages:

• More freedom in the 

contribution of 

exchange term.

• Finite-range is suited 

for beyond MF 

calculation.

Disadvantages:

• One more system of 

equation for the fit 

(from 100Sn data)



TOWARDS GENERALIZED FINITE RANGE INTERACTION

To make room for 

additional constrained, the 

density dependent term can 

be generalized
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𝑒
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2

Finite range density dependent term in D2

Advantages:

• More freedom in the 

contribution of exchange 

term.

• Finite-range is suited for 

beyond MF calculation.

Disadvantages:

• One more system of 

equation for the fit (from 
100Sn data); abandoned 

new parameters set as 

free.



D2 IN FINITE NUCLEI

• Proton/neutron effective masses have 

the correct trend.

• Globally D2 is equivalent to D1S (that is 

pairing, deformation, masses, local OB 

density and radii).



D2 IN FINITE NUCLEI

Correction expected from correlations

• Neutron isotopic drift is corrected by D2 

(improvement due to neutron EOS).

• Axial deformation properties unchanged.
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GENERAL OVERVIEW

1) Prerequisite: Existence of a mean-field as rich as possible (HF for example)

• From phenomenological effective interaction (Gogny)

• From effective interaction derived from bare interactions (MPMH)

Strongly repulsive core has been avoided/treated

2)   MPMH configuration mixing:  nuclear mid- (to long-) range correlations

• Mean-field and beyond                          

• Ab initio

At the interface of ab initio and EDF

Strongly interacting system Emergence of a mean-field

(hard core absorbed)

Two step method:



GENERAL OVERVIEW

+ + + …=

Symmetries and Conservations

• Many-body wave function

• N+Z nucleons

• J conserved

• 𝜋 conserved

• Fully antisymmetrized (Pauli)

• Can factorize c.m. motion

Mixing coefficients
(α : proton&neutron

dependencies)

Slater determinants

𝛼 : MPMH configurations

N+Z nucleons

m-scheme: Jz, Tz

𝜋 conserved

Additional properties

• Even-even, odd and odd-odd nuclei

• All types of nuclear long range correlations, deformations

Applications 

• Structure : Excitation energies, transition probabilities, masses, radii, …

• Reactions : Inelastic nucleon and electron scattering, resonances 

• Tool to test effective interactions and generate effective interactions from bare/chiral forces



GENERAL OVERVIEW

Hamiltonian (extension to three-body straightforward)

Many-body wave function

• Full Hilbert space

• Truncated Hilbert space

Variational principal on the total energy

Mixing coefficients determined

What about orbitals?



GENERAL OVERVIEW

Link with Green’s functions : Orbital equation

Particular cases: Resummation of 

ladder and ring diagrams in G2N(σ)

General mean-field h(ρ)
Diagrammatic expansion of G2N(σ)

with

Source termGeneral mean-field

Correlated one-body density

Connected part of the two-body 

density

Equation automatically satisfied in the case of exact solution!



GENERAL OVERVIEW

• Minimization of the total energy 

 First order variation (unitary transformation): Brillouin condition.

 Orbital equation similar to the one derived with the exact solution but not 
satisfied automatically!

 Need to establish the consistency between one- and two-body 
properties by solving explicitly the orbital equation.

Caroline Robin

PhD at CEA/DAM/DIF

Postdoc at WMU



Truncations and Symmetries

• Truncations compatible with the conservation of the advantages of the method

 Conservation of symmetries

 All types of many-body correlations and deformations

 Even-even, odd and odd-odd nuclei

 Full antisymmetrization (Pauli)

• Different possible truncations         Flexibility of the MPMH configuration mixing

 Core+valence space

 Excitation order of the configurations

 Excitation energy of the configurations

 Ideally, a combination of the truncations with the preservation of desired 

symmetries

 Systematically improvable method

GENERAL OVERVIEW



GENERAL OVERVIEW

• Role of the orbital equation

Starting from a certain set of single-particle states (a+), the orbital equation lead to a new set (b+):

where

Under this transformation, the N-body configurations vary as      

Compensation for the truncations 

made on the wave function

HO states

Opt. orbital

Ch. Constantinou, 

M. A. Caprio et al.

arXiv:1605.04976 

Illustration on the radial behavior 

with natural orbital basis

 Optimization of orbitals: Creation of MPMH 

excitations on top of the existing configurations

 The MPMH excitations extend to the whole 

single-particle basis one is considering

 Since     is a one-body operator, they are 

always built as product of 1P1H excitations 



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

12C test nucleus

Two types of truncation schemes tested:

4He core + 0ħω valence space

- 38 configurations

- Natural max. excitation order: 4P4H

Nħω space

- Truncation at 4P4H

- 26 401 700 configurations



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Two-body correlation matrix 𝝈𝒊𝒋𝒌𝒍

34

Proton Neutron Proton-neutronpairing

55 150

150000 700000

σijij

particle-vibration RPA-type

pairing



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Source term G(𝝈)𝒊𝒋

0.45

1.6

Proton Neutron



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Evolution of the one-body density: Representation of Δρ=|ρHF-ρcorrelated| in HF basis



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Modifications of the single-particle energies 

21

-2

Eigenvalues ε of compared to εHF.

-6

• Spectrum compressed by ~2.5 MeV
• 0s increased by ~2 MeV
• Gap 0p3/2-0p1/2 (8.15 MeV) reduced by 

~870 keV.

1
• Spectrum compressed by ~6 MeV
• 0s increased by ~6 MeV
• Gap 0p3/2-0p1/2 (8.15 MeV) reduced 

by ~2 MeV.

2



Gain 770 keV

NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Effect on the ground state

• Correlation energy:

• Clear overbinding in 12C!
• What is happening with the interaction, related 

to the truncation scheme?

21

Hartree-Fock statecorrelated state

Gain 340 keV

• HF binding energy:  E(HF)= -92.9 MeV

• Experimental binding energy:  E(HF)= -92.16 MeV

1 2



VARIOUS APPLICATIONS WITH THE GOGNY FORCE

Framework:

• Even-even nuclei 10≤(Z,N)≤18
• Truncation scheme: core of 16O (non frozen) + valence

• N0=9 major oscillator shells

Description of ground state and spectroscopic properties

• Binding and separation energies, charge radii
• Excitation energies
• Magnetic dipole moments µ and quadrupole spectroscopic moments Qs

• Transition probabilities B(E2) and B(M1)
• Inelastic electron and proton scattering on discrete states

How are these observables affected by the optimization of orbitals?

Ex:28Si → 12P12H



VARIOUS APPLICATIONS WITH THE GOGNY FORCE

Ground state properties

• Binding energy

• Correlation energy

Average difference

• Level 1: 8.91 MeV

• Level 3: 9.84 MeV

Standard deviation

• Level 1: 0.793 MeV

• Level 3: 0.789 MeV



VARIOUS APPLICATIONS WITH THE GOGNY FORCE

• Charge radii

Average difference

• Level 1: 0.021 fm

• Level 3: 0.018 fm

Standard deviation

• Level 1: 0.017 fm

• Level 3: 0.018 fm



VARIOUS APPLICATIONS WITH THE GOGNY FORCE

First 2+ excited state and B(E2) transition probabilities toward the ground state

Average difference

• Level 1: 373 keV

• Level 3: 235 keV

Standard deviation

• Level 1: 517 keV

• Level 3: 323 keV

Average difference

• Level 1: 226 keV

• Level 3: 142 keV

Standard deviation

• Level 1: 214 keV

• Level 3: 122 keV

Excluding 30Si and 30S

• Experimental trends globally well
reproduced but...

• Clear lack of collectivity due to the
restricted valence space

• Little but positive effect from
optimization of orbitals

T=0 residual

interaction



IN DEVELOPMENT: MPMH AS AN AB INITIO METHOD & A 

TOOLS TO TAILOR EFFECTIVE INTERACTION

Constrained effective interaction to ab 

initio inputs

In medium 

effective interaction

Hartree-Fock

solution

Standard entry

HF solution 

obtained with 

Gogny interaction

New entry

Renormalized 

chiral/bare 

NN+3N forces

Self-contained HF solver 

at spherical point

MPMH configurations introduced at a given order of excitation



IN DEVELOPMENT: MPMH AS AN AB INITIO METHOD & A 

TOOLS TO TAILOR EFFECTIVE INTERACTION

In medium 

effective interaction

Lawson

+corr.

Cor. Standard

ℋ → 𝑇kin + 𝑇𝑐𝑜𝑟. + 𝑉
𝑁𝑁 + 𝛽ℋc.m.

Lawson termCorrection du

centre de masse

Ex: 12C



IN DEVELOPMENT: RESONNANCES

The complex scaling and the resonance states

Underlying Aguilar-Balslev-Combes theorem: the resonant states of the original Hamiltonian are

invariant and the non-resonant scattering states are rotated and distributed on a 2θ ray that cuts the

complex energy plane with a corresponding threshold being the rotation point.

Complex scaling

Solve the Schrödinger equation in a L2 basis (i.e. HO, MPMH orbitals…)

Demi-vieEnergieEn pratique

Analytic for Gaussian

U(θ) is a non-unitary

operator of the rotation

in the complex plane

-



IN DEVELOPMENT: RESONNANCES

Collaboration with R. Lazauskas and J. Carbonell

N3LOMalfliet-Tjon

Generalization of the

MPMH configuration

mixing approach to

symmetric non-

hermitian complex

matrices !

Schematic case: the deuteron

• Use of an HO basis in Jacobi coordinates

• Diagonalization in the deuteron channel



IN DEVELOPMENT: RESONNANCES
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• SRG evolution requires to span 

a large NN basis (𝑛𝑟~150). 
The typical scale of k is 

10 fm−1 (𝑉𝑁𝑁).

• Complex scaling involves the 

integration of diverging 

polynomials (of order n) far 

from their zeroes.



SRG IS WORKING !
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