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Fermi Condensates



Density Functionals enormously successful
in electronic systems and nuclear physics:

Similarities:
         Homogeneous bulk properties incorporated into DFT
         gradient expansion, …

Differences:
          Nuclei are self-bound
          Nuclei are superfluid - pairing in finite systems

Can we explore these similarities/differences in cold atoms?
Different challenges
Scale invariance simplifies the density functional
‘Exactly’ solvable



Homogeneous Unitary Fermi Gas
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V0 can be tuned across BCS (| V0 | ~ 0) to BEC (- V0 >> EF)
Concentrate on unitarity : zero energy bound state
                                     infinite scattering length
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T=0 Algorithm: Branching random walk (diffusion) using AFMC
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One step of the algorithm:
multiply by exp [ - T dt / 2 ]
         momentum space
Auxiliary field for exp [ -V dt ]
         coordinate space
multiply by exp [ - T dt /2 ]
         momentum space

Use importance sampling with
BCS wave function

exact for unpolarized systems

Different effective ranges
No sign problem for
   attractive interactions
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E(kF re)/EFG = ⇠ + SkF re + ...

⇠ = 0.372± 0.005
S = 0.12± 0.01

S

 = 0.376(0.005)
arXiv:1110.3309 (Hu, et al)

MIT expt



Spin excitations are high energy 
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Spin up, down densities in a trap
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Density Functional for unpolarized systems
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Epsilon expansion at unitarity

E(x) = n(x)V (x)+1.364 n(x)
5/3

m
+0.022 (∇n(x))2

mn(x)
+O(∇4n)

EETF(x) = n(x)V (x)+2.871
n(x)5/3

m
+0.014

(∇n(x))2

mn(x)
+0.167

∇2n(x)
m

+O(∇4n)

compare to free fermions

Note increase in coefficient of gradient term at unitarity
        compared to free Fermi gas 

c2 ⇡ 0



Change notation: 

Free fermions (BCS limit)

Free bosons (BEC limit M = 2m)

~2/(2m) ! 1

see also M. Forbes arXiv:1211.3779
for treatment with Superfluid Local Density Approximation

We use only bosonic degrees of freedom
   no single-particle orbital summation for the density.

The gradient term is exactly like
the kinetic term in the Gross–Pitaevskii  equation (BEC).
The density functional is scale invariant:     1/length5

E = V (r)⇢(r) + ⇠ (3⇡2)2/3⇢5/3 + c2 r⇢1/2 ·r⇢1/2 + ...

c2 = 0.111

c2 = 0.5



Computing the static response from weak external potentials

V (r) = V0 EF cos(k · r)

E(V0) = E0
P

f h0|V (r)|fihf |V (r)|0i
Ef  E0

E(V0) = E0
Z

d! S(k,!)/!

At low q,  E(V0) determined by compressibility (ξ )
Next order in q determined by cg

Use AFMC to compute the energy for weak external potentials
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break in LDA curve
separated quasi 2D planes

Carlton and Gandolfi
PRA, 2014
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Can apply density functional to arbitrary external potentials:

q=kF/2
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What about finite systems?

Consider a small number of particles trapped in a harmonic oscillator :

The density functional makes a unique prediction:

No knowledge of (fermionic) shell closures.
Pairing dominates - effectively bosonic DOF only.
Clear approach to the bulk limit.

Does this work and for what N?

Compare DFT prediction to AFMC calculations.
Simple dimensional analysis for large N:  (E/ ETF)2 → ξ
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Improved DMC results for trapped fermions

More sophisticated trial wavefunction which includes additional 
       single-particle orbitals & terms which go to SLDA-like pairing.
Approaches FN bulk limit of 0.39 
No obvious shell closures



0 20 40 60 80
0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
(E

 /
 E

T
F
)2

DMC

AFQMC q
2

AFQMC q
4

0 0.1 0.2 0.3 0.4

N
-2/3

0.35

0.40

0.45

0.50

0.55

0.60

E
TF

 = ω(3N)
4/3

/4

ε
2

ε
4

2

AFMC results for trapped fermions

Fourth order density functional gives excellent predictions for N ~ 10 and larger.
Correct approach to bulk ξ. 
No evidence of shell gaps - isolated fermions cannot propagate across the system.



Summary of Fermions at Unitarity

Low-Energy degrees of freedom are phonons in UFG

Scale invariance ties linear response to complete functional

cg = 0.3-0.4 
       compared to 0.111 for BCS (free fermions)
                          0.50   for BEC (free bosons of mass 2m)

Quadratic corrections important for trapped fermions

No evidence for shell structure (large pairing gap)
    in the unitary Fermi Gas, even for small systems



Unitary Bosons

2-body attractive interaction
tuned to unitarity

3-body repulsive interaction
tuned to very weakly bound

(Efimov) trimer: binding energy E3

Ground state can be solved for 
exactly with DMC



Vij = V 0
2

h̄2

m
µ2
2 exp[−(µ2rij)

2/2] ,

Vijk = V 0
3

h̄2

m

⇣µ3

2

⌘2

exp[−(µ3Rijk/2)
2/2] ,

H = − h̄2

2m

X

i

r2
i +

X

i<j

Vij +
X

i<j<k

Vijk,

Hamiltonian for Bosons

Rijk = (r2ij + r2ik + r2jk)
1/2.

  
  
  
 

  

y
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Many previous calculations use a zero-range 2-body
   interaction plus a hard-core 3-body binding energy:
   this fixes the trimer binding for a given radius.

The above formulation can be tuned to arbitrarily small
    3-body binding energies.

Potential for right angle vs. r12 and r13
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Cluster Binding Energy vs. # of Bosons



0 10 20 30 40 50 60
N

0.3

0.4

0.5

0.6
 <

 r2 >1/
2 / R

3

0 0.2 0.4 0.6 0.8 1
r / R3

0

100

200

300

ρ 
4π

R 3
3 / 3

N=60
N=40
N=20
N=10

g gy
R̄3 ⌘ (−2mE3/h̄

2)−1/2

Cluster RMS radii 

Cluster single-particle densities



100 200 300 400 500
ρ  4π R3

3/3

-90

-80

-70

-60

-50

-40

(E
/N

) /
 (|

E 3|/3
)

X
µ
 = 0.50

X
µ
 = 0.75

X
µ
 = 1.00

Homogeneous Matter Equation of State



0 0.05 0.1 0.15 0.20

5

10

15
g 2 (r

)
X

µ
 = 0.5

X
µ
 = 0.75

X
µ
 = 1

0 0.1 0.2 0.3 0.4
r /  R3

0
0.2
0.4
0.6
0.8

1

g 3 (r
)

32 π
2
ρ

2/3 r2g2(r)/10

2- and 3-body distribution functions

Contacts given by extrapolation to r=0



Contacts:

↵2 = 17(3)

β3 = 0.9(1)

analysis of rapid quench experiments:
↵2 = 22(1)

β3 = 2.1(1)

Smith, Braaten, Kang, Platter PRL 2014
analysis of Jin experimentCondensate Fraction

⌘ = 0.92(1)

QMC contacts

Non-interacting Quench MeasurementMappingEvolution
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MIT group: Fletcher, et al, PRL 2016

Cluster binding vs. N 
roughly similar to 

liquid 4He,
but 4He has only
7% condensate



Conclusions

 Unitary Bosons and Fermions are scale-invariant
 Comparatively simple DFT
 Can predict properties of small finite systems 

     from calculations of hom/inhomogeneous matter
 Experimentally testable

     many external potentials will be available



Further tests of DFT

 Test specifically for properties of self-bound systems
 can test different external potentials
 comparisons of static/dynamic response 

 Test pairing functionals
 generalize interactions above 

   to different scattering length 
   and effective range 



Can we test dynamics ?

 Significant information on dynamics can be 
    obtained through path integral simulations:

 density, spin response
 low-lying collective excitations

 Contacts are interesting, relate EOS to  
     high-momentum tails: EOS can be obtained 
     from a DFT, but high momentum tails? 

At what energies and momenta does DFT
          start to break down?



What can ab-initio do to inform DFT?

 purely attractive interactions have no sign problem: 
       EOS, gradients, static and dynamic response
 Can approach neutron matter much more closely
 Study neutrons with a fixed background proton density
 Real nuclei, ….



Backup Slides



Inhomogeneous Fermi Gas

Low-lying excitations (phonons)
Transitions from 3 dimensions to 2 dimensions
How do finite systems behave - bulk vs. finite

Density functional
Necessary to understand `exotic’ (LOFF,...) phases

Add a spin-independent background potential
Examine the system for :

        weak periodic potentials
        Harmonic Oscillator potentials (1d, 2d, 3d,...)
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Constrain Isovector Gradient Terms in the density functional

Cold atoms versus neutron drops

Comparison of different Hamiltonians



!(q) ⇡ S1(q)/S0(q) = q2/S0(q)

!(q) ! 1/(4⇥ 0.629(1)) = 0.397(1)at q/kF = 0.5



Density Response and Sum Rules

R(q,!) = h0| ⇢†(q) |fihf | ⇢(q) |0i δ(w  (Ef  E0))
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S (q) =

Z
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high-q limit determined by contact
Here we are (first) interested in low q

S (q)
q!1−−−! 1



Static Response: Inverse energy weighted sum rule
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Static Response:  response of the system to
                         a weak static external potential
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What about high-energy excitations?
Spin Response at high q
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Looks like nuclear quasi-elastic scattering:
Dominated by single peak at QE kinematics
width of response determined by the momentum distribution 
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n(k) in BCS and DMC
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Spin response in PWIA approximation



  

 

  

  

 

       

  
   

     

Add spectral function from quasi-particle spectrum
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Spin response with spectral function information



Density response looks very different

Density response has two peaks:  q2/(2m) for single-particle (also seen in spin 
response)
                  q2/(4m) for pairs
Difference in final state interactions
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Density Response: BCS theory
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Gives low-energy peak, but too narrow
All pairs at P=0 in BCS
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Qualitatively correct, but more physics input needed


