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MOTIVATION

? Astrophysical applications require theoretical approaches
capable to provide a consistent description of properties of
nuclear matter other than the equation of state at zero
temperature, including the neutrino emission and absorption
rates, the transport coefficients as well as the superfluid and
superconducting gaps

? Effective interactions obtained from a microscopic nuclear
dynamics—strongly constrained by phenomenology—combine
the flexibility of the effective interaction approach with the
ability to provide a realistic description of a variety of
equilibrium and non equilibrium properties.
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THE PARADIGM OF ab initio NUCLEAR MANY-BODY THEORY

? Nuclear systems can be described as a collection of pointlike
protons and neutrons interacting through the hamiltonian

H =
∑

i

p2
i

2m
+
∑

j>i

vij +
∑

k>j>i

Vijk = H0 +HI

? The Hamiltonian is determined from the properties of exacltly
(A = 2, 3)—or nearly exactly (A→∞)—systems. In principle,
describing the properties of more complex systems should not
require additional adjustable parameters.

? The matrix elements of HI between eigenstates of H0, are
generally large, and cannot be used to do standard perturbation
theory

? Effective interactions are designed to obtain accurate estimates of
nuclear properties at lowest order perturbation theory

? Ideally, effective interactions should be derived from the bare
Hamiltonian
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INTRODUCING THE EFFECTIVE INTERACTION

? Consider nuclear matter. The eigenstates of H0 are Fermi gas
states {|nFG〉}

? Taming the matrix element of the Hamiltonian

〈mFG|H|nFG〉 ⇒




〈mFG|Heff |nFG〉 (H ⇒ Heff)

〈m|H|n〉 ({|nFG〉} ⇒ {|n〉})

. Use the effective Hamiltonian Heff in standard perturbation theory
with Fermi gas basis states, as in the G-matrix approach

. Use the bare Hamiltonian to do perturbative calculations in the new
basis, as in the approach based on Correlated Basis Functions (CBF)

? The effective interaction must be designed in such a way as to
provide accurate estimates of nuclear matter properties at lowest
order of standard perturbation theory

4 / 18



? In principle, the two approaches may be merged defining the
new basis states through the transformation

|n〉 = F |nFG〉
leading to

Heff = F †HF

? Implementing this simple prescription requires qualifications,
associated with the definition and determination of F

? In the generalised Jastrow ansatz

F =
∏

j>i

Fij , Fij =
∑

n

f (n)(rij)O
(n)
ij

with the operator structure of Fij reflecting the one of the
nucleon-nucleon (NN) potential. As rij →∞, Fij → 11
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DETERMINATION OF THE CORRELATION FUNCTION

? The shape of the f (n)(rij) is determined variationally,
minimising the expectation value of the Hamiltonian in the
correlated ground state, evaluated using the cluster expansion
techinque

〈H〉 =
〈0|H|0〉
〈0|0〉 ≥ E0

? Accurate nuclear calculations can be carried out exploiting the
cluster expansion formalism

〈H〉 = EFG +
∂

∂β
ln〈0|eβ(H−EFG) |0〉

∣∣∣∣
β=0

= EFG +
∑

`≥2

∆E`[F ]

where ∆E`[F ] is the contribution arising from clusters of `
correlated particles, and summing up all relevant contributions
solving the FHNC/SOC integral equations

? 〈H〉 is minimized with respect to a set of variational parameters
determining the range of the correlation functions
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FROM 〈H〉 TO 〈Heff〉

? The effective interaction is defined through the equation

〈H〉FHNC/SOC = EFG +
∑

`≤`max

∆`[F̃ ]

= EFG + 〈0FG|Veff |0FG〉

with

Veff =
∑

j>i

vijeff , vijeff =
∑

n

v
(n)
eff (rij)O

(n)
ij

O
(n≤6)
ij = [1, (σi · σj), Sij ]⊗ [1, (τi · τj)]

Sij =
3

r2
ij

(σi · rij)(σj · rij)− (σi · σj)

and the range of F̃ is adjusted in such a way as to obtain the
FHNC/SOC results at low order of the cluster expansion
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? Pedagogical example: neglecting three-nucleon forces, one may
set `max = 2, and obtain

vijeff =
1

m

(
∇F̃ij

)2

+ F̃ijvijF̃ij

? Note that the correlation function F̃ij depends on density, and so
does the effective interaction

? Adding three-body cluster terms allows to take into account the
leading contributions arising from the three-nucleon potential,
the inclusion of which is essential to obtain saturation in
isospin-symmetric nuclear matter

? The resulting effective interaction reproduces the FHNC/SOC
ground-state energies of both isospin-symmetric nuclear matter
(SNM) and pure neutron matter (PNM). It can be used to
describe matter at fixed baryon density and arbitrary proton
fraction
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NN POTENTIAL AND CORRELATION FUNCTIONS

? ANL v′6 potential
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? CBF effective interaction in the T = 1 channel at nuclear matter
equilibrium density, obtained from the Argonne v′6 + UIX
nuclear Hamiltonian

-200

0

200

400

600

800

1000

0 0.5 1 1.5 2 2.5

v
(r

)
[M

eV
]

r [fm−1]

(a) veff
S=0,T=1(r)

vbare
S=0,T=1(r)

-200

0

200

400

600

800

1000

0 0.5 1 1.5 2 2.5

v
(r

)
[M

eV
]

r [fm−1]

(b) veff
S=1,T=1(r)

vbare
S=1,T=1(r)

-40

-20

0

20

40

60

80

0 0.5 1 1.5 2 2.5

v
(r

)
[M

eV
]

r [fm−1]

(c) veff
t,T=1(r)

vbare
t,T=1 (r)

10 / 18



DENSITY DEPENDENCE OF THE EFFECTIVE INTERACTION

? 1S0 channel
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GROUND STATE ENERGY AND SINGLE-PARTICLE SPECTRUM

? The ground state energy per baryon can be computed at first
order in the effective interaction —that is, in Hartree–Fock
approximation—for fixed baryon density and arbitrary proton
fraction and polarizartions

E

NB
=
∑

kλ

k2

2m
nλ(k) +

1

2

∑

kλ ,k′λ′

〈kλ k′λ′|veff |kλ k′λ′〉A nλ(k)nλ′(k′)

where λ = 1, 2, 3, 4 corresponds to p ↑, p ↓, n ↑, n ↓, and

nλ(k) = θ(kFλ − |k|) , kFλ = (3π2ρλ)1/3

? The same approximation can be employed to obtain the
single-nucleon spectrum and the effective masses

eλ(k) =
k2

2m
+
∑

k′λ′

〈kλ k′λ′|veff |kλ k′λ′〉A nλ(k) ,
1

m?
=

1

|k|
deλ(k)

d|k|
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? Density dependence of the ground state energy per nucleon of
unpolarized pure neutron matter (PNM) and
isopspin-symmetric nuclear matter (SNM) obtained from the
Argonne v′6 + UIX nuclear Hamiltonian

? Note that the v′6 + UIX Hamiltonian, while yielding saturation
at ρ ≈ ρ0 = 0.16 fm−3, underestimates the equilibrium energy of
SNM by ∼ 5 MeV, corresponding to a ∼ 15% underestimate of
the interaction energy
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? Energy of unpolarized nuclear matter as a function of baryon
density and proton fraction 0 ≤ xp ≤ 0.5

0.0
0.1

0.2
0.3

0.4
0.5

𝜌 [fm
−3 ]

0.0
0.1

0.2
0.3

0.4
0.5

𝑥u�

-40
-20

0
20
40
60
80

100
120

E
/A

[M
eV

]

14 / 18



SINGLE-NUCLEON SPECTRUM

? Momentum dependence of proton and neutron spectra at
nuclear matter equilibrium density and different proton fraction

15 / 18



EFFECTIVE MASS (HARTEE-FOCK)

? Density dependence of m?(kF )/m
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EXTENSION TO T > 0

? Assuminhg that thermal effect do not significantly affect the
dynamics of strong interactions, the effective interaciotns can be
used to obtain the properties of nuclear matter at T > 0

? Replace θ(kF − k)→ {1 + exp[e(k)− µ]/T}−1
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PERSPECTIVES & OPEN QUESTIONS

? The effective interaction based on the CBF formalism and the
cluster expansion technique can be used to carry out consistent
calculations of a variety of nuclear matter properties relevant to
astrophysical processes.

? Improving the accuracy using more realistic bare Hamiltonian,
including chirally inspired potentials, does not involve any
conceptual difficulties

? In a way, the CBF effective interaction can be seen as belonging
to the family of Skyrme-like interaction, as it is defined in terms
of its ground-state expectation value. However, it has the most
important property of reducing to the bare NN interaction in the
zero-density limit

? The ability to carry out accurate calculations of quantities other
than the ground-state energy at zero temperature cannot be
taken for granted. It is an assumption that needs to be
thoroughly tested at numerical level
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Additional Slides
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IN-MEDIUM CROSS SECTION

? Neutron-Neutron Channel

W (p,p′) = 2π
∣∣∣V̂eff (p− p′)

∣∣∣
2

ρ(p′)

dσ

dΩp′
=

m?2

16π2

∣∣∣V̂eff (p− p′)
∣∣∣
2
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

THE HARD-SPHERE MODEL

The Fermi hard-sphere model: point-like spin one-half particles

v(r) =

⇢
1 r < a
0 r > a

? Valuable model to study properties
of nuclear matter.

? Purely repulsive potential to prevent the
possibility of Cooper pairs formation.

? A simple many-body system to investigate
the validity and robustness of the
assumptions of CBF effective interaction
approach.

2 / 23
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

THE GROUND-STATE ENERGY

E0 =
3k2

F

10m
(1 + ⇣)

I The accuracy of the variational results depends on the quality of the trial
wave function.

I Long-range statistical correlations effects in f(r) much larger for ⌫ = 2
than for ⌫ = 4.

I DMC overcomes the limitations of the variational approach by using a
projection technique on the trial wave function.
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EFFECTIVE MASS

? Second order, energy-dependent, contributions included
INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

QUASIPARTICLE SPECTRUM

m� =

�
1

k

de(k)

dk

��1

de(k)

dk
=

�
k

m
+

�

�k
Re� (k, E)

� �
1 � �

�E
Re� (k, E)

��1

E=e(k)
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

MOMENTUM DISTRIBUTION ⌫ = 4

In comparison with non orthogonal CBF perturbation theory

S. Fantoni and V. R. Pandharipande, Nucl. Phys. A 427(1984)

Momentum distribution of HS

c ⌘ kF a = 0.55

corresponds to n(k) of nuclear matter

⇢NM = 0.16 fm�3

kF = 1.33 fm�1

Nucleons in nuclear matter ⇠ HS
of radius a = 0.55/1.33 ⇠ 0.4 fm.

Virtual scattering processes between strongly correlated particles are mainly
driven by the short-range repulsive core of the nucleon-nucleon interaction.
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PRESSURE OF SNM AND SYMMETRY ENERGY
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DENSITY DEPENDENCE OF ∆F

? Gap function obtained using the bare v′6 potential (dashed line)
with kinetic energy spectrum (dashed line) and the CBF effective
interaction with Hartee-Fock spectrum (solid line)
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SHEAR VISCOSITY OF PNM

? Density dependence of ηT 2 of PNM

? Medium modifications of the scattering cross section increase
ηT 2 by a factor ∼ 3− 7 @ ρ/ρ0 ∼ 1− 2
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THERMAL CONDUCTIVITY OF PNM
? Results from PRC 81, 024305 (2009). Three-nucleon interactions

not taken into account.

? The transport coefficients computed using the CBF effective
interaction is remarkably close to the result obtained within the
G-matrix approach using the same bare NN potential.
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NEUTRINO MEAN FREE PATH IN COLD NEUTRON MATTER
? The mean free path of non degenerate neutrinos at zero

temperature is obtained from

1

λ
=
G2
F

4
ρ

∫
d3q

(2π)3

[
(1 + cos θ)S(q, ω) + C2

A(3− cos θ)S(q, ω)
]

where S and S are the density (Fermi) and spin (Gamow Teller)
response, respectively [A. Lovato et al, NPA 89, 025804 (2013);
PRC 89, 025804 (2013)]
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NEUTRINO LUNINOSITY OF PROTO NEUTRON STARS (PNS)
12
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FIG. 5. Time dependence of the total neutrino luminosity (upper row), gravitational mass (middle row), and stellar radius (lower
row) of a PNS evolved with the three EoSs discussed in this paper and the baryon stellar masses MB = (1.25, 1.40, 1.60) M⊙.
The black solid lines correspond to the GM3 EoS determined through the fit and the procedure described in Sec. II C, the blue
dashed lines to the LS-bulk EoS, and the dot-dashed red lines to the CBF-EI EoS.
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FIG. 6. Signal in the Super-Kamiokande III Cherenkov detector, for the three EoSs considered in this paper. In the top panels,
electron antineutrino detection rate; in the bottom panels, electron antineutrino cumulative detection. In the left plots, we
consider a star with MB = 1.25 M⊙, in the central plots MB = 1.40 M⊙, and in the right plots MB = 1.60 M⊙. Colors and
linestyles are as in Fig. 5.

all neutrino species, and (iii) a vanishing chemical poten-
tial for the muon and tauon neutrinos everywhere in the
star. The assumptions (i) and (ii) are reasonable in the
interior of the star, and lose accuracy near the stellar bor-
der, where the diffusion approximation breaks down and
in practice the fluxes are always flux-limited. To obtain
a precise description of the neutrino emitted spectrum,
one has to employ multi-flavour multi-group evolution-
ary codes (see e.g. [11]), that possibly also account for
neutrino leakage near the stellar border. This is outside
the aims of our work; however our approximations are
reasonable as far as one is interested in total quantities,
in particular the total neutrino luminosity Lν (Fig. 5),
which is equal to minus the gravitational mass variation
rate,

Lν = e2φ(R)4πR2Hν(R) = −dM

dt
, (44)

where Hν(R) is the neutrino energy luminosity at the
stellar border.

We determine the formula to estimate the signal in
terrestrial detectors following [9] and applying a slight
modification introduced by [3], and we specify our re-
sults for the Super-Kamiokande III detector [36, 37]. The
main reaction that occurs in a water detector like Super-
Kamiokande is the electron antineutrino absorption on
protons, ν̄e + p → n + e+ (Eq. (1) of [36]). The number
flux of antineutrinos arriving at the detector is given by

dN
dt

=
σ̃0ñpM
4πD2

eφν TνLν̄e

GW (eφν Tν, Eth)

7π4/120
, (45)

GW =

∫ ∞

Eth/T

x2
(
x − ∆

T

) √(
x − ∆

T

)2 −
(

me

T

)2

1 + ex
W (xT )dx,

(46)

where ñp ≃ 6.7 × 1031 kton−1 is the number of free pro-
tons (i.e., hydrogen atoms) per unit water mass of the
detector, σ̃0 = 0.941× 10−43 cm2MeV−2, M is the water
mass of the detector, D is the SN distance from the de-
tector, GW is a modified and truncated Fermi integral,
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FREQUENCIES OF QUASI NORMAL MODES OF PNS
15

perturbed fluid element to the equilibrium position. For
the pn-modes, or “pressure modes”, (n = 1, 2, . . . ) the
main restoring force is due to pressure; for the gn modes
(n = 1, 2, . . . ), or “gravity modes”, the main restoring
force is buoyancy. The order n of the mode corresponds
to the number of nodes of the radial eigenfunction of the
displacement vector. The f -mode, i.e., the fundamental
mode of the star, describes the global pulsation motion
of the fluid, and has no radial nodes. In a cold neutron
star, typical values for the QNM frequencies and damping
times are νf ≃ 1.5 − 2.5 kHz, τf ≃ 0.1 s, νp1 ≃ 5 −
10 kHz, and τp1 = 1 − 10 s. The g-modes are due to
the presence of thermal and/or composition gradients; in
absence of composition gradients, all g-modes of a cold
neutron star degenerate to zero frequency. Conversely,
they are present in a PNS [12, 14], as we shall show below.

To determine the quasi-normal mode frequencies at a
given time t of the stellar evolution, we have first evolved
the PNS, finding the profiles of the pressure P (r, t), the
energy density ϵ(r, t), the baryon number density nB(r, t),
and the sound speed, cs(r, t), for the three EoSs and
the different values of the baryonic mass we consider
in this paper. Then we have determined the “effective
barotropic EoS” by inverting the pressure-radius profile,
thus finding r = r(P, t) and then ϵeff (P ; t) = ϵ(r(P, t), t)
and ceff

s (P ; t) = cs(r(P, t), t). Using these expressions,
we have solved the equations of stellar perturbations (we
used the formulation of [40]), to find the frequencies and
damping times of the first p- and g-modes and of the
fundamental mode.

A. Results of the numerical evolution

We have evolved three stellar models with baryon
masses (1.25, 1.40, and 1.60 M⊙) and the EoSs LS-bulk,
CBF-EI and GM3, which was used in [12]. For this EoS,
the QNM frequencies we compute for the 1.60 M⊙ star
agree with those of “model A” of [12] within a few per-
cent. We think that the small differences between our
results and those of [12] are due to differences in the ini-
tial profiles and in the details of the treatment of the
diffusion processes. The numerical values of the f -, g1-
and p1- QNM frequencies and damping times are tabu-
lated in Appendix C.

In Fig. 7 we show, as an example, how the QNM fre-
quencies and damping times change during the first 5
seconds of the PNS life. The plots are given for the
three EoSs we consider, and for a star with baryonic mass
MB = 1.40 M⊙ as an example.

In the upper panel we show the frequency of the g1-
and of the f - modes, in the mid panel the frequency of
the mode p1, and in the lower panel the damping time
of the three modes. From the upper panel of Fig. 7 we
see that during the first second, νg1 approaches νf , but
they never cross. At later times, νg1 increases, reaches a
maximum and then decreases, whereas νf does the op-
posite: it reaches a minimum slightly before νg1 reaches
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FIG. 7. Time dependence of the PNS quasi-normal mode
frequencies and damping times for the three EoSs and for
MB = 1.40 M⊙.

its maximum, and then increases toward the asymptotic
value of the corresponding cold neutron star. This be-
haviour is a general feature of the three EoS; however,
the minimum (maximum) of νf (νg1) occurs at different
times for different EoSs. In particular it occurs earlier
for CBF-EI (about half a second before LS-bulk), which
is the EoS which exhibits the largest time variation of
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main restoring force is due to pressure; for the gn modes
(n = 1, 2, . . . ), or “gravity modes”, the main restoring
force is buoyancy. The order n of the mode corresponds
to the number of nodes of the radial eigenfunction of the
displacement vector. The f -mode, i.e., the fundamental
mode of the star, describes the global pulsation motion
of the fluid, and has no radial nodes. In a cold neutron
star, typical values for the QNM frequencies and damping
times are νf ≃ 1.5 − 2.5 kHz, τf ≃ 0.1 s, νp1 ≃ 5 −
10 kHz, and τp1 = 1 − 10 s. The g-modes are due to
the presence of thermal and/or composition gradients; in
absence of composition gradients, all g-modes of a cold
neutron star degenerate to zero frequency. Conversely,
they are present in a PNS [12, 14], as we shall show below.

To determine the quasi-normal mode frequencies at a
given time t of the stellar evolution, we have first evolved
the PNS, finding the profiles of the pressure P (r, t), the
energy density ϵ(r, t), the baryon number density nB(r, t),
and the sound speed, cs(r, t), for the three EoSs and
the different values of the baryonic mass we consider
in this paper. Then we have determined the “effective
barotropic EoS” by inverting the pressure-radius profile,
thus finding r = r(P, t) and then ϵeff (P ; t) = ϵ(r(P, t), t)
and ceff

s (P ; t) = cs(r(P, t), t). Using these expressions,
we have solved the equations of stellar perturbations (we
used the formulation of [40]), to find the frequencies and
damping times of the first p- and g-modes and of the
fundamental mode.

A. Results of the numerical evolution

We have evolved three stellar models with baryon
masses (1.25, 1.40, and 1.60 M⊙) and the EoSs LS-bulk,
CBF-EI and GM3, which was used in [12]. For this EoS,
the QNM frequencies we compute for the 1.60 M⊙ star
agree with those of “model A” of [12] within a few per-
cent. We think that the small differences between our
results and those of [12] are due to differences in the ini-
tial profiles and in the details of the treatment of the
diffusion processes. The numerical values of the f -, g1-
and p1- QNM frequencies and damping times are tabu-
lated in Appendix C.

In Fig. 7 we show, as an example, how the QNM fre-
quencies and damping times change during the first 5
seconds of the PNS life. The plots are given for the
three EoSs we consider, and for a star with baryonic mass
MB = 1.40 M⊙ as an example.

In the upper panel we show the frequency of the g1-
and of the f - modes, in the mid panel the frequency of
the mode p1, and in the lower panel the damping time
of the three modes. From the upper panel of Fig. 7 we
see that during the first second, νg1 approaches νf , but
they never cross. At later times, νg1 increases, reaches a
maximum and then decreases, whereas νf does the op-
posite: it reaches a minimum slightly before νg1 reaches
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FIG. 7. Time dependence of the PNS quasi-normal mode
frequencies and damping times for the three EoSs and for
MB = 1.40 M⊙.

its maximum, and then increases toward the asymptotic
value of the corresponding cold neutron star. This be-
haviour is a general feature of the three EoS; however,
the minimum (maximum) of νf (νg1) occurs at different
times for different EoSs. In particular it occurs earlier
for CBF-EI (about half a second before LS-bulk), which
is the EoS which exhibits the largest time variation of
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