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MOTIVATION

% Astrophysical applications require theoretical approaches
capable to provide a consistent description of properties of
nuclear matter other than the equation of state at zero
temperature, including the neutrino emission and absorption
rates, the transport coefficients as well as the superfluid and
superconducting gaps

* Effective interactions obtained from a microscopic nuclear
dynamics—strongly constrained by phenomenology—combine
the flexibility of the effective interaction approach with the
ability to provide a realistic description of a variety of
equilibrium and non equilibrium properties.



THE PARADIGM OF ab initio NUCLEAR MANY-BODY THEORY

* Nuclear systems can be described as a collection of pointlike
protons and neutrons interacting through the hamiltonian

2
H:Z2;ﬁ+zvij+ Z Vijxk = Ho + Hy

Jj>i k>j>i

* The Hamiltonian is determined from the properties of exacltly
(A = 2, 3)—or nearly exactly (A — oco)—systems. In principle,
describing the properties of more complex systems should not
require additional adjustable parameters.

* The matrix elements of H; between eigenstates of H, are

generally large, and cannot be used to do standard perturbation
theory

* Effective interactions are designed to obtain accurate estimates of
nuclear properties at lowest order perturbation theory

* Ideally, effective interactions should be derived from the bare
Hamiltonian



INTRODUCING THE EFFECTIVE INTERACTION

* Consider nuclear matter. The eigenstates of H are Fermi gas
states {|nrq)}
* Taming the matrix element of the Hamiltonian

(mpg|HegInrg) (H = Heg)
<TTLFg|H"n,Fg> =

(m|H|n) ({lnra)} = {Im})

> Use the effective Hamiltonian H.g in standard perturbation theory
with Fermi gas basis states, as in the G-matrix approach

> Use the bare Hamiltonian to do perturbative calculations in the new
basis, as in the approach based on Correlated Basis Functions (CBF)
* The effective interaction must be designed in such a way as to
provide accurate estimates of nuclear matter properties at lowest
order of standard perturbation theory



% In principle, the two approaches may be merged defining the
new basis states through the transformation

[n) = Flnra)
leading to
Heyg=F'HF

% Implementing this simple prescription requires qualifications,
associated with the definition and determination of I’

% In the generalised Jastrow ansatz
F=IF; . Fy=> f"@y0;
>t n

with the operator structure of F;; reflecting the one of the
nucleon-nucleon (NN) potential. As r;; — oo, Fi; — 1



DETERMINATION OF THE CORRELATION FUNCTION

* The shape of the f(")(r;;) is determined variationally,
minimising the expectation value of the Hamiltonian in the
correlated ground state, evaluated using the cluster expansion
techinque

(0] H0)

(0[0y

(H) = 0
% Accurate nuclear calculations can be carried out exploiting the
cluster expansion formalism

o
(H) = Epg + 5 In(0|e(H~Fra) |o>‘ = Erc + »_ AE([F]
B=0 0>2

where AEy[F] is the contribution arising from clusters of ¢
correlated particles, and summing up all relevant contributions
solving the FHNC/SOC integral equations

* (H) is minimized with respect to a set of variational parameters
determining the range of the correlation functions



FROM (H) TO (H.)

% The effective interaction is defined through the equation
(H)punc/soc = Era + Y, A

£<lmax
with

= Erc + (0pc|Ver|Ora)

_ E ij
V:sﬁ - Ve 5

eff - Zveff TU 1]
j>i
<6)
O(n_ =
)

(1, (0 05), Si] @ [1, (73 - 75)]
Sij = %(Ui “145) (0 1) — (07 - 0;)

and the range of F' is adjusted in such a way as to obtain the
FHNC/SOC results at low order of the cluster expansion

[m]

=



* Pedagogical example: neglecting three-nucleon forces, one may
set max = 2, and obtain

N2
éch = (VFZ'J') F UUFJ

Note that the correlation function F;; depends on density, and so
does the effective interaction

Adding three-body cluster terms allows to take into account the
leading contributions arising from the three-nucleon potential,
the inclusion of which is essential to obtain saturation in
isospin-symmetric nuclear matter

The resulting effective interaction reproduces the FHNC/SOC
ground-state energies of both isospin-symmetric nuclear matter
(SNM) and pure neutron matter (PNM). It can be used to
describe matter at fixed baryon density and arbitrary proton
fraction



NN POTENTIAL AND CORRELATION FUNCTIONS

* ANL vg potential
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* CBF effective interaction in the 7' = 1 channel at nuclear matter

equilibrium density, obtained from the Argonne v + UIX
nuclear Hamiltonian
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DENSITY DEPENDENCE OF THE EFFECTIVE INTERACTION

% 1Sy channel
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GROUND STATE ENERGY AND SINGLE-PARTICLE SPECTRUM

* The ground state energy per baryon can be computed at first
order in the effective interaction —that is, in Hartree—Fock
approximation—for fixed baryon density and arbitrary proton
fraction and polarizartions
A 3 K+t 3 AN TN KN 4 na (K)na (K)

N B 2m 2

kA kA K/
where A =1, 2, 3, 4 corresponds top 1, p |, n 1, n |, and

na(k) = O(kp, — [k|) , kp, = (37%p0)"°
% The same approximation can be employed to obtain the

single-nucleon spectrum and the effective masses

2 11 dex(k
ex(k) = 5=+ D> (AKX o kAKN) 4 na(k) o

m* k| dk|
| 3P\
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E/A [McV]

% Density dependence of the ground state energy per nucleon of
unpolarized pure neutron matter (PNM) and
isopspin-symmetric nuclear matter (SNM) obtained from the
Argonne v + UIX nuclear Hamiltonian
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* Note that the vy + UIX Hamiltonian, while yielding saturation
at p ~ pp = 0.16 fm~?, underestimates the equilibrium energy of
SNM by ~ 5 MeV, corresponding to a ~ 15% underestimate of
the interaction energy



* Energy of unpolarized nuclear matter as a function of baryon
density and proton fraction 0 < z, < 0.5
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SINGLE-NUCLEON SPECTRUM

* Momentum dependence of proton and neutron spectra at
nuclear matter equilibrium density and different proton fraction
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EFFECTIVE MASS (HARTEE-FOCK)

* Density dependence of m*(kg)/m
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EXTENSION TO T > 0

* Assuminhg that thermal effect do not significantly affect the
dynamics of strong interactions, the effective interaciotns can be
used to obtain the properties of nuclear matter at 7 > 0

* Replace 0(kp — k) — {1 + exple(k) — u]/T} !
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PERSPECTIVES & OPEN QUESTIONS

* The effective interaction based on the CBF formalism and the
cluster expansion technique can be used to carry out consistent
calculations of a variety of nuclear matter properties relevant to
astrophysical processes.

% Improving the accuracy using more realistic bare Hamiltonian,
including chirally inspired potentials, does not involve any
conceptual difficulties

% In a way, the CBF effective interaction can be seen as belonging
to the family of Skyrme-like interaction, as it is defined in terms
of its ground-state expectation value. However, it has the most
important property of reducing to the bare NN interaction in the
zero-density limit

» The ability to carry out accurate calculations of quantities other
than the ground-state energy at zero temperature cannot be
taken for granted. It is an assumption that needs to be
thoroughly tested at numerical level
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IN-MEDIUM CROSS SECTION

* Neutron-Neutron Channel

N 2
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THE HARD-SPHERE MODEL

The Fermi hard-sphere model: point-like spin one-half particles

oo r<a

v(r):{ 0 r>a

* Valuable model to study properties
of nuclear matter.

* Purely repulsive potential to prevent the
possibility of Cooper pairs formation.

* A simple many-body system to investigate
the validity and robustness of the
assumptions of CBF effective interaction
approach.
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THE GROUND-STATE ENERGY
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» The accuracy of the variational results depends on the quality of the trial
wave function.

» Long-range statistical correlations effects in f(r) much larger for v = 2
than for v = 4.

» DMC overcomes the limitations of the variational approach by using a
projection technique on the trial wave function.



EFFECTIVE MASS

* Second order, energy-dependent, contributions included

QUASIPARTICLE SPECTRUM
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MOMENTUM DISTRIBUTION v = 4

In comparison with non orthogonal CBF perturbation theory
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of radius a = 0.55/1.33 ~ 0.4 fm.
S. Fantoni and V. R. Pandharipande, Nucl. Phys. A 427(1984)

Virtual scattering processes between strongly correlated particles are mainly
driven by the short-range repulsive core of the nucleon-nucleon interaction. J




PRESSURE OF SNM AND SYMMETRY ENERGY
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DENSITY DEPENDENCE OF A

* Gap function obtained using the bare vg potential (dashed line)
with kinetic energy spectrum (dashed line) and the CBF effective
interaction with Hartee-Fock spectrum (solid line)
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SHEAR VISCOSITY OF PNM

* Density dependence of nT% of PNM
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* Medium modifications of the scattering cross section increase
nT? by afactor~3—-7Qp/py~1—2



THERMAL CONDUCTIVITY OF PNM

* Results from PRC 81, 024305 (2009). Three-nucleon interactions
not taken into account.
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% The transport coefficients computed using the CBF effective
interaction is remarkably close to the result obtained within the
G-matrix approach using the same bare NN potential.



NEUTRINO MEAN FREE PATH IN COLD NEUTRON MATTER

* The mean free path of non degenerate neutrinos at zero
temperature is obtained from
1_Gh, [ &

N 4" @np
where § and S are the density (Fermi) and spin (Gamow Teller)
response, respectively [A. Lovato et al, NPA 89, 025804 (2013);
PRC 89, 025804 (2013)]
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NEUTRINO LUNINOSITY OF PROTO NEUTRON STARS (PNS)
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FREQUENCIES OF QUASI NORMAL MODES OF PNS
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