Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Orsay, October 2017

- N2LO/N3LO extensions : physical motivation
- Results in infinite matter
- Extension of Gogny interaction
- Application in astrophysics
- Application to finite nuclei: first results
- Conclusion

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

N2LO/N3LO extensions : physical motivation

- Construction of new effective interactions necessary!
- Instabilities experienced with popular interactions (Skyrme, Gogny)
- Initial idea (Skyrme) : expansion in powers of momentum (k^2) → systematic expansion up to k^n ... which *n*???

N2LO :
$$n = 2$$
; N3LO : $n = 3$; ...

Gogny: e^{-r^2/μ^2} , M3Y : $e^{-\mu r}/\mu r$, ... : SAME kind of expansion [F. Raimondi et al., Phys.Rev. C84 (2011) 064303]

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

N2LO/N3LO extensions : physical motivation

Finite-range interaction D1S: infinite sum of partial waves.

Only S, P, D and F ($\ell < 4$) waves necessary \rightarrow N3LO good enough

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Skyrme pseudo-potential N2LO/N3LO

$$\mathcal{V}(\mathbf{r}_{1},\mathbf{r}_{2}) = t_{0} (1 + x_{0} P_{\sigma}) + \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) \rho^{\alpha}(R) \\ + \frac{1}{2} t_{1} (1 + x_{1} P_{\sigma}) [\mathbf{k}^{2} + \mathbf{k}^{2}] + t_{2} (1 + x_{2} P_{\sigma}) \mathbf{k}^{'} \cdot \mathbf{k} \\ + \frac{1}{4} t_{1}^{(4)} (1 + x_{1}^{(4)} P_{\sigma}) [(\mathbf{k}^{2} + \mathbf{k}^{'2})^{2} + 4(\mathbf{k}^{'} \cdot \mathbf{k})^{2}] \\ + t_{2}^{(4)} (1 + x_{2}^{(4)} P_{\sigma}) (\mathbf{k}^{'} \cdot \mathbf{k}) (\mathbf{k}^{2} + \mathbf{k}^{'2}) \\ + \frac{1}{2} t_{1}^{(6)} (1 + x_{2}^{(6)} P_{\sigma}) (\mathbf{k}^{'} - \mathbf{k}^{2}) [(\mathbf{k}^{'2} + \mathbf{k}^{2})^{2} + 12(\mathbf{k}^{'} \cdot \mathbf{k})^{2}] \\ + t_{2}^{(6)} (1 + x_{2}^{(6)} P_{\sigma}) (\mathbf{k}^{'} \cdot \mathbf{k}) [3(\mathbf{k}^{'2} + \mathbf{k}^{2})^{2} + 4(\mathbf{k}^{'} \cdot \mathbf{k})^{2}]$$
Skyrme N3LO

- D and F partial waves included
- Gauge invariance
- Also includes:
 - spin-orbit term W_0
 - tensor terms

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Infinite matter: (S, T) channels N2LO

- Used as a preliminary test before dealing with finite nuclei
- First step: (S,T) channels
- Results compared to BHF calculations from Baldo and al. (1997)

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲ロト▲園ト▲目ト▲目ト 目 のへの

Infinite matter: (S, T) channels N3LO

Agreement up to $\rho = 0.8 \text{ fm}^{-3}$

Exploration of a new parameter space

Skyrme N2LO functionals: first results on finite nuclei D. Davesne, P. Becker,

A. Pastore, J. Navarro

Infinite matter: (S, T) channels M3Y

BHF
 M3Y-P2
 M3Y-P3
 M3Y-P4
 M3Y-P5
 M3Y-P6
 M3Y-P7

(日)

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

• M3Y takes into account nuclei **and** (S,T) channels: both are not incompatibles

Infinite matter: (S, T) channels Gogny

Not possible...

... except with a third gaussian

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

◆□> ◆□> ◆目> ◆目> ◆目> ◆□>

Determination of the three ranges

Physical meaning of a range :

Vukawa potential: related to masses (770, 490, 140 MeV)

Gaussian potential??? \rightarrow definition via the self-energy

Example: $m_{\rho} = 770 \text{ MeV}$ $\rightarrow \mu_Y^{-1} = 0.256 \text{ fm}$ $\rightarrow R(\mu_Y^{-1}) = 0.228 = R(\mu_G)$ $\rightarrow \mu_G = 0.475 \text{ fm}$

 \rightarrow ranges: $\mu_1 = 0.475$ fm, $\mu_2 = 0.746$ fm , $\mu_3 = 1.964$ fm

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Partial waves ${}^{2S+1}L_J$ with M3Y

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Partial waves with Skyrme N3LO

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

High degree of flexibility!

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

・ロト・日本・モート ヨー うらぐ

Goal: only one parametrisation for all quantities 300 250 12 BHF calculations 200 15 15 1' as reference 0.04 0.12 0.08 0.16 *n* [fm⁻³] 100 50 LYVA1 =N3LO Skyrme 0.2 0.4 0.6 0.8 $n \, [\mathrm{fm}^{-3}]$ parametrisation for astrophysics

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

Experimental constraints satisfied by LYVA1

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲ロト▲母ト▲目ト▲目ト 目 のへの

LYVA1 also reproduces :

- INM properties
- Symmetry energy
- Causality

...

Effective masses splitting

LYVA1 compatible with a neutron star of 2 M_{\odot} . Here, we have M=1.96 M_{\odot} .

TOV equations solved

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

・ロト・西ト・ヨト ヨー うへの

Finite nuclei: N2LO mean-field equation

 $\epsilon R = A_4 R^{(4)} + A_3 R^{(3)} + A_{2P} R^{(2)} + A_{1P} R' + A_{0P} R$

+ $\frac{\ell(\ell+1)}{r^2} \left[A_{2C} R^{(2)} + A_{1C} R' + A_{0C} R + \frac{\ell(\ell+1)}{r^2} A_{0CC} R \right]$

A ロ ト 4 目 ト 4 目 ト 4 目 ・ 9 Q Q

+ $C_{jls} | W_{2R}R^{(2)} + W_{1R}R' + W_{0R}R + \frac{\ell(\ell+1)}{r^2} W_{0C}R |$

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

ntroduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

- 14 parameters, **4 new**
- New spin-orbit contributions: W_{2R} , W_{1R} , $\frac{\ell(\ell+1)}{r^2}W_{0C}$
- No particular behavior at origin (same as Skyrme)
- New term: $\left(\frac{\ell(\ell+1)}{r^2}\right)^2$ (possible applications)

Fitting protocol

Skyrme N2LO functionals: first results on finite nuclei

ntroduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

First results: infinite matter

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

	SN2LO1	SLy5*	Constraint	Error	Result
$ ho_0 [{ m fm}^{-3}]$	0.162	0.161	0.16	0.02	\checkmark
$E/A(\rho_0)$ [MeV]	-15.95	-16.02	-16.0	0.1	\checkmark
K_{∞} [MeV]	221.9	229.8	230	20	\checkmark
m^*/m	0.709	0.696	0.7	0.02	\checkmark
J [MeV]	31.95	32.03	32.01	2.0	\checkmark

Equation of state of SN2LO1

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

イロト 不得 トイヨト イヨト э.

Correlation incompressibility/effective mass

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Skyrme N2LO

functionals: first results on finite nuclei

Stability SN2LO1

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

・ロト・西ト・田・・田・ うへぐ

Domain for allowed excitations :

Response function of a free Fermi gas (at zero temperature) :

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Response function of an interacting gas of nucleons.... The RPA propagator is the solution of Bethe-Salpeter equation :

$$\begin{aligned} G_{RPA}^{(\mathrm{SMI})}(q,\omega,\mathbf{k}_{1}) &= G_{HF}(q,\omega,\mathbf{k}_{1}) \\ &+ G_{HF}(q,\omega,\mathbf{k}_{1}) \sum_{(\mathrm{S'MT})} \int \frac{d^{3}k_{2}}{(2\pi)^{3}} V_{ph}^{(\mathrm{SMI};\mathrm{S'M'T})}(q,\mathbf{k}_{1},\mathbf{k}_{2}) G_{RPA}^{(\mathrm{S'MT})}(q,\omega,\mathbf{k}_{2}) \end{aligned}$$

with :
$$V_{ph}^{(\alpha,\alpha')}(q,\mathbf{k}_1,\mathbf{k}_2) = \langle \mathbf{q} + \mathbf{k}_1, \mathbf{k}_1^{-1}, (\alpha) | V_{eff} | \mathbf{q} + \mathbf{k}_2, \mathbf{k}_2^{-1}, (\alpha') \rangle$$

Excitation : $\sum_{j} \exp^{i\mathbf{q}\mathbf{r}} \Theta_{\alpha}^{j} \quad \Theta_{\alpha}^{j} = 1, \sigma^{j}, \hat{\tau}^{j}, \sigma^{j}\hat{\tau}^{j}$

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Consider the residual interaction in the simplest case :

$$V_{ph}^{(\alpha,\alpha')}(\mathbf{k}_1,\mathbf{k}_2) = \delta(\alpha,\alpha')V_{ph}^{(\alpha)}(q,\omega)$$

 \rightarrow response function :

$$\chi_{RPA}^{(\alpha)}(q,\omega) = \frac{\chi_{HF}(q,\omega)}{1 - V_{ph}^{(\alpha)}(q,\omega)\chi_{HF}(q,\omega)}$$

 $\rightarrow \text{Im}\chi_{RPA}(q,\omega) \propto \text{Im}\chi_{HF}(q,\omega)$: same domain of definition as the free Fermi gas

 \rightarrow collective mode $1 - V_{ph}^{(\alpha)} \chi_{HF} = 0$ when $\text{Im}\chi_{HF}(q,\omega) = 0!$ (outside of the shaded domain!)

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introductio

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Effective interaction : Skyrme

$$V_{\text{eff}} = t_0 \left(1 + x_0 \hat{P}_{\sigma} \right) + t_3 \left(1 + x_3 \hat{P}_{\sigma} \right) \rho_0^{\alpha} \qquad \text{local}$$

+ $\frac{1}{2} t_1 \left(1 + x_1 \hat{P}_{\sigma} \right) \left(\mathbf{k}'^2 + \mathbf{k}^2 \right) + t_2 \left(1 + x_2 \hat{P}_{\sigma} \right) \mathbf{k}' \cdot \mathbf{k} \qquad \text{non local}$
+ $\mathbf{i} W_0 \left(\sigma_1 + \sigma_2 \right) \cdot \left(\mathbf{k}' \times \mathbf{k} \right) \qquad \text{spin-orbit}$
+ $\frac{1}{2} t_e \left\{ \left[3 \left(\sigma_1 \cdot \mathbf{k}' \right) \left(\sigma_2 \cdot \mathbf{k} \right) - \left(\sigma_1 \cdot \sigma_2 \right) \mathbf{k}'^2 \right] + \text{h.c.} \right\} \qquad \text{tensor}$

Calculations done : Skyrme/Landau residual interaction, SNM, ASM, PNM, zero and finite temperature

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

An instability in the functional causes an infinity in the response function :

$$1/\chi^{\rm SMI}(\omega=0,q)=0$$

Instabilities in the different spin/isospin channels (S,M,I) for T22.

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

An instability in the functional causes an infinity in the response function :

$$1/\chi^{\text{SMI}}(\omega=0,q) = 0$$

Instabilities in the different spin/isospin channels (S,M,I) for T22.

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

An instability in the functional causes an infinity in the response function :

$$1/\chi^{\text{SMI}}(\omega=0,q) = 0$$

Instabilities in the different spin/isospin channels (S,M,I) for T22.

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

An instability in the functional causes an infinity in the response function :

$$1/\chi^{\rm SMI}(\omega=0,q)=0$$

Instabilities in the different spin/isospin channels (S,M,I) for T22.

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

・ロト・西ト・田・・田・ ひゃぐ

An instability in the functional causes an infinity in the response function :

$$1/\chi^{\rm SMI}(\omega=0,q)=0$$

Instabilities in the different spin/isospin channels (S,M,I) for T22.

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

An instability in the functional causes an infinity in the response function :

$$1/\chi^{\text{SMI}}(\omega=0,q)=0$$

Instabilities in the different spin/isospin channels (S,M,I) for T22.

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

・ロト・西ト・田・・田・ シック

Binding energies SN2LO1

²⁰⁸ Pb ¹³² Sn ¹⁰⁰ Sn First results ⁵⁶ Ni ⁴⁸ Ca ⁴⁰ Ca • SN2LO1 SLv5* -3 -2 0 2 3 5 -5 -4 -1 1 4 $\delta E = E_{th} - E_{exp}$ [MeV]

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Binding energies SN2LO2

²⁰⁸ Pb ¹³² Sn ¹⁰⁰ Sn First results ⁵⁶ Ni ⁴⁸ Ca ⁴⁰ Ca • SN2LO2 SI -3 -2 0 2 3 5 -5 -4 -1 1 4 $\delta E = E_{th} - E_{exp}$ [MeV]

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Isotopes with SN2LO2

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Stability SN2LO2

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

・ロト・西ト・田・・田・ シック

Proton radii SN2LO2

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

muouucuon

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Protons radii SN2LO2

3.56 4.7 3.54 SN2LO2 SLy5* Exp 4.65 3.52 3.50 4.6 3.48 ٩ 4.55 ے 3.46 3.44 4.5 3.42 4.45 3.40 Ca Sn 3.38 44 85 10 15 20 25 30 35 40 50 55 60 65 70 75 80 90 Neutron number Neutron number 3.95 5.55 3.90 5.5 3.85 65-55-55-55-54-4-5-5.45 ے 3.80 5.4 ے 3.75 5.35 3.70 5.3 Ni Pb 3.65 5.25 110 115 120 125 130 135 20 25 30 35 40 45 50 95 100 105 Neutron number Neutron number

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Neutron particle levels for ²⁰⁸Pb

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Intruder states problem

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

Conclusion

N2LO

- Numerical code for finite nuclei WHISKY
- Stable parametrisation SN2LO2
- Better results (compared to Skyrme)

Gogny

- Third gaussian
- Optimisation of the numerical part for the nuclei

Future prospects

- Centroids, kink for Pb
- Tensor terms
- N3LO
- Fitting protocol for finite-range potential (Gogny) with linear response

▲ロト ▲園ト ▲ヨト ▲ヨト 三国 - のへで

References:

- Tools for incorporating a D-wave contribution in Skyrme EDF D.Davesne et al, Journal of Physics G, **41** 034001 (2015)
- *Extended Skyrme pseudo-potential deduced from infinite matter properties* P. Becker *et al*, Phys. Rev. C, **91** 064303 (2015)
- Partial-wave decomposition of the finite-range effective tensor interaction D.Davesne *et al*, Phys.Rev.C, **93** 064001 (2016)
- Infinite matter properties and zero-range limit of non-relativistic finite-range interactions D.Davesne et al, Annals Phys., **375** 288-312 (2016)
- Does the Gogny interaction need a third Gaussian?
 D.Davesne et al, Acta Phys.Polon., B48 265 (2017)
- A numerical method for N2LO Hartree-Fock-Bogoliubov calculations P.Becker et al, Accepted in Phys.Rev.C (2017)
- *Fit of the Gogny interaction with a third gaussian* P.Becker *et al*, in preparation, (2017)

Acknowledgments

M. Bender, K. Bennaceur, Y. Lallouet, J. Meyer, J. Navarro, A. Pastore, W. Ryssens.

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Effective mass in nuclear effective theories

(K. Bennaceur, D. D., J. Meyer, J. Navarro, A. Pastore)

- Two-body : saturation, effective mass $\simeq 0.4$
- Density-dependent term : effective mass $\simeq 0.7$

Weisskopf's relation (1957): mean field U_i (for a state *i*) with a quadratic momentum dependence

$$U_i = U_0 + \frac{p_i^2}{p_F^2} U_1 \rightarrow \frac{m^*}{m} = 1 + \frac{U_1}{\varepsilon_F}$$

$$E/A = \frac{3}{5}\varepsilon_F + \frac{1}{2}U_0 + \frac{3}{10}U_1 \rightarrow \frac{\mathbf{m}^*}{\mathbf{m}} = \frac{3}{2} - \frac{5}{2}\frac{E/A}{\varepsilon_F}$$

With E/A = -16 MeV and $k_F = 1.33$ fm⁻¹, one gets $m^*/m \simeq 0.4$. Example (SV interaction): E/A = -16.06 MeV, $k_F = 1.32$ fm⁻¹ and $m^*/m = 0.38$. The relation gives $m^*/m = 0.383$. Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

N2LO/N3LO/finite-range, no density dependence

Exact relation up to N2LO (first correction: N3LO)

$$\frac{m}{m^*} = \frac{11}{8} + \frac{5}{72} \frac{K_{\infty} - 21\mathcal{E}_0}{\varepsilon_F} + \frac{1}{90} \frac{C_1^{(6)} \rho_0 k_F^6}{\varepsilon_F}$$
Typical values: 1.375 + 1.033 + 0.012

 $\rightarrow m^*/m = 0.415$ (N2LO) or 0.413 (N3LO)

Finite-range potential $V(r/\mu)$:

$$\frac{m}{m^*} = \frac{11}{8} + \frac{5}{72} \frac{K_{\infty} - 21\mathcal{E}_0}{\varepsilon_F} + \frac{12}{\pi} \frac{C_E}{\varepsilon_F} \int dz z^2 V\left(\frac{z}{k_F \mu}\right) \times \left\{ \mathcal{F}^m(z) + \frac{5}{72} \mathcal{F}^K(z) - \frac{105}{72} \mathcal{F}^\mathcal{E}(z) \right\}$$

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First result

Conclusion and perspectives

Linear response formalism

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

N2LO/N3LO/finite-range, no density dependence

$$\begin{aligned} \mathcal{F}^{\mathcal{E}}(x) &= \frac{2}{x^2} j_1^2(x) - \frac{2}{3x} j_0(x) j_1(x) \\ \mathcal{F}^K(x) &= 2 j_0^2(x) - \frac{12}{x} j_0(x) j_1(x) + \left(\frac{18}{x^2} - 2\right) j_1^2(x) \\ \mathcal{F}^m(x) &= \frac{1}{3} j_1^2(x) \end{aligned}$$

$$\mathcal{F}^{m}(x) + \frac{5}{72}\mathcal{F}^{\mathcal{K}}(x) - \frac{105}{72}\mathcal{F}^{\mathcal{E}}(x) \simeq \frac{x^{6}}{127575} - \frac{8x^{8}}{9823275} + \frac{x^{10}}{25540515} + \dots$$

Exact cancellation up to x^4 as it should be!

N3LO or finite-range correction to the exact relation: very small!!!

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matte calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First results

Conclusion and perspectives

Linear response formalism

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

N2LO/N3LO/finite-range, density dependence

$$\frac{m}{m^*} = \frac{11}{8} + \frac{5}{72} \frac{K_{\infty} - 21\mathcal{E}_0}{\mathcal{E}_F} + \Delta_{\text{FR}} - \frac{5}{384} \alpha (10 + 3\alpha) \frac{t_3 \rho_0^{\alpha + 1}}{\mathcal{E}_F}$$

D1: $1.375 + 1.049 + 0.010(\rightarrow 0.411) - 0.934(\rightarrow 0.667)$ D1S: $1.375 + 1.002 + 0.029(\rightarrow 0.416) - 0.963(\rightarrow 0.693)$ D1N: $1.375 + 1.067 + 0.033(\rightarrow 0.404) - 1.087(\rightarrow 0.720)$

For admitted values of $\frac{m}{m^*}$, K_{∞} , E/A: relation between t_3 and α !

Curve almost flat: $t_3 \simeq 7500 - 8000$ Mev.fm^{α +1}

Skyrme N2LO functionals: first results on finite nuclei

D. Davesne, P. Becker, A. Pastore, J. Navarro

Introduction

Infinite matter calculations

Application to astrophysics LYVA1

Application to spherical nuclei

First result

Conclusion and perspectives

Linear response formalism

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで