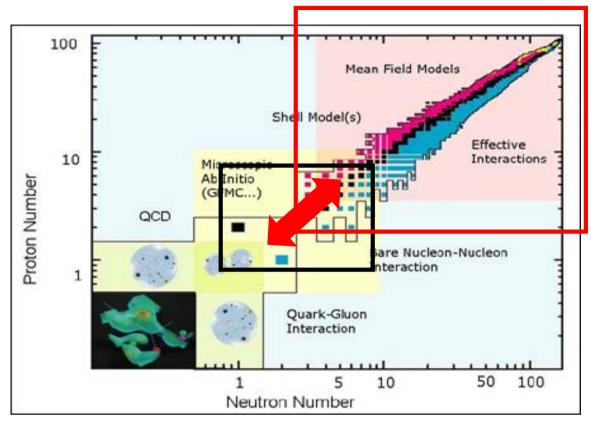
Density Functional for cold atoms and neutron matter with no free parameters.

Outline:

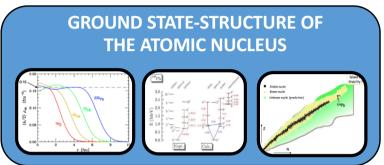
- Brief discussion on DFT for nuclei
- EFT guiding the construction of DFT/EDF: resummation
- Unitary gas guidance: role of large but finite s-wave scattering length
- Applications:cold atoms and neutron matter.

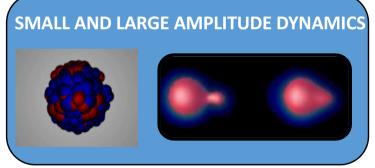
Coll: J. Bonnard, A. Boulet, M. Grasso and C.J. Yang

So why we need to do something else?

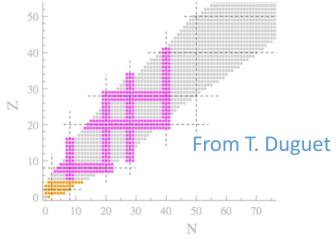


But we want to do a little bit more...





State of the art ab-initio calculation in 2016



Nuclear Thermodynamic
(from finite or infinite systems)

Nuclear Energy Density Functional based on effective interaction

Constraining the functional

Static

Vautherin, Brink, PRC (1972)

$$v(\mathbf{r}_{1} - \mathbf{r}_{2}) = t_{0} (1 + x_{0} \hat{P}_{\sigma}) \delta(\mathbf{r})$$

$$+ \frac{1}{2} t_{1} (1 + x_{1} \hat{P}_{\sigma}) \left[\mathbf{P}^{\prime 2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{P}^{2} \right]$$

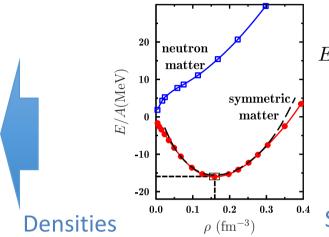
$$+ t_{2} (1 + x_{2} \hat{P}_{\sigma}) \mathbf{P}^{\prime} \cdot \delta(\mathbf{r}) \mathbf{P}$$

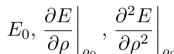
$$+ iW_{0} \sigma \cdot \left[\mathbf{P}^{\prime} \times \delta(\mathbf{r}) \mathbf{P} \right]$$

$$+ \frac{1}{6} t_{3} (1 + x_{3} \hat{P}_{\sigma}) \rho^{\alpha}(\mathbf{R}) \delta(\mathbf{r})$$

See for instance, Meyer EJC1997

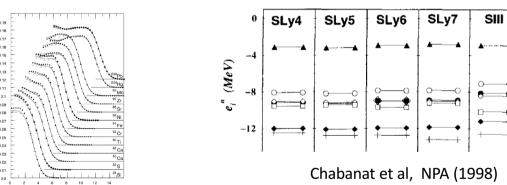
Infinite nuclear matter and Nuclear Masses





The ρ^{α} term Is a trick to get the curvature right!

Shell effect



Dynamics

Time (fm/c)

1000

2000

3000

4000

5000

5300

5500

5600

Nuclear Energy Density Functional based on effective interaction

Limitation and drawback

$$v(\mathbf{r}_{1} - \mathbf{r}_{2}) = t_{0} (1 + x_{0} \hat{P}_{\sigma}) \delta(\mathbf{r})$$

$$+ \frac{1}{2} t_{1} (1 + x_{1} \hat{P}_{\sigma}) \left[\mathbf{P}^{\prime 2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{P}^{2} \right]$$

$$+ t_{2} (1 + x_{2} \hat{P}_{\sigma}) \mathbf{P}^{\prime} \cdot \delta(\mathbf{r}) \mathbf{P}$$

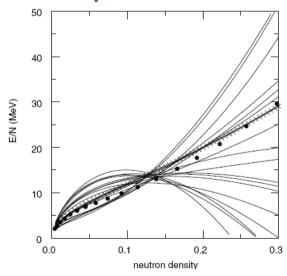
$$+ iW_{0}\sigma \cdot \left[\mathbf{P}^{\prime} \times \delta(\mathbf{r}) \mathbf{P} \right]$$

$$+ \frac{1}{6} t_{3} (1 + x_{3} \hat{P}_{\sigma}) \rho^{\alpha}(\mathbf{R}) \delta(\mathbf{r})$$

Since we directly fit on experiments Complex correlation much beyond Hartree-Fock are included

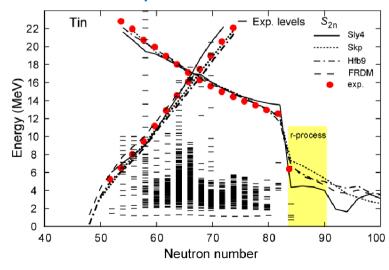
Since we directly fit on experiments there is no more link with the interaction and associated low energy constants...

EOS of pure neutron matter



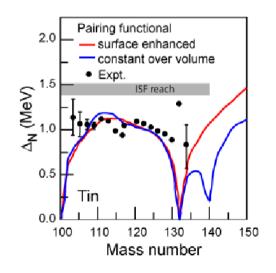
Brown, PRL85 (2000).

S_{2n} and S_{2p} in Tin isotopic chain

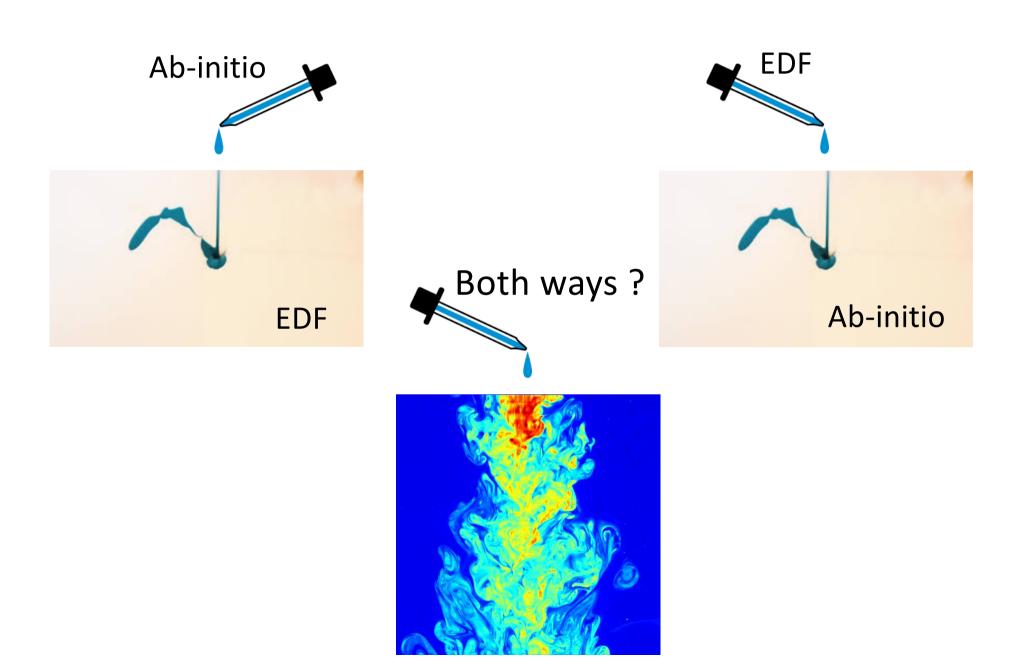


http://www.nscl.msu.edu/future/isf

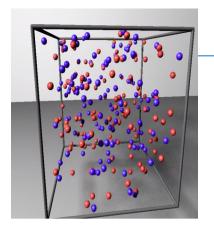
Pairing gap



From ab-initio to Energy Density Functional (and vice-versa)



Can we link the energy density functional to the low energy constants of the bare interaction? and render it less empirical?



Towards a constructive approach for DFT

The low-density Fermi gas limit: the EFT guidance

See for instance:

R. J. Furnstahl, in *Renormalization Group and Effective Field Theory Approaches to Many-Body Systems*, edited by A. Schwenk and J. Polonyi, Lecture Notes in Physics, Vol. 852 (Springer, Berlin, 2012), Chap. 3.

At low density *r* is large

We only need a low-momentum expansion
Of the interaction

$$\langle \mathbf{k} | V_{\text{eft}} | \mathbf{k}' \rangle = C_0 + \frac{1}{2} C_2 (\mathbf{k}^2 + \mathbf{k}'^2) + C_2' \mathbf{k} \cdot \mathbf{k}' + \cdots$$

r

EFT strategy

Example of the s-wave

C₀, C₂, C'₂ are directly linked to low energy constant

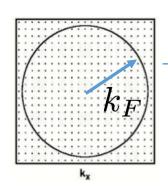
$$\sigma = \frac{4\pi}{k^2} \frac{1}{1 + \cot^2 \delta_0} = \frac{4\pi a^2}{ak^2 + [1 - ar_{\text{ef}}k^2/2]^2}$$

$$C_0 = \frac{4\pi\hbar^2}{m}a_s, C_2 = \frac{2\pi\hbar^2}{m}r_ea_s^2, C_2' = \frac{4\pi\hbar^2}{m}a_p^3.$$

Constructive many-body perturbative approach

$$E = E^{HF} + E^{2^{nd}} + E^{3^{rd}} + \dots$$

H.W. Hammer and R.J. Furnstahl, NPA678 (2000)



$$E = E^{HF} + E^{2^{nd}} + E^{3^{rd}} + \dots$$

$$ho = rac{
u}{6\pi^2} k_F^2$$
 with u degeneracy

Many-body Perturbation Theory

Expansion as polynomial of LEC $(r_e k_F)$ (a_sk_F)

 E^{HF} $E^{2^{\mathrm{no}}}$

 $E^{3^{\rm rd}}$ $+\cdots$

[MBPT]

Functionals of increasing complexity

$$E \equiv \mathcal{E}(\rho)$$

Difficulty

valid for $a_s k_F < 1$

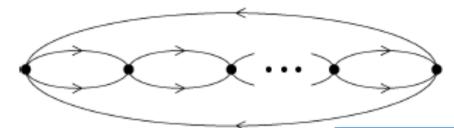
For neutron matter $a_s=-18.9~{
m fm}$ $r_e=2.7~{
m fm}$

Valid for $\rho < 10^{-6} \ \mathrm{fm}^{-3}$

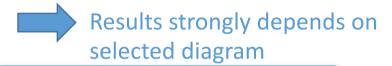
Highlighting work

Schaefer, Kao, Cotanch, NPA 762 (2005)

Resummation of particle-particle diagrams



$$\frac{E_{\rm PP}}{A} = \frac{3(g-1)\pi^2}{k_{\rm F}^3} \int \frac{d^3P}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \theta_k^- \frac{4\pi a/M}{1 - \frac{k_{\rm F}a}{\pi} f_{\rm PP}(\kappa, s)}.$$

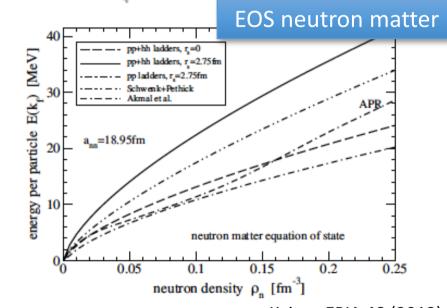


The pragmatic approach

$$E \sim rac{3}{5} rac{\hbar^2 k_F^2}{2m} rac{rac{10}{9\pi} (a_s k_F)}{1 - rac{6}{35\pi} (11 - 2 \ln 2) (a_s k_F)} \sim \langle f_{
m PP}
angle$$

$$\frac{E}{A} = \left(\frac{3}{5} + \frac{2k_F a_s/3}{\pi - 2k_F a_s}\right) \frac{k_F^2}{2M} \qquad \langle f_{PP} \rangle \xrightarrow{+\infty} 2$$

Steele, nucl-th-0010066v2



Interpretations:

Kaiser, EPJA 48 (2012)

- -Minimal Padé approximation
- -Phase-space average
- -asymptotic values

- . . .

Great interest of resummed expression: It has a finite limit for Unitary gas

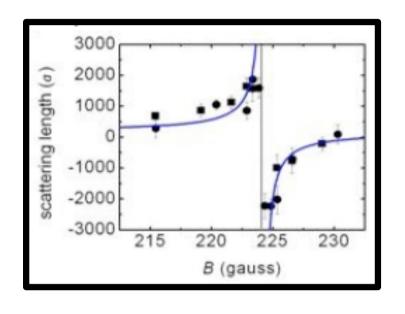
For unitary gas:

-low density system

$$a_s \to +\infty$$

$$\frac{3}{5} \frac{\hbar^2 k_F^2}{2m} \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \underbrace{\frac{6}{35\pi} (11 - 2 \ln 2)}_{=\langle f \rangle} (a_s k_F)} \longrightarrow 0.32 \frac{3}{5} \frac{\hbar^2 k_F^2}{2m}$$

$$\frac{E}{A} = \left(\frac{3}{5} + \frac{2k_F a_s/3}{\pi - 2k_F a_s}\right) \frac{k_F^2}{2M} \longrightarrow 0.4 \frac{3}{5} \frac{\hbar^2 k_F^2}{2m}$$



Not so far from the "admitted" value of the Bertsch parameter for unitary gas (0.37)

Important remark for us, unitary gas has the simplest DFT ever!

$$\mathcal{E}[\rho] = \xi \times \mathcal{E}_{FG}[\rho]$$

$$\xi = 0.37$$

The interest for us is that in neutron matter a_s is very large

Density Functional Theory for system at or close to unitarity

A very pragmatic approach

Lacroix, PRA 94 (2016)

 $|a_s k_F| \gg 1$

Minimal DFT for unitary gas

$$\frac{E}{E_{\rm FG}} = \left\{ 1 + \frac{(ak_F)A_0}{1 - A_1(ak_F)} \right\}$$

$$|a_s k_F| \ll 1$$

$$\frac{E}{E_{\text{FG}}} = 1 + \frac{10}{9\pi} (\nu - 1)(k_F a_s) + \frac{4}{(\nu - 1)} \frac{4}{21\pi^2} (11 - 2\ln 2)(k_F a_s)^2 + \cdots$$

$$\frac{E}{E_{\text{FG}}} = \xi_0$$

Adjusting only on low density

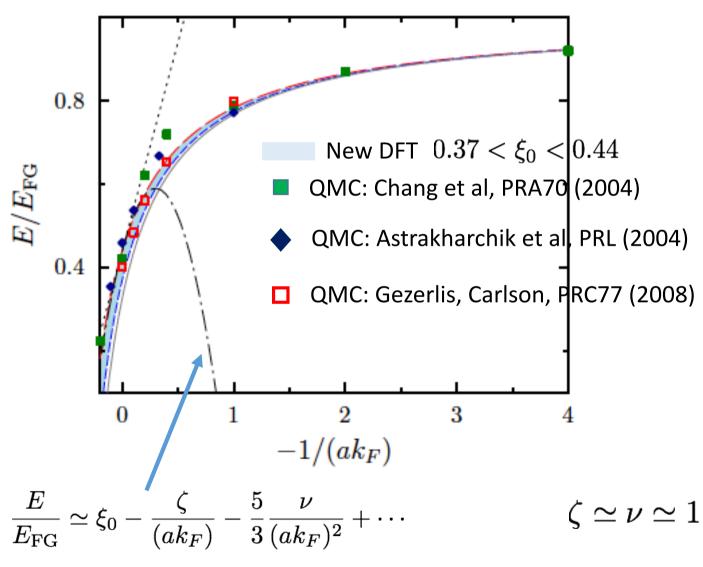
$$A_0 = \frac{10}{9\pi}(\nu - 1)$$

$$A_0 A_1 = (\nu - 1)\frac{4}{21\pi^2}(11 - 2\ln 2)$$

Adding the unitarity constraint

$$A_0 = \frac{10}{9\pi}(\nu - 1)$$
$$1 - \frac{A_0}{A_1} = \xi_0$$

Lacroix, PRA 94 (2016)



Taylor expansion in $(a_s k_F)^{-1}$: Bulgac and Bertsch, PRL 94 (2005)

Example of applications

Lacroix, PRA 94 (2016)

$$rac{E}{E_{ ext{FG}}} = \mathcal{F}(a_s, k_F) \equiv \mathcal{F}(a_s,
ho)$$

Any quantity that could be obtained through partial derivatives of the energy with respect to a_s or k_F or ρ is straightforward to obtain

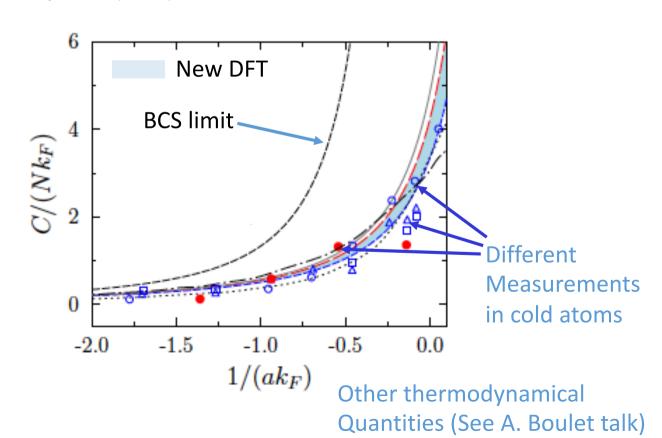
Estimate of the density dependence of the Tan contact parameter

E. Braaten, Lect. Not. Phys. 836 (2011).

$$\frac{C}{Nk_F} = \frac{(3\pi^2)}{k_F^4} \mathcal{C}$$

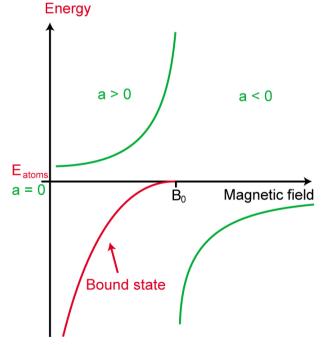
$$\mathcal{C} = \frac{4\pi m a_s^2}{\hbar^2} \left(\frac{d\mathcal{E}}{da_s}\right)$$

$$\mathcal{E} = rac{k_F^3 E}{3\pi^2 N}$$

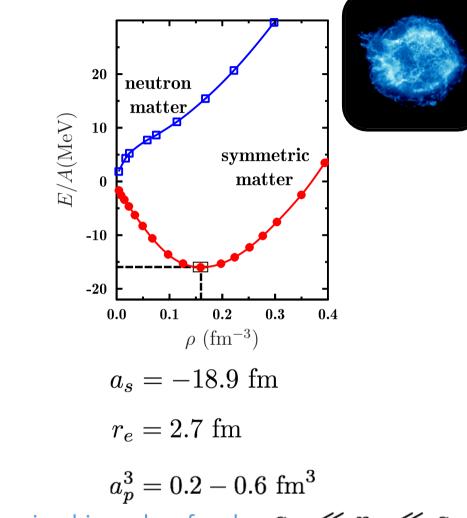


From cold atom to neutron matter

Scattering length a



Most often, only a_s matter



There is a hierarchy of scales $\,a_p \ll r_e \ll a_s\,$

but $r_e,\ a_p\cdots$ could not be neglected and k_F is not small

From cold atom to neutron matter: inclusion of effective range

Lacroix, PRA 94 (2016)

$$\frac{E}{E_{\rm FG}} = 1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1} + \frac{R_0(r_e k_F)}{[1 - R_1(a_s k_F)^{-1}][1 - R_1(a_s k_F)^{-1} + R_2(r_e k_F)]} \leftarrow \text{Effective range part}$$
(form obtained by resumming

effective range effects in HF theory)

New constraints

$$|a_s k_F| \ll 1$$

$$|a_s k_F| \gg 1$$

$$\frac{E}{E_{\text{FG}}}1 + \frac{10}{9\pi}(\nu - 1)(k_F a_s) + (\nu - 1)\frac{1}{6\pi}(k_F r_e)(k_F a_s)^2 + \cdots$$

$$\xi(+\infty, r_e k_F) \equiv \xi_0 + (r_e k_F)\eta_e + (r_e k_F)^2 \delta_e$$
Forbes, Gandolfi, Gezerlis, PRA86 (2012)

$$\xi(+\infty, r_e k_F) \equiv \xi_0 + (r_e k_F) \eta_e + (r_e k_F)^2 \delta_e$$

Forbes, Gandolfi, Gezerlis, PRA86 (2012)

$$\begin{cases} U_0 = (1 - \xi_0) = 0.62400, \\ U_1 = \frac{9\pi}{10}(1 - \xi_0) = 1.76432, \\ R_0 = \eta_e = 0.12700, \\ R_1 = \sqrt{\frac{6\pi\eta_e}{(\nu - 1)}} = 1.54722, \\ R_2 = -\delta_e/\eta_e = 0.43307. \end{cases}$$

$$\xi_0 = 0.376$$

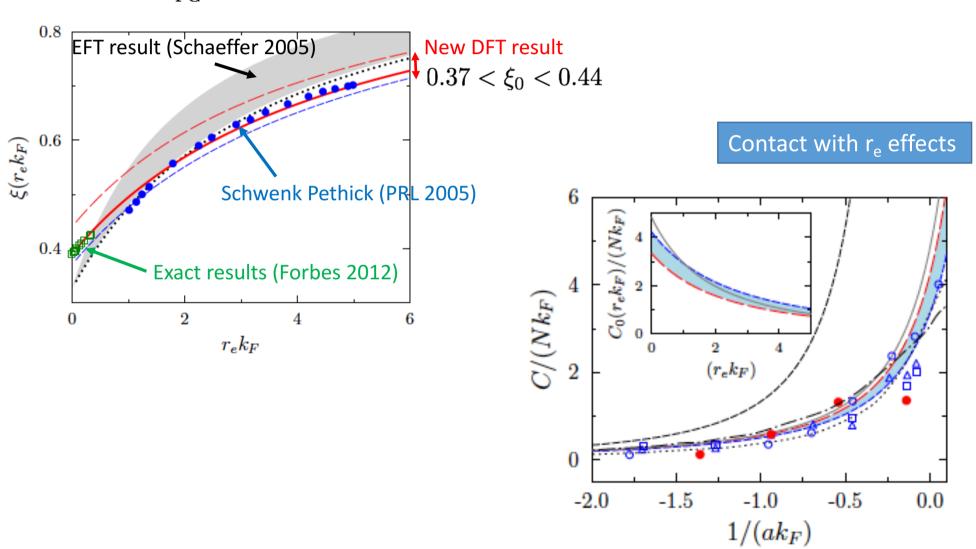
$$\eta_e = 0.127$$

$$\delta_e = -0.055$$

At unitarity

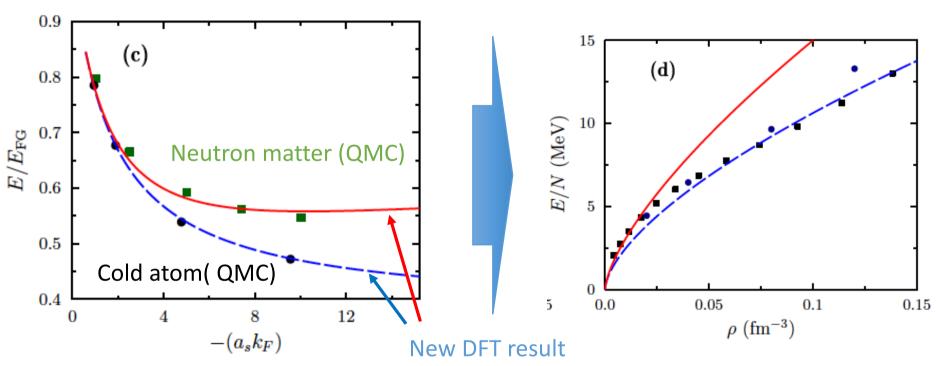
Lacroix, PRA 94 (2016)

$$\frac{E}{E_{\rm FG}} = \xi(r_e k_F)$$



EDF with no-free parameters: Predictive power for neutron matter

Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)



[QMC: Gezerlis, Carlson, PRC81 (2010)]

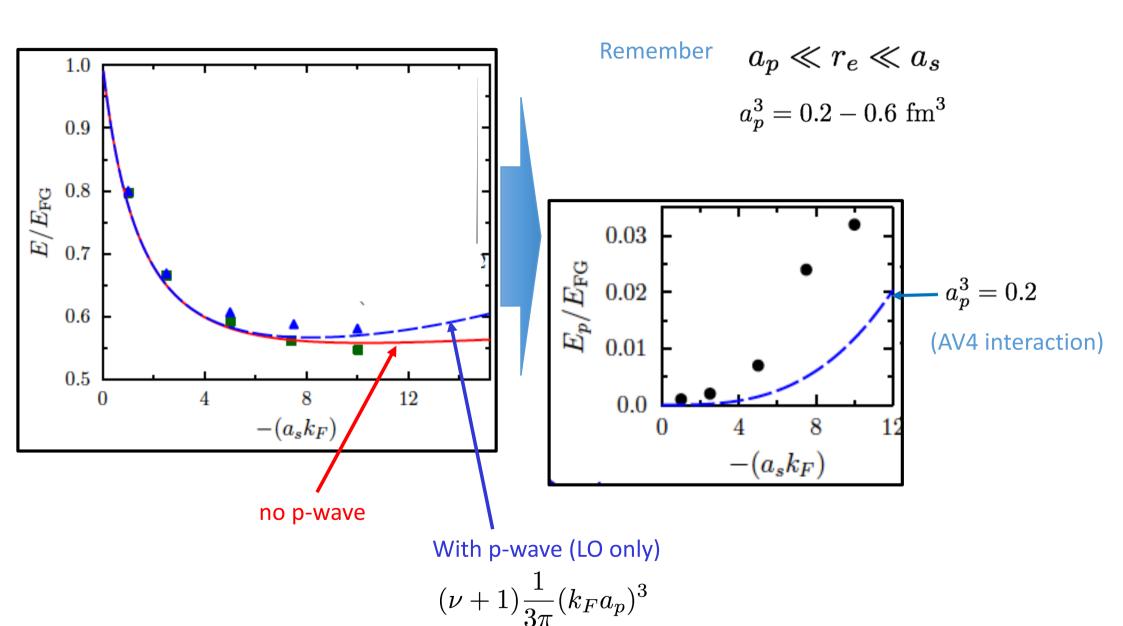
Range of validity

Lee-Yang
$$\rho < 10^{-6}~{\rm fm}^{-3}$$
 New DFT $\rho < 0.01~{\rm fm}^{-3}$

New DFT
$$\rho < 0.01 \text{ fm}^{-3}$$

Including the p-wave?

Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)



Can we conceal this functional with the Skyrme functionals?

Yang, Grasso, Lacroix PRC94 (2016)

Skyrme functional

$$v(\mathbf{r}_{1} - \mathbf{r}_{2}) = t_{0} (1 + x_{0} \hat{P}_{\sigma}) \delta(\mathbf{r})$$

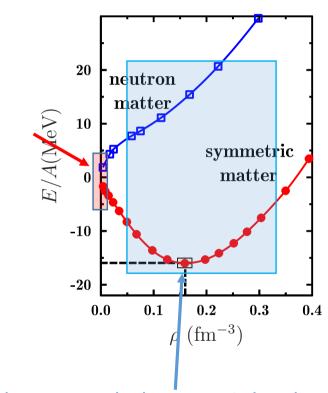
$$+ \frac{1}{2} t_{1} (1 + x_{1} \hat{P}_{\sigma}) \left[\mathbf{P}^{2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{P}^{2} \right]$$

$$+ t_{2} (1 + x_{2} \hat{P}_{\sigma}) \mathbf{P}^{2} \delta(\mathbf{r}) \mathbf{P}$$

MBPT + expansion in LEC is valid here

is very close to the EFT starting point

$$\langle \mathbf{k} | V_{\text{eft}} | \mathbf{k}' \rangle = C_0 + \frac{1}{2} C_2 (\mathbf{k}^2 + \mathbf{k}'^2) + C_2' \mathbf{k} \cdot \mathbf{k}' + \cdots$$



But Skyrme works because it has been adjusted here !!!

Additional remarks on traditional Skyrme

Lacroix, Boulet, Yang, Grasso, PRC94 (2016)

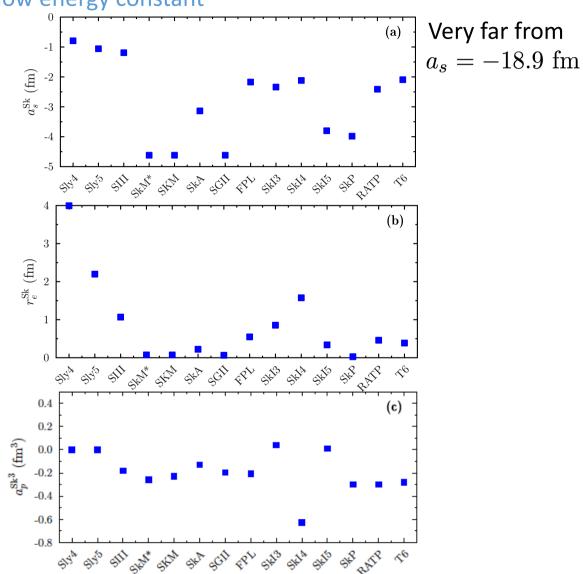
Due to the analogy, one can define equivalent low energy constant

$$C_0 = t_0(1 - x_0) = \frac{4\pi \hbar^2}{m} a_s,$$

$$C_2 = t_1(1 - x_1) = \frac{2\pi \hbar^2}{m} r_e a_s^2,$$

$$C'_2 = t_2(1 + x_2) = \frac{4\pi \hbar^2}{m} a_p^3.$$

See discussion in Furnstahl, EFT for DFT (2007)



Can we make contact with Skyrme like empirical functional?

Starting point

Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)

$$\frac{E}{E_{\text{FG}}} = 1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1} + \frac{R_0(r_e k_F)}{[1 - R_1(a_s k_F)^{-1}][1 - R_1(a_s k_F)^{-1} + R_2(r_e k_F)]}$$

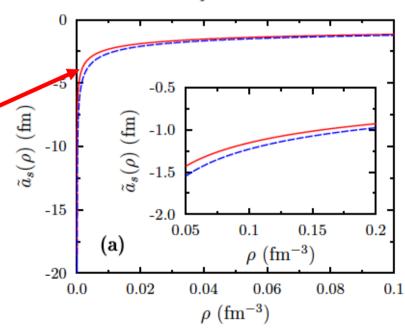
Rewrite it as

$$\frac{E}{E_{\text{FG}}} = 1 + \frac{k_F^3}{4\pi^2 E_{\text{FG}}} \left\{ \frac{\widetilde{C}_0(k_F)}{3} + \frac{k_F^2}{10} [(\nu - 1)\widetilde{C}_2(k_F) + (\nu + 1)\widetilde{C}_2'(k_F)] \right\}$$

Define density dependent scattering length and range

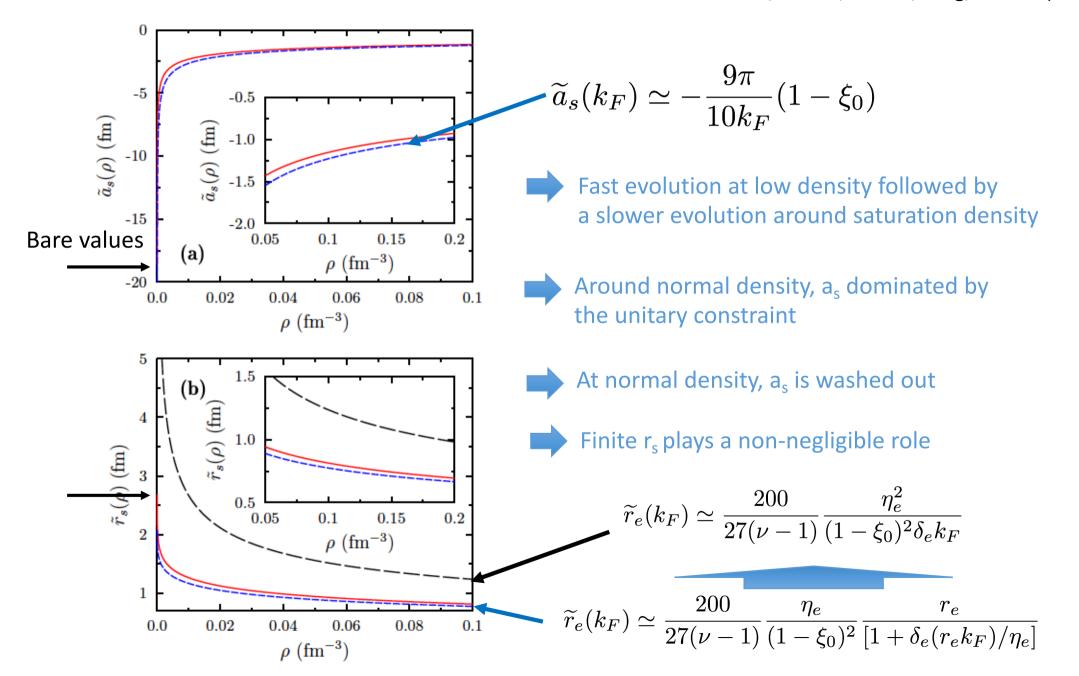
$$ilde{C}_0(k_F) = rac{4\pi\hbar^2}{m} ilde{a}_s(k_F)$$

$$ilde{C}_2(k_F) = rac{2\pi\hbar^2}{m} ilde{r}_e(k_F) ilde{a}_s^2(k_F)$$



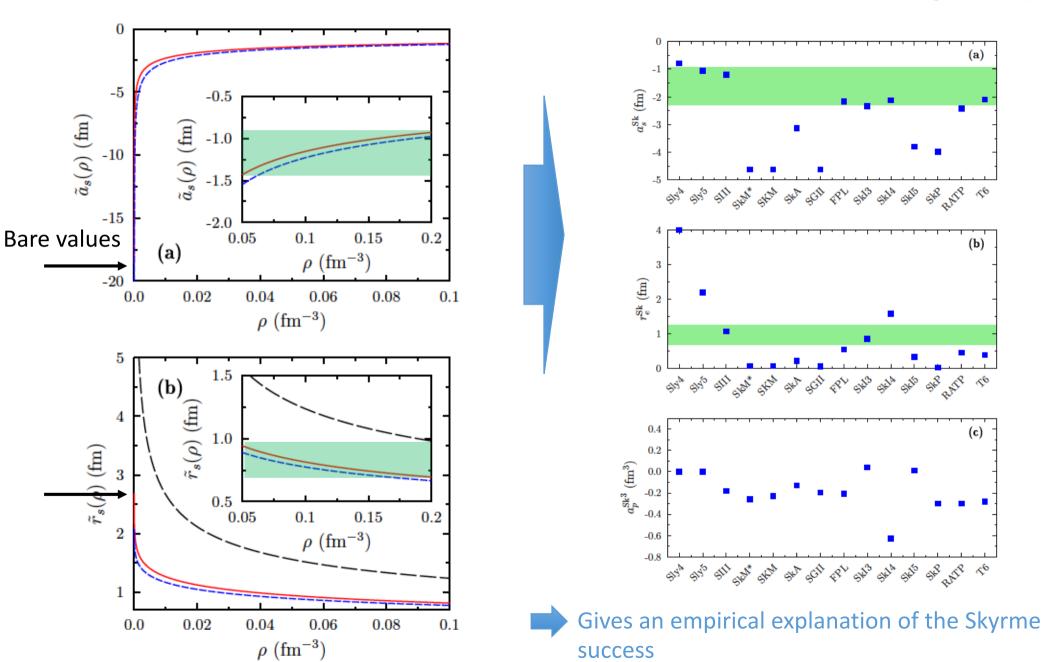
Can we make contact with empirical functional?

Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)



Can we make contact with empirical functional?

Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)



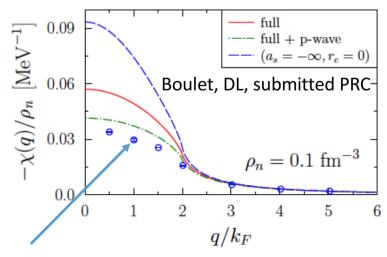
Conclusion and ongoing work

Conclusions

- We propose a new way design the nuclear (cold atom) DFT to parameters of the interaction
 - Low energy constants becomes the only "non-freely" adjustable parameters
 - Validity $\rho < 0.01 \text{ fm}^{-3}$
- The new DFT reproduces ab-initio results in cold atoms and neutron matter
- Transition from s-wave driven (low density) to unitary gas driven (Bertsch parameter) regime
- **Explain** in some ways why Skyrme works so well

Applications and on-going work

Static and dynamical response in neutron matter



AFDMC: Buraczynski, Gezerlis, PRL 116 (2016)]