

DAMIC

DARK MATTER IN CCD

ROMAIN GAIOR (LPNHE PARIS) FOR THE DAMIC COLLABORATION

2017 **IDPASC** ANNUAL WORKSHOP (2017/10/13): FRONTIERS OF DARK MATTER RESEARCH

MOTIVATION

- ► Low masses matter too ! (~GeV WIMP, ADM)
- low energy threshold (10-100 eV) obtained with solid (e.g. semiconductor band gap)

DIRECT DETECTION

Detect the nuclear recoil induced by the WIMP-Nucleus interaction

- Background (radiogenic) removal/estimation
 - Discrimination (Nuclear vs electronic recoil)
- ► Threshold
- ► Calibration
- Operation stability

DAMIC: DETECTION PRINCIPLE

► low noise ~2e- (= 7.5 eV) $-> E_{th} = 50-60 \text{ eVee}$

~light mass target (kinetic matching)

DAMIC CCD

IEEE Transactions On Electron Devices, VOL. 50, No. 1, 225-338, Jan.. 2003

- ► Thick CCD: 0.675 mm
- ► 2.9g (5.8g)/ CCD
- ► 8 (16) MegaPixels
- ► pixel size: 15 x 15 µm
- High resistivity: 10-20 kΩ.cm
 (low donor density—>fully depleted at 40V)
- Iow dark current (10⁻ e- /pix /day at 120K)

- ➤ readout noise < 2 e-</p>
- ► readout time ~ 40us / pix

ENERGY CALIBRATION: ELECTRON RECOIL

► linearity better than 5% from 40 eV_{ee} to 10keV_{ee}

ENERGY CALIBRATION: NUCLEAR RECOIL

3D RECONSTRUCTION

charge diffusion σ along z axis

muon track

- ► 3D reconstruction
- surface event tagging

RADIOGENIC BACKGROUND

- no effective discrimination nuclear vs electronic recoil
 - potential bkg from low energy β and γ

- unique spatial and energy resolution
 - observe decay chain from a single isotope*
 - \succ ²³⁸U and ²³²Th chain
 - ► ³²Si, ²¹⁰Pb chains
 - ► ³H ?

particle identification

<u>decay chain</u>

(JINST 10 (2016) no.08, P08014 arXiv:1506.02562 [astro-ph.IM])

DAMIC AT SNOLAB (2016)

DAMIC DETECTOR

DAMIC AT SNOLAB

- 2 km down a mine
 (6000m water equivalent)
 https://www.youtube.com/watch?v=sZPLcv-ASwc
- muon rate < 0.27 m⁻² d⁻¹ (1µ/m² every 3 days !)

- Many effort to reduce the back noise
 - Nitrogen purge
 - Copper surface treatment

WIMP SEARCH: ANALYSIS STEPS

- 1. data selection (E < 10 keVee, noisy pixel)
- 2. find hits with LL clustering algo. (comparison bkg vs bkg+signal)
- 3. exclusion of surface events
- 4. fit of the candidate spectrum

WIMP SEARCH: RESULTS

compatible background hypothesis (Compton scatt.)

- ► sensitivity at low mass WIMP ($m_x < 10 \text{ GeV/c}^2$)
- Limits with 0.6kg.day
- Exclusion of a part of CDMSII signal with same target (Si)

HIDDEN PHOTON SEARCH

- ▶ hidden photon (m = [1-30 eV])
 absorbed by electron
 → ionisation
- search for additional contribution in the leakage current
- most stringent direct detection limits in 3-12 eV mass region

STATUS: DAMIC 2017

- DAMIC40: Intermediate step to confirm progress in background, improvement of operations.
- April 2016 January 2017:
 Installation of 6-7 working CCDs (4k x 4k => ~40g of mass)
 - replaced copper box and modules
 - replaced of parts of the shielding with ancient lead (Roman lead from Modane)
 - cleaning and etching
- Already 6 kg.day with 5-15 d.r.u.

- DM search with spectral discrimination
- Spectrum measurement down to 60 eVee of the Compton spectrum
- New model produced

- ► G4 Full detector simulation —>Optimise shielding and cleaning
- ► Input the screening result
- Ongoing simulation and analysis
- ► Next step: fit spectrum with floating concentration

FUTURE PLANS

DAMIC FUTURE

TARGET MASS & BACKGROUND REDUCTION

Mass: ~ 1kg (current ~ 40 g)

5000 Å

1500 Å

n-Si

AI 1000 Å

SiO₂ 4500 Å

- current mass: 5.8g /CCD
- ➤ goal: increase CCD mass 3X (1kg=>~50CCDs)
 - ~1mm with same fabrication
 process
 - ~ few mm thickness might be possible
 - ► larger format :4k x $4x \rightarrow 6k x 6k$

background: ~0.1 d.r.u (current ~ 5 d.r.u. / EDELWEISS < 1)

- Lots of effort and experience gained
- ► keep activation low (Cu / Si)
 - track the Si and Cu
 - electroformed Cu
- Chain identification
 (a plus w.r.t. other exp.)

ELECTRONICS: SKIPPER CCD

- Skipper CCD is an innovative technique (cf SENSEI project *arXiv:1706.00028*)
 Non destructive multiple uncorrelated readings
- ➤ resolution < 0.1 e- can be achieved (0.2 e- is a good compromise for read out time)
- ► Allow for the single e- measurement
- dark current limiting but very low in Si: 2e- threshold possible

DAMIC POTENTIAL SENSITIVITY

► Competitive limits on ~GeV WIMP interaction

► Can exploit e- recoil as well and explore hidden sector

CONCLUSION

CCD is an efficient DM detector for low mass WIMP

- ► stable operation
- very good energy & spatial resolution

- After a phase of development / bkg reduction DAMIC has released competitive limits (0.6kg day exposure)
 - Currently upgrading to DAMIC40

- Broad potential for next upgrade:
 - ► physics goal: ~GeV WIMP and Light DM
 - ► work on CCD fab. , read out electronics, process/transport handling ₂₃

THANKS FOR YOUR ATTENTION

READ OUT NOISE

Integration time / µs

ENERGY LINEARITY

CCD

CCD

Radiogenic bkg

Analysis	Isotope(s)	Tracer	Bulk rate	Surface rate
method		for	$\mathrm{kg}^{-1}\mathrm{d}^{-1}$	$cm^{-2} d^{-1}$
α	²¹⁰ Po	²¹⁰ Pb	<37	$0.011 \pm 0.004, 0.078 \pm 0.010$
spectroscopy	$^{234}\text{U} + ^{230}\text{Th} + ^{226}\text{Ra}$	²³⁸ U	<5 (4 ppt)	-
	²²⁴ Ra- ²²⁰ Ra- ²¹⁶ Po	²³² Th	<15 (43 ppt)	_
β spatial	³² Si – ³² P	³² Si	80^{+110}_{-65}	_
coincidence	²¹⁰ Pb – ²¹⁰ Bi	²¹⁰ Pb	<33	_

OTHER EXPERIMENTS

NUCLEAR RECOIL CALIBRATIONS

low E neutrons

fast neutrons

WIMP Search efficiency

DM candidate spectrum

DAMIC BACKGROUND SPECTRUM

