DANAE - a new experiment for direct dark matter detection with DEPFET silicon detector

Hexi Shi HEPHY ÖAW

25 June 2018 DSU 2018 Annecy-le-vieux

DANAE (DANAË) Direct d<u>A</u>rk matter search using DEPFET with repetitive-Non-destructive-readout <u>Application Experiment</u>

OeAW funding for detector technology

'Danae" by G. Klimt

Collaboration

A. Bähr ^A, J. Ninkovic ^A, J. Treis ^A, H. Kluck ^{B,C}, J. Schieck ^B, ^C, H. Shi ^B,

Germany

Austria

Max-Planck-Gesellschaft Halbleiterlabor, Germany A,

Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Vienna, Austria ^B, Atominstitut, Technische Universität Wien, Vienna, Austria ^C

The project overview

Direct Dark Matter Detection with DEPFET

Dark matter landscape - partly

Over 80% of the mass in the universe is invisible dark matter

"WIMP" as a dark matter candidate :

- weakly interacting with matter $<\sigma_{WIMP} \cdot v > ~G_{F^2} \cdot m_{X^2} ~ 1/\Omega_X$
- fits the Hubble constant and "relic" density of dark matter

predicts dark matter WIMP mass between 2 GeV and 120 TeV

WIMPs

dominated the direct detection experiments until recently

WIMP direct detection method

look for nuclear recoils from WIMP-nucleus scattering

DM-nucleus scattering direct search status

DM-nucleus scattering direct search status

Dark Sector and Light Dark Matter

Dark sector :

interaction between DM and standard model particle mediated by a dark photon (one example of mediators)

clear predictions from multiple models over wide DM mass region, including keV ~ GeV range -> comparable observables in experiments

DM-electron scattering

kinematically

to overcome binding energy ΔE

need $E_{\rm DM} \sim \frac{1}{2} m_{\rm DM} v_{\rm DM}^2 > \Delta E$

$$v_{\rm DM} \lesssim 800 \text{ km/s} \implies m_{\rm DM} \gtrsim 300 \text{ keV} \left(\frac{\Delta E}{1 \text{ eV}}\right)$$

$$O(100 \text{ keV})$$

DM-electron scattering

bound e- does not have definite momentum, typical momentum transfer is set by e- not by DM.

 $q_{
m typ}\sim lpha m_e\sim 4~{
m keV}$ (for out

(for outer shell electron)

transferred energy: $\Delta E_e \sim \vec{q} \cdot \vec{v}_{\rm DM}$ $\Delta E_e \sim 4 \ {\rm eV} \qquad {\rm typical} {\rm recoil\ energy}$

JHEP05(2016)046

Target materials for electron recoils

Target Type	Examples	E _{th}	m _χ threshold	Status	Timescale
Noble liquids	Xe, Ar, He	~ 10 eV	~ 5 MeV	Done w data; improvements possible	existing
Semi- conductors	Ge, Si	~ 1 eV	~ 200 keV	(E _{th} <u>~ 40 eV</u> SuperCDMS, DAMIC) E _{th} <u>~ 1eV</u> SENSEI , DEPFET R&D	~ 1-2 years
Scintillators	GaAs, Nal, Csl,	~ 1 eV	~ 200 keV R&D required		≲ 5 years
Supferfluid	He	~ 1 eV	~ 1 MeV R&D required unknown background		≲ 5 years
Super- conductor	AI	~ 1 meV	~ 1 keV R&D required unknown background		~ 10 - 15 years

arXiv:1608.08632

SENSEI first result with "skipper" CCD

SENSEI first result with "skipper" CCD

DEPFET with RNDR

RNDR : repetitive non-destructive readout

structure of a basic DEPFET cell :

a "subpixel"

structure of RNDR DEPFET "super-pixel"

RNDR readout

read N times <u>effective noise</u> : $\sigma_{eff} = \sigma/(\sqrt{N})$

RNDR readout

EPJ C, 77(12), 279 (2017)

read N times <u>effective noise</u> : $\sigma_{eff} = \sigma/(\sqrt{N})$

A comparison with skipper CCD

Туре	Pixel format [µm]	prototype mass	operating temp	dark current	readout time (1sample)	readout noise (optimal)
skipper CCD	15 x 15 x 200	0.071 g	140 K	<u><~1.14</u> <u>e⁻/pix/day</u>	10 µs/pix/ amplifier	0.068 e-rms/pix
RNDR DEPFET	75 x 75 x 450	0.024 g	≲ 200 K	<u>< 1</u> <u>e⁻/pix/day</u>	4 μs/ 64 pix	0.2 e-rms/pix

similar concepts of non-destructive readout, compatible performance;

different architecture, different systematics;

-> good complementary from experimental point of view

DANAE prototype test setup

Detector prototype at HLL-MPG courtesy of J. Treis

proto-type : 75 um x 75 um x 450 um single pixel, 64 x 64 matrix sensitive volume **0.024 g**

Setup at HLL

Vacuum and cooling test in March 2018 cooling pad reached 150 K

Detector control and readout electronics

Image of the detector assembly

To be assembled in July-August 2018

Physics run perspective

- Expect preliminary results from the prototype setup (0.024 g sensitive volume) in late 2018
- physics run with significant result requires more matrices

Summary

- sub e⁻ ENC low noise semiconductor detector capable of detecting the energy deposit from sub-GeV DM-electron recoil;
- DANAE prototype for test-of-principle measurement with 64 x 64 pixel matrix in preparation;
- one of the <u>first generation</u> experiments using non-destructive repetitive readout method.

DANAE (DANAË) Direct d<u>A</u>rk matter search using DEPFET with repetitive-Non-destructive-readout <u>Application Experiment</u>

OeAW funding for detector technology

'Danae" by G. Klimt

Collaboration

A. Bähr ^A, J. Ninkovic ^A, J. Treis ^A, H. Kluck ^{B,C}, J. Schieck ^B, ^C, H. Shi ^B,

Germany

Austria

Max-Planck-Gesellschaft Halbleiterlabor, Germany A,

Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Vienna, Austria ^B, Atominstitut, Technische Universität Wien, Vienna, Austria ^C

Expected 1day exposure compared to SENSEI

24

Application of Silicon detector

Skipper CCD for SENSEI

DAMIC CCD with **repetitive readout**

DEPFET CDS circle

CCD (skipper) readout

辈 Fermilab

December 6, 2016

