CMB constraints on light primordial black holes

Jan Hamann

Based on work in progress with Harry Poulter, Martin White and Tony Williams (University of Adelaide)

Australian Government

Australian Research Council

Primordial Black Holes (PBHs) as a Dark Matter candidate?

 \rightarrow Misao Sasaki's talk this morning

 PBHs do not require a new particle to explain DM

- Formation of PBHs does require new physics
- Getting the right DM abundance requires careful tuning

Phenomenology of PBHs

- Depending on their mass, PBHs can potentially lead to observable signatures via
 - Hawking radiation
 - Gravitational lensing
 - Kinematic effects
 - Capture by astrophysical objects
 - Accretion on PBH
 - Generation of additional large scale structure (Poisson)

Conceptual mass limits

- PBH lifetime should be longer than the age of the Universe
- At least one PBH per galaxy halo

$$\implies 10^{\sim 45} \mathrm{g} \gtrsim M_{\mathrm{PBH}} \gtrsim 10^{15} \mathrm{g}$$

Extended PBH mass distributions from inflation

• Example: hybrid inflation

Can generate large amplitude fluctuations in "waterfall field" at the end of inflation

[e.g., Clesse, Garcia-Bellido (2015)]

Extended PBH mass distributions from inflation

Primordial power spectrum of curvature perturbations

[Clesse, Garcia-Bellido (2015)]

Extended PBH mass distributions from inflation

Light PBHS: $10^{15} \text{ g} < M_{PBH} < 10^{17} \text{ g}$ $10^{-14} \text{ m} < r_{PBH} < 10^{-12} \text{ m}$

[Hydrogen atom: $r = 5 \times 10^{-11}$ m]

Constraining light PBHs with the CMB

- PBHs with mass $M_{\rm PBH} < 10^{17}$ g deposit energy into plasma via Hawking radiation
- Changes recombination history of the Universe (free electron fraction x_e(z))
- Affects the temperature and polarisation anisotropies of the CMB
- Compare with *Planck* data to constrain f_{PBH}

Phenomenology very similar to decaying dark matter scenario

Constraints on light PBHs

• Extragalactic γ-ray background

[Carr, Kohri, Sendouda, Yokoyama (2012)]

• CMB

[e.g., Carr, Kohri, Sendouda, Yokoyama (2012); Belotsky, Kirillov (2014); Clark, Dutta, Gao, Strigari, Watson (2016); Lesgourgues, Poulin, Serpico (2017)]

Extended mass distributions (but not for this scenario)

[e.g., Kühnel, Freese (2017); Bellomo, Bernal, Raccanelli, Verde (2017); Carr, Raidal, Tenkanen, Vaskonen, Veermäe (2017)]

Hawking radiation

Black holes emit blackbody radiation with temperature

$$T_{\rm BH} = \frac{m_{\rm Pl}^2}{M_{\rm BH}} \sim \left(\frac{M_{\rm BH}}{10^{13}{\rm g}}\right)^{-1} {\rm GeV} \sim \left(\frac{M_{\rm BH}}{10^{26}{\rm g}}\right)^{-1} {\rm K}$$

implying an evaporation time* of

$$au_{\rm BH} \sim 10^{10} \left(\frac{M_{\rm BH}}{5 \times 10^{14} {\rm g}} \right)^3 {\rm a}$$

*this assumes an isolated black hole that does not accrete; given today's CMB temperature, only black holes with masses < O(10²⁶g) lose mass

PBH energy loss

• Total energy loss of PBHs per volume and time

$$\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t} = -\frac{\dot{M}_{\mathrm{PBH}}}{M_{\mathrm{PBH}}}\rho_{\mathrm{PBH}}(1+z)^3$$

 For 10¹⁵ g < M_{PBH} < 10¹⁷ g, Hawking radiation consists of gravitons, photons, neutrinos and e[±]

only these can heat the plasma around CMB decoupling

PBH energy loss

• PBH mass loss

$$\dot{M}_{\rm PBH} \approx -5 \times 10^{-5} \left(f_{\rm grav} + f_{\gamma} + f_{\nu} + f_{e^{\pm}} \right) \left(\frac{M_{\rm PBH}}{10^{15} \rm g} \right)^{-2} \rm g \ s^{-1}$$

0.007 0.06 0.147 0.142

[MacGibbon, Webber (1990)]

0

- Above 10¹⁷ g: no e[±], heating becomes inefficient
- Below 10¹⁵ g: QCD phase transition, quark jets
- Energy injected into the plasma

$$\frac{\mathrm{d}E_{\mathrm{inj}}}{\mathrm{d}V\mathrm{d}t} \propto f_{\mathrm{PBH}} M_{\mathrm{PBH}}^{-3} (1+z)^3$$

Recombination

Effective three-level atom [Peebles (1968)]

Recfast [Seager, Sasselov, Scott (1999)]

Recombination

Recombination

Effective three-level atom [Peebles (1968)]

Extended effective multi-level atom

Recfast [Seager, Sasselov, Scott (1999)]

HyRec [Ali-Haïmoud, Hirata (2010)]

Modifications to recombination equations

 Coupled ODEs for free electron fraction x_e and baryon temperature T_b

These extra terms depend on the hydrogen number density and the effective efficiencies of energy deposition in the different channels

Effect of injected energy on plasma

Effective efficiencies

[Slatyer (2015); JH, Poulter, White, Williams (in prep.)]

Ionisation history and baryon temperature after recombination

[JH, Poulter, White, Williams (in prep.)]

Constraints on PBH mass/fraction

PBH mass (monochromatic mass function)

[JH, Poulter, White, Williams (in prep.)]

Extended PBH mass distributions

Assume lognormal • mass distribution 10-6 $\frac{(\log M/M_{\rm PBH})^2}{2\sigma_{10}^2}$ 10^{-8} $\overline{\mathrm{d}M}$ $\propto \exp$ 10-10 B^{form} 10-12 (logarithmic) width 10-14 10-16 10^{-10} 10^{-20} 10^{-5} 10-15 1 105 M PBH/ M

[[]Clesse, Garcia-Bellido (2015)]

Constraints on width of lognormal mass distribution (for fixed f_{PBH})

[JH, Poulter, White, Williams (in prep.)]

Constraints on PBH fraction (for fixed mass distributions)

[JH, Poulter, White, Williams (in prep.)]

Conclusions

- CMB anisotropies can constrain light PBHs
 - Caveat: ignoring other LCDM parameters severely biases constraints
- CMB data allow $f_{PBH} = 1$ in a small window $M_{PBH} \ge 6 \ge 10^{16} g$
 - requires quasi-monochromatic mass distribution
 - may already be ruled out by γ -ray observations...
- Extended mass distributions don't help (in fact, they make things worse)

Constraints on light PBHs

