

Doojin Kim

14th International Workshop Dark Side of the Universe, Annecy, France
June 28th, 2018

In collaboration with A. Chatterjee, A. De Roeck, Z. Moghaddam, J.-C. Park, S. Shin, L. Whitehead, J. Yu, arXiv:1803.03264

ProtoDUNE as Prototypical Detectors of DUNE

Prototype of DUNE

✓ Physics at DUNE: neutrino sector, BSM, etc. (at intensity and cosmic frontiers)

- ✓ Testing long-term stability and operation
 of Liquid Argon TPC detectors,
- ✓ Acting as an engineering proof-of-principle for scalability (kiloton-scale) ,
- ✓ Calibrating beam response and cosmic-ray response

☐ Any **potential for physics** (e.g., BSM at cosmic frontier) with ProtoDUNE detectors?

Pros

- ✓ Large (fiducial) volume
- ✓ Equally good detector
 performance like DUNE
 (angular/position/energ
 y resolution etc.)

☐ Any **potential for physics** (e.g., BSM at cosmic frontier) with ProtoDUNE detectors?

Pros

- ✓ Large (fiducial) volume
- ✓ Equally good detector
 performance like DUNE
 (angular/position/energ
 y resolution etc.)

Cons

✓ Large amount of backgrounds (due to their location)

☐ Any **potential for physics** (e.g., BSM at cosmic frontier) with ProtoDUNE detectors?

Pros

- ✓ Large (fiducial) volume
- ✓ Equally good detector
 performance like DUNE
 (angular/position/energ
 y resolution etc.)

Cons

✓ Large amount of backgrounds (due to their location)

☐ Nevertheless, can we do interesting physics?

☐ Any **potential for physics** (e.g., BSM at cosmic frontier) with ProtoDUNE detectors?

Pros

- ✓ Large (fiducial) volume
- ✓ Equally good detector
 performance like DUNE
 (angular/position/energ
 y resolution etc.)

Cons

✓ Large amount of backgrounds (due to their location)

- Nevertheless, can we do interesting physics?
 - ⇒ Focusing on dark matter physics.
 - ⇒ Talking about what we can achieve at ProtoDUNE.

Non-relativistic Dark Matter Search

☐ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

- $\checkmark E_{\text{recoil}} \sim 1 100$ keV
- ✓ Detectors
 designed to be
 sensitive to this
 energy scale

- ✓ Null observation of WIMP signals
- ✓ A wide range of parameter space already excluded
- ✓ Close to the neutrino "floor"
- ✓ Need new ideas!

Two-component Boosted DM Scenario

A possible relativistic source: BDM scenario (cosmic frontier), stability of the two DM species ensured by separate symmetries, e.g., $Z_2 \otimes Z_2'$, $U(1) \otimes U(1)'$, etc.

"Relativistic" Dark Matter Search

- ✓ Heavier relic χ_0 : hard to detect it due to tiny/negligible coupling to SM
- ✓ Lighter relic χ_1 : hard to detect it due to small amount

Flux of Boosted DM

 \square Flux of boosted χ_1 near the earth [Agashe et al (2014); Belanger, Park (2011)]

$$\mathcal{F} = \frac{1}{2} \cdot \frac{1}{4\pi} \int d\Omega \int_{\log} ds \langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \left(\frac{\rho(s, \theta)}{m_0} \right)^2$$
from DM number density
$$= 1.6 \times 10^{-4} \, \text{cm}^{-2} \text{s}^{-1}$$
(4.3)
$$\times \left(\frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{5 \times 10^{-26} \, \text{cm}^3 \text{s}^{-1}} \right) \times \left(\frac{\text{GeV}}{m_0} \right)^2$$

$$\equiv \mathcal{F}_{\text{ref}}^{180^{\circ}} \times \left(\frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{5 \times 10^{-26} \, \text{cm}^3 \text{s}^{-1}} \right) \times \left(\frac{\text{GeV}}{m_0} \right)^2,$$

□ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}$ to be ~10⁻²⁶ cm³s⁻¹ and assuming NFW DM halo profile, one finds

$$\mathcal{F}_{\chi_1}$$
 spans ~10⁻¹ to ~10⁻⁵ cm⁻²s⁻¹ for $\mathcal{O}(30 \text{ MeV})$ to $\mathcal{O}(2 \text{ GeV})$ mass of χ_0

⇒ **Big enough** for kt/sub-kt LArTPC detectors to observe signal events (LArTPC detectors have good position/angle/vertex resolution, low threshold, and great particle identification)

Generic BDM Signal Processes

(a) Elastic scattering (eBDM) (cf. eBDM at DUNE [Necib, Moon, Wongjirad, Conrad (2016); Alhazmi, Kong, Mohlabeng, Park (2016)])

- χ_0 : heavier DM
- χ_1 : lighter DM
- γ_1 : boost factor of χ_1
- χ_2 : massive unstable dark-sector state
- ϕ : mediator/portal particle

Generic BDM Signal Processes

- χ_0 : heavier DM
- χ_1 : lighter DM
- γ_1 : boost factor of χ_1
- χ_2 : massive unstable dark-sector state
- ϕ : mediator/portal particle

(a) Elastic scattering (eBDM) (cf. eBDM at DUNE [Necib, Moon, Wongjirad, Conrad (2016); Alhazmi, Kong, Mohlabeng, Park (2016)])

(b) Inelastic scattering (iBDM) (cf. iBDM at DUNE [DK, Park, Shin (2016)])

Many signal features, helping veto BGs hence using full data

Benchmark Model: Building Blocks

$$\mathcal{L}_{\text{int}} \ni \left(-\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu}\right) + \left(g_{11} \bar{\chi}_1 \gamma^{\mu} \chi_1 X_{\mu}\right) + \left(g_{12} \bar{\chi}_2 \gamma^{\mu} \chi_1 X_{\mu}\right) + \text{h. c.} + (\text{others})$$

☐ Vector portal (e.g., dark gauge boson scenario)

- ☐ Fermionic DM
 - \star χ_2 : a heavier (unstable) dark-sector state
 - ❖ Flavor-conserving neutral current ⇒ elastic scattering

❖ Flavor-changing neutral current ⇒ inelastic scattering

Not Only for This Model But for Other Models

- ☐ Not restricted to this model: various models conceiving BDM signatures
 - ❖ BDM source: galactic center, solar capture, dwarf galaxies, assisted freeze-out, semi-annihilation, fast-moving DM etc. [Agashe et al. (2014); Berger et al. (2014); Kong et al. (2014); Alhazmi et al. (2016); Super-K (2017); Belanger et al. (2011); D'Eramo et al. (2010); Huang et al. (2013)]
 - ❖ Portal: vector portal, scalar portal, etc.
 - DM spin: fermionic DM, scalar DM, etc.
 - ❖ *i*BDM-inducing operator: two chiral fermions, two real scalars, dipole moment interactions, etc. [Tucker-Smith, Weiner (2001); Giudice, DK, Park, Shin (2017)]

Expected Signatures with Electron Recoil

- ☐ Ordinary elastic scattering: electron recoil (ER) only, i.e., single track
- □ "Prompt" inelastic scattering: ER + e^+e^- pair (from the decay of on-shell X), i.e., **three**

tracks

- □ "Displaced" inelastic scattering: ER + e^+e^- pair (typically from a three-body decay of χ_2), i.e., again **three tracks**
- □ Note that tracks will pop up inside the fiducial volume.
- ☐ Straightforwardly applicable to proton recoil (up to form factor, DIS etc.)

Active vol.

Doojin Kim, CERN -15- Dark Side of the Universe

- **■** Low energy particles (≥ 30 MeV): can be removed/suppressed by taking a fiducial volume (blue box) smaller than the active volume. (170 t for Dual, 300 t for Single)
- ☐ **High energy particles** (e.g., muons): creating tracks incoming outside fiducial volume, which can be rejected by a trigger and the post-analysis. (Note that a large flux is expected because ProtoDUNE is placed on the ground.)
- ☐ (Atmospheric) neutrinos: (potentially) irreducible for elastic scattering signals, but not for inelastic scattering signals.

~35 cm from active volume boundary (DUNE CDR-Vol.4)

Cosmic Backgrounds: 1ms Snapshot at ProtoDUNE

Case Study I

Conditions to Mimic an iBDM Signal

"Sneaking-in" Muons

 \square μ reconstruction efficiency for a small muon counter-tagged muon event [MicroBooNE

Collaboration, MICROBOONE-NOTE-1010-PUBl

 \Rightarrow 0.09% missed with 2016 data (lower with 2017 data, not public yet)

☐ "Conservative" estimate for the "sneaking-in" muon probability.

$$10^{-3} (> 0.09\%)$$

(Caveat: ProtoDUNE has no cosmic muon counter at the moment.)

Hard Emission of a Photon

Phase-space suppression factor

Electron-faking Muon

- ☐ All known studies simply reporting a negligible rate of muons misidentified as electrons, but how negligible?
- ☐ A hint from an example study [ArgoNeuT Collaboration, "First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber", arXiv:1610.04102]

- ☐ This is too large to be true, because
 - Other criteria discriminate more,
 - \sim 7% contamination from γ sample (i.e., e vs. γ) is reported, whereas e vs. μ is simply stated negligible.
- □ Nevertheless, a very conservative estimate of fake probability is 10^{-2}

Case Study I: Overall Survival Rate

Case Study II

Case Study II: Overall Survival Rate

- 1) Deep inelastic scattering with a p/n \sim (DIS cross section) \times (muon flux) \times
- $N_{\rm event} \sim ({\rm DIS\ cross\ section}) \times ({\rm muon\ flux}) \times (1\ {\rm year}) \times ({\rm number\ of\ nucleons\ inside\ the\ passive\ volume}) \times 2 \times 10^5\ {\rm yr}^{-1}$
- 2) Photon split inside the fiducial volume after traveling more than ~35 cm in Liquid Ar
- 3) Electron "sneaks in" and pops up inside the fiducial volume
- 4) Incoming muon not leaving a visible track inside the active volume

Indeed, should be smaller than muon "sneak-in" probability

Model-independent Reach

- Non-trivial to find appropriate parameterizations for providing model-independent reaches due to many parameters involved in the model
- \square Number of signal events N_{sig} is

$$N_{\rm sig} = \sigma_{\epsilon} \cdot \mathcal{F} \cdot A \cdot t_{\rm exp} \cdot N_e$$

- σ_{ϵ} : scattering cross section between χ_1 and (target) electron
- \mathcal{F} : flux of incoming (boosted) χ_1
- *A*: acceptance
- t_{exp} : exposure time
- N_e : total # of target electrons-

Controllable! (once a detector is determined)

Here we factored out the acceptance related to distance between the primary (ER) and the secondary vertices, other factors like cuts, energy threshold, etc are absorbed into σ_{ϵ} .

Model-independent Reach: Prospect

Evaluated under the assumption of cumulatively isotropic χ_1 flux

 ℓ_{lab} different event-by-event, so taking ℓ_{lab}^{max} for more conservative limit

Dark Photon Parameter Space: Invisible X Decay

- ☐ Case study 1: mass spectra for which dark photon decays into DM pairs, i.e., $m_X >$ $2m_1$
- □ 1-year data collection from the entire sky and g_{11} = g_{12} = 1 are assumed.
- ☐ Elastic and inelastic
 scattering channels are
 complementary to each
 other.

Dark Photon Parameter Space: Visible X decay

- ☐ Case study 2: mass spectra for which dark photon decays into lepton pairs, i.e., m_X < $2m_1$
- □ 1-year data collection from the entire sky and g_{11} = g_{12} = 1 are assumed.
- ☐ Inelastic scattering channel allows us to explore comparable parameter space (for the chosen benchmark point).

Conclusions and Outlook

v_{DM} Scattering	Non-relativistic $(v_{DM} \ll c)$	Relativistic $(v_{DM} \sim c)$
elastic	Direct detection	Boosted DM (eBDM)
inelastic	inelastic DM (iDM)	inelastic BDM (<i>i</i> BDM)

- ☐ The boosted (light) DM search is **promising** and provides a **new direction** to study DM phenomenology.
- ☐ Potential (scary?) **cosmic-ray background** can be well **under control**.
- **ProtoDUNE** possesses **excellent sensitivities** to a wide range of (light) boosted DM, hence allows a **deeper understanding** in non-minimal dark sector physics.
- **ProtoDUNE** can provide an **alternative avenue** to probe dark photon parameter space.
- Physics at ProtoDUNE can provide a **valuable physics input** and potentially a **realistic guideline** for new physics searches at DUNE.
- ☐ The same opportunity is available at SBN detectors, e.g., ICARUS.

Back-up

Potential Backgrounds: High Energy Muons

 \square Expecting $\sim 10^6$ more muon flux at ProtoDUNE than that at the DUNE far-detector.

Potential Backgrounds: High Energy Muons

- More quantitatively, the integral intensity of vertical muons above 1 GeV at sea level is $\sim 70 \, / \text{m}^2 / \text{s/sr}$ [De Pascale et al, (1993)]
 - 1) Single phase detector: muons below 1 GeV cannot reach the active volume (\sim 2 MeV/cm \times \sim 6 mwe \approx 1.2 GeV). $\Rightarrow \sim$ 3.5 muons/ms/sr
 - Dual phase detector: muons below 1 GeV can reach the active volume (\sim 2 MeV/cm $\times \sim$ 2 mwe ≈ 0.4 GeV). Muon energy spectrum below 1 GeV is almost flat, so muons at sea level in-between 500 MeV and 1 GeV is estimated to be \sim 10 /m²/s/sr. $\Rightarrow \sim$ 3 muons/ms/sr
- □ Expecting that these numbers of muon events can be well **under control** by a (sensible) trigger and/or (dedicated) data analyses.
- \square However, a possible source is the **cosmogenic neutron** which would give a fake signal. \Rightarrow The easiest solution is to give up the elastic proton-scattering signal or to take a smaller fiducial volume.

Potential Backgrounds: Neutrinos

Table 4.3: Atmospheric neutrino event rates including oscillations in $350\,\mathrm{kt}\cdot\mathrm{year}$ with a LArTPC, fully or partially contained in the detector fiducial volume.

Sample	Event Rate
fully contained electron-like sample	14,053
fully contained muon-like sample	20,853
partially contained muon-like sample	6,871

~40. 2/yr/kt: may contain multi-track events

[DUNE CDR-Vol.2 (2015)]

	SK-I		SK-II		SK-III		SK-IV	
	Data	MC	Data	MC	Data	MC	Data	MC
FC sub-GeV single-ring e-like				[St	ıper-K	amiok	ande (2012)]
0-decay	2992	2705.4	1573	1445.4	1092	945.3	2098	1934.9
1-decay	301	248.1	172	138.9	118	85.3	243	198.4
π^0 -like μ -like	176	160.0	111	96.3	58	53.8	116	96.2
0-decay	1025	893.7	561	501.9	336	311.8	405	366.3
1-decay	2012	1883.0	1037	1006.7	742	664.1	1833	1654.1
2-decay	147	130.4	86	71.3	61	46.6	174	132.2
2 -ring π^0 -like	524	492.8	266	259.8	182	172.2	380	355.9
C multi-GeV single-ring								
ν_e -like	191	152.8	79	78.4	68	54.9	156	135.9
$\overline{\nu}_e$ -like	665	656.2	317	349.5	206	231.6	423	432.8
μ -like	712	775.3	400	415.7	238	266.4	420	554.8
multi-ring								
ν_e -like	216	224.7	143	121.9	65	81.8	175	161.9
$\overline{ u}_e$ -like	227	219.7	134	121.1	80	72.4	212	179.1
μ -like	603	640.1	337	337.0	228	231.4	479	499.0
	+							

Single-track candidates: 32.4 + 8.8 = 41.2 / yr/kt, while total e-like events are 49.9 / yr/kt. (Note that SK takes e-like events with $E > \sim 10$ MeV.)

⇒ Potential background for elastic scattering signal events

Multi-track candidates: 5.2 /yr/kt

- ⇒ Most extra tracks come from mesons which can be identified at ProtoDUNE.
- ⇒ Very likely to be background-free for inelastic scattering signal events

Neutrino Fluxes

[Ruppin et al., (2014)]

eBDM Search at Super-K

[Super-K Collaboration, (2017)]

	10	$100 \text{ MeV} < E_{vis} < 1.33 \text{ GeV}$			$1.33 \text{ GeV} < E_{vis} < 20 \text{ GeV}$			$E_{vis} > 20 \text{ GeV}$		
	Data	u-MC	$\epsilon_{sig}(0.5~{ m GeV})$	Data	ν -M C	$\epsilon_{sig}(5~{ m GeV})$	Data	ν -MC	$\epsilon_{sig}(50~{ m GeV})$	
FCFV	15206	14858.1	97.7%	4908	5111.1	93.8%	97	107.5	84.9%	
& single ring	11367	10997.4	95.8%	2868	3162.8	93.3%	53	68.2	82.2%	
& e -like	5655	5571.5	95.7%	1514	1644.4	93.0%	53	68.1	82.2%	
& 0 decay-e	5176	5123.6	94.7%	1134	1266.0	93.0%	17	20.0	82.2%	
& 0 neutrons	4132	4076.3	93.0%	683	801.5	91.3%	4	5.9	80.7%	

TABLE I. Number of events over the entire sky passing each cut in 2628.1 days of SK4 data, simulated ν -MC background expectation, and signal efficiency at representative energy after each cut.

High threshold energy

Single-ring-like objects only