

### **Doojin Kim** 14<sup>th</sup> International Workshop Dark Side of the Universe, Annecy, France June 28<sup>th</sup>, 2018

In collaboration with A. Chatterjee, A. De Roeck, Z. Moghaddam, J.-C. Park, S. Shin, L. Whitehead, J. Yu, arXiv:1803.03264

## **ProtoDUNE as Prototypical Detectors of DUNE**

Prototype of DUNE



✓ Physics at DUNE: neutrino sector, BSM, etc. (at intensity and cosmic frontiers)



- Testing long-term stability and operation of Liquid Argon TPC detectors,
- Acting as an engineering proof-of-principle for scalability (kiloton-scale) ,
- Calibrating beam response and cosmic-ray response

□ Any **potential for physics** (e.g., BSM at cosmic frontier) with ProtoDUNE detectors?

### Pros

- ✓ Large (fiducial) volume
- Equally good detector
   performance like DUNE
   (angular/position/energ
   y resolution etc.)

□ Any **potential for physics** (e.g., BSM at cosmic frontier) with ProtoDUNE detectors?



-3-

□ Any **potential for physics** (e.g., BSM at cosmic frontier) with ProtoDUNE detectors?



□ Nevertheless, can we do interesting physics?

Any **potential for physics** (e.g., BSM at cosmic frontier) with ProtoDUNE detectors?

- Pros
- ✓ Large (fiducial) volume
- Equally good detector
   performance like DUNE
   (angular/position/energ
   y resolution etc.)

VS.

-5-

✓ Large amount of backgrounds
 (due to their location)



- □ Nevertheless, can we do interesting physics?
  - $\Rightarrow$  Focusing on **dark matter physics**.
  - ⇒ Talking about what we can achieve at ProtoDUNE.



## Non-relativistic Dark Matter Search

(Mostly) focusing on weakly interacting massive particles (WIMPs) search



- $\checkmark E_{\rm recoil} \sim 1 100$
- ✓ Detectors designed to be sensitive to this energy scale



- ✓ Null observation of WIMP signals
- ✓ A wide range of parameter space already excluded
- ✓ Close to the neutrino "floor"
- ✓ Need new ideas!

### Doojin Kim, CERN

### **Two-component Boosted DM Scenario**

□ A possible relativistic source: BDM scenario (cosmic frontier), stability of the two DM species ensured by separate symmetries, e.g.,  $Z_2 \otimes Z'_2$ ,  $U(1) \otimes U(1)'$ , etc.



#### Doojin Kim, CERN

### "Relativistic" Dark Matter Search



- ✓ Heavier relic  $\chi_0$ : hard to detect it due to tiny/negligible coupling to SM
- ✓ Lighter relic  $\chi_1$ : hard to detect it due to small amount



### **Flux of Boosted DM**

 $\Box$  Flux of boosted  $\chi_1$  near the earth [Agashe et al (2014); Belanger, Park (2011)]

$$\mathcal{F} = \frac{1}{2} \cdot \frac{1}{4\pi} \int d\Omega \int_{\log} ds \langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \left( \frac{\rho(s, \theta)}{m_0} \right)^2$$
 from DM number density  

$$= 1.6 \times 10^{-4} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$$
 (4.3)  

$$\times \left( \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{5 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}} \right) \times \left( \frac{\mathrm{GeV}}{m_0} \right)^2$$
  

$$\equiv \mathcal{F}_{\mathrm{ref}}^{180^\circ} \times \left( \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{5 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}} \right) \times \left( \frac{\mathrm{GeV}}{m_0} \right)^2 ,$$

□ Setting  $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}$  to be ~10<sup>-26</sup> cm<sup>3</sup>s<sup>-1</sup> and assuming NFW DM halo profile, one finds  $\mathcal{F}_{\chi_1}$  spans ~10<sup>-1</sup> to ~10<sup>-5</sup> cm<sup>-2</sup>s<sup>-1</sup> for  $\mathcal{O}(30 \text{ MeV})$  to  $\mathcal{O}(2 \text{ GeV})$  mass of  $\chi_0$  $\Rightarrow$  **Big enough** for kt/sub-kt LArTPC detectors to observe signal events (LArTPC detectors have good position/angle/vertex resolution, low threshold, and great particle identification)

## **Generic BDM Signal Processes**

(*a*) Elastic scattering (eBDM) (cf. eBDM at DUNE [Necib, Moon,



- $\chi_0$ : heavier DM
- $\chi_1$ : lighter DM
- $\gamma_1$ : boost factor of  $\chi_1$
- $\chi_2$ : massive unstable dark-sector state
- *φ*: mediator/portal particle

#### Doojin Kim, CERN

## **Generic BDM Signal Processes**

(*a*) Elastic scattering (eBDM) (cf. eBDM at DUNE [Necib, Moon, Wongjirad, Conrad (2016); Alhazmi, Kong, Mohlabeng, Park (2016)] )



#### Doojin Kim, CERN

# **Benchmark Model: Building Blocks**

 $-\frac{\epsilon}{2}F_{\mu\nu}X^{\mu\nu} + g_{11}\bar{\chi}_{1}\gamma^{\mu}\chi_{1}X_{\mu} + g_{12}\bar{\chi}_{2}\gamma^{\mu}\chi_{1}X_{\mu} + \text{h.c.} + (\text{others})$  $\mathcal{L}_{int} \ni$ 

- □ Vector portal (e.g., dark gauge boson scenario)
- □ Fermionic DM
  - \*  $\chi_2$ : a heavier (unstable) dark-sector state
  - Flavor-conserving neutral current  $\Rightarrow$  elastic scattering





✤ Flavor-changing neutral current ⇒ inelastic scattering



## Not Only for This Model But for Other Models

□ Not restricted to this model: various models conceiving BDM signatures

- BDM source: galactic center, solar capture, dwarf galaxies, assisted freeze-out, semiannihilation, fast-moving DM etc. [Agashe et al. (2014); Berger et al. (2014); Kong et al. (2014); Alhazmi et al. (2016); Super-K (2017); Belanger et al. (2011); D'Eramo et al. (2010); Huang et al. (2013)]
- Portal: vector portal, scalar portal, etc.
- ✤ DM spin: fermionic DM, scalar DM, etc.
- *i*BDM-inducing operator: two chiral fermions, two real scalars, dipole moment interactions, etc. [Tucker-Smith, Weiner (2001); Giudice, DK, Park, Shin (2017)]

## **Expected Signatures with Electron Recoil**



- Ordinary elastic scattering: electron recoil
   (ER) only, i.e., single track
- "Prompt" inelastic scattering: ER + e<sup>+</sup>e<sup>-</sup> pair
   (from the decay of on-shell X), i.e., three

### tracks

- □ "Displaced" inelastic scattering: ER +  $e^+e^$ pair (typically from a three-body decay of  $\chi_2$ ), i.e., again **three tracks**
- Note that tracks will pop up inside the fiducial volume.
- Straightforwardly applicable to proton recoil (up to form factor, DIS etc.)

| A 1         |  |
|-------------|--|
| Active vol. |  |



❑ Low energy particles (≥ 30 MeV): can be removed/suppressed by taking a fiducial volume (blue box) smaller than the active volume. (170 t for Dual, 300 t for Single)

#### Doojin Kim, CERN



Low energy particles (≥ 30 MeV): can be removed/suppressed by taking a fiducial volume (blue box) smaller than the active volume. (170 t for Dual, 300 t for Single)
 High energy particles (e.g., muons): creating tracks incoming outside fiducial volume, which can be rejected by a trigger and the post-analysis. (Note that a large flux is expected because ProtoDUNE is placed on the ground.)



❑ Low energy particles (≥ 30 MeV): can be removed/suppressed by taking a fiducial volume (blue box) smaller than the active volume. (170 t for Dual, 300 t for Single)
 ❑ High energy particles (e.g., muons): creating tracks incoming outside fiducial volume, which can be rejected by a trigger and the post-analysis. (Note that a large flux is expected because ProtoDUNE is placed on the ground.)

(Atmospheric) neutrinos: (potentially)
 irreducible for elastic scattering signals, but
 not for inelastic scattering signals.

#### Doojin Kim, CERN

### **Cosmic Backgrounds: 1ms Snapshot at ProtoDUNE**



#### Doojin Kim, CERN

-19-

## **Case Study I**



Doojin Kim, CERN

## Conditions to Mimic an *i*BDM Signal



#### Doojin Kim, CERN

-21-

# "Sneaking-in" Muons

 $\Box$   $\mu$  reconstruction efficiency for a small muon counter-tagged muon event [MicroBooNE Collaboration, MICROBOONE-NOTE-1010-PUB]

 $\Rightarrow$  0.09% missed with 2016 data (lower with 2017 data, not public yet)

□ "Conservative" estimate for the "sneaking-in" muon probability.

### $10^{-3} (> 0.09\%)$

(Caveat: ProtoDUNE has no cosmic muon counter at the moment.)

## Hard Emission of a Photon



-23-

# **Electron-faking Muon**

All known studies simply reporting a negligible rate of muons misidentified as electrons, but how negligible?

A hint from an example study [ArgoNeuT Collaboration, "First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber", arXiv:1610.04102]



- □ This is too large to be true, because
  - > Other criteria discriminate more,
  - ~7% contamination from γ sample
     (i.e., *e* vs. γ) is reported, whereas *e* vs. μ
     is simply stated negligible.
- □ Nevertheless, a very conservative estimate

of fake probability is  $10^{-2}$ 

### **Case Study I: Overall Survival Rate**



Doojin Kim, CERN

-25-

## **Case Study II**



Doojin Kim, CERN

-26-

## **Case Study II: Overall Survival Rate**

- 1) Deep inelastic scattering with a p/n  $N_{\text{event}} \sim (\text{DIS cross section}) \times (\text{muon flux}) \times (1 \text{ year}) \times (\text{number of nucleons inside the passive volume})$  $\sim 2 \times 10^5 \text{ yr}^{-1}$
- Photon split inside the fiducial volume after traveling more than ~35 cm in Liquid Ar
- Electron "sneaks in" and pops up inside the fiducial volume
- Incoming muon not leaving a visible track inside the active volume



-27-

# **Model-independent Reach**

Non-trivial to find appropriate parameterizations for providing model-independent reaches due to many parameters involved in the model

 $\Box$  Number of signal events  $N_{sig}$  is

$$N_{\rm sig} = \sigma_{\epsilon} \cdot \mathcal{F} \cdot A \cdot t_{\rm exp} \cdot N_e$$

- $\sigma_{\epsilon}$ : scattering cross section between  $\chi_1$  and (target) electron
- $\mathcal{F}$ : flux of incoming (boosted)  $\chi_1$
- A: acceptance
- *t*<sub>exp</sub>: exposure time

**Controllable!** (once a detector is determined)

•  $N_e$ : total # of target electrons

Here we factored out the acceptance related to distance between the primary (ER) and the secondary vertices, other factors like cuts, energy threshold, etc are absorbed into  $\sigma_{\epsilon}$ .

### Model-independent Reach: Prospect



#### Doojin Kim, CERN

-29-

## **Dark Photon Parameter Space: Invisible X Decay**

□ Case study 1: mass spectra for which dark photon decays Babar **10<sup>-3</sup>** into DM pairs, i.e.,  $m_x >$  $2m_1$ Inelastic scattering □ 1-year data collection from the entire sky and  $g_{11} =$ 10<sup>-4</sup>  $m_1 = 5 \text{ MeV}$  $g_{12} = 1$  are assumed. NA64  $\gamma_1 = 100$  Elastic and inelastic  $m_X > 2m_1$  $2m_1$ scattering channels are  $\delta m = 0 \text{ MeV}$ Ш MXcomplementary to each  $\delta m = 2 \text{ MeV}$ Elastic scattering (see  $\delta m = 3 \text{ MeV}$ other. 10<sup>-5</sup> Jong-Chul Park's talk) 0.01 0.02 0.05 0.1 0.2  $m_X$  [GeV]

#### Doojin Kim, CERN

### **Dark Photon Parameter Space: Visible X decay**

- □ Case study 2: mass spectra for which dark photon decays into lepton pairs, i.e.,  $m_X <$  $2m_1$
- □ 1-year data collection from the entire sky and  $g_{11} =$  $g_{12} = 1$  are assumed. □ Inelastic scattering channel allows us to explore comparable parameter space (for the chosen benchmark point).

Ψ



-31-

## **Conclusions and Outlook**

| <i>v<sub>DM</sub></i><br>Scattering | Non-relativistic $(v_{DM} \ll c)$ | Relativistic<br>(v <sub>DM</sub> ~c) |  |  |
|-------------------------------------|-----------------------------------|--------------------------------------|--|--|
| elastic                             | Direct detection                  | Boosted DM (eBDM)                    |  |  |
| inelastic                           | inelastic DM (iDM)                | inelastic BDM ( <i>i</i> BDM)        |  |  |

- ❑ The boosted (light) DM search is promising and provides a new direction to study DM phenomenology.
- □ Potential (scary?) **cosmic-ray background** can be well **under control**.
- ProtoDUNE possesses excellent sensitivities to a wide range of (light) boosted DM, hence allows a deeper understanding in non-minimal dark sector physics.
- **ProtoDUNE** can provide an **alternative avenue** to probe dark photon parameter space.
- Physics at ProtoDUNE can provide a valuable physics input and potentially a realistic guideline for new physics searches at DUNE.
- □ The same opportunity is available at SBN detectors, e.g., ICARUS.



## **Potential Backgrounds: High Energy Muons**



 $\Box$  Expecting ~10<sup>6</sup> more muon flux at ProtoDUNE than that at the DUNE far-detector.

## **Potential Backgrounds: High Energy Muons**

□ More quantitatively, the integral intensity of vertical muons above 1 GeV at sea level is

- $\sim 70 \ /m^2/s/sr$  [De Pascale et al, (1993)]
  - Single phase detector: muons below 1 GeV cannot reach the active volume (~2 MeV/cm × ~6 mwe ≈ 1.2 GeV). ⇒ ~3.5 muons/ms/sr
  - 2) Dual phase detector: muons below 1 GeV can reach the active volume (~2 MeV/cm × ~2 mwe ≈ 0.4 GeV). Muon energy spectrum below 1 GeV is almost flat, so muons at sea level in-between 500 MeV and 1 GeV is estimated to be ~10 /m²/s/sr. ⇒ ~3 muons/ms/sr
- Expecting that these numbers of muon events can be well under control by a (sensible) trigger and/or (dedicated) data analyses.
- □ However, a possible source is the **cosmogenic neutron** which would give a fake signal.  $\Rightarrow$  The easiest solution is to give up the elastic proton-scattering signal or to take a smaller fiducial volume.

## **Potential Backgrounds: Neutrinos**

Table 4.3: Atmospheric neutrino event rates including oscillations in 350 kt  $\cdot$  year with a LArTPC, fully or partially contained in the detector fiducial volume.

SampleEvent Ratefully contained electron-like sample14,053fully contained muon-like sample20,853partially contained muon-like sample6,871

#### [DUNE CDR-Vol.2 (2015)]

|                          | SI   | SK-I   |      | SK-II  |        | SK-III      |         | SK-IV  |  |
|--------------------------|------|--------|------|--------|--------|-------------|---------|--------|--|
|                          | Data | MC     | Data | MC     | Data   | MC          | Data    | MC     |  |
| FC sub-GeV               |      |        |      | [C.    | mor V  |             | and a ( | 2012)] |  |
| single-ring              |      |        |      | [50    | трег-к | аппок       | ande (  | 2012)] |  |
| e-like                   |      |        |      |        |        |             |         |        |  |
| 0-decay                  | 2992 | 2705.4 | 1573 | 1445.4 | 1092   | 945.3       | 2098    | 1934.9 |  |
| 1-decay                  | 301  | 248.1  | 172  | 138.9  | 118    | 85.3        | 243     | 198.4  |  |
| $\pi^0$ -like            | 176  | 160.0  | 111  | 96.3   | 58     | 53.8        | 116     | 96.2   |  |
| $\mu$ -like              |      |        |      |        |        |             |         |        |  |
| 0-decay                  | 1025 | 893.7  | 561  | 501.9  | 336    | 311.8       | 405     | 366.3  |  |
| 1-decay                  | 2012 | 1883.0 | 1037 | 1006.7 | 742    | 664.1       | 1833    | 1654.1 |  |
| 2-decay                  | 147  | 130.4  | 86   | 71.3   | 61     | 46.6        | 174     | 132.2  |  |
| 2-ring $\pi^0$ -like     | 524  | 492.8  | 266  | 259.8  | 182    | 172.2       | 380     | 355.9  |  |
| FC multi-GeV             |      |        |      |        |        |             |         |        |  |
| single-ring              |      |        |      |        |        |             |         |        |  |
| $\nu_e$ -like            | 191  | 152.8  | 79   | 78.4   | 68     | 54.9        | 156     | 135.9  |  |
| $\overline{\nu}_e$ -like | 665  | 656.2  | 317  | 349.5  | 206    | 231.6       | 423     | 432.8  |  |
| $\mu$ -like              | 712  | 775.3  | 400  | 415.7  | 238    | 266.4       | 420     | 554.8  |  |
| multi-ring               |      |        |      |        |        |             |         |        |  |
| $\nu_e$ -like            | 216  | 224.7  | 143  | 121.9  | 65     | <u>81.8</u> | 175     | 161.9  |  |
| $\overline{\nu}_e$ -like | 227  | 219.7  | 134  | 121.1  | 80     | 72.4        | 212     | 179.1  |  |
| $\mu$ -like              | 603  | 640.1  | 337  | 337.0  | 228    | 231.4       | 479     | 499.0  |  |

~40.2/yr/kt: may contain multitrack events



Single-track candidates: 32.4 + 8.8 =41.2 /yr/kt, while total e-like events are 49.9 /yr/kt. (Note that SK takes e-like events with  $E > \sim 10$  MeV.)

⇒ Potential background for elastic scattering signal events

Multi-track candidates: 5.2 /yr/kt

- ⇒ Most extra tracks come from mesons which can be identified at
- ProtoDUNE.
- ⇒ Very likely to be background-free for inelastic scattering signal events

#### Doojin Kim, CERN

### **Neutrino Fluxes**



Doojin Kim, CERN

### eBDM Search at Super-K

#### [Super-K Collaboration, (2017)]

|               | 10    | 0  MeV < E | $v_{vis} < 1.33 \text{ GeV}$      | $1.33 \text{ GeV} < E_{vis} < 20 \text{ GeV} \qquad \qquad E_{vis} > 20 \text{ GeV}$ |           |                                 |      | 20 GeV    |                                  |
|---------------|-------|------------|-----------------------------------|--------------------------------------------------------------------------------------|-----------|---------------------------------|------|-----------|----------------------------------|
|               | Data  | $\nu$ -MC  | $\epsilon_{sig}(0.5 \text{ GeV})$ | Data                                                                                 | $\nu$ -MC | $\epsilon_{sig}(5 \text{ GeV})$ | Data | $\nu$ -MC | $\epsilon_{sig}(50 \text{ GeV})$ |
| FCFV          | 15206 | 14858.1    | 97.7%                             | 4908                                                                                 | 5111.1    | 93.8%                           | 97   | 107.5     | 84.9%                            |
| & single ring | 11367 | 10997.4    | 95.8%                             | 2868                                                                                 | 3162.8    | 93.3%                           | 53   | 68.2      | 82.2%                            |
| & e-like      | 5655  | 5571.5     | 95.7%                             | 1514                                                                                 | 1644.4    | 93.0%                           | 53   | 68.1      | 82.2%                            |
| & 0 decay-e   | 5176  | 5123.6     | 94.7%                             | 1134                                                                                 | 1266.0    | 93.0%                           | 17   | 20.0      | 82.2%                            |
| & 0 neutrons  | 4132  | 4076.3     | 93.0%                             | 683                                                                                  | 801.5     | 91.3%                           | 4    | 5.9       | 80.7%                            |

TABLE I. Number of events over the entire sky passing each cut in 2628.1 days of SK4 data, simulated  $\nu$ -MC background expectation, and signal efficiency at representative energy after each cut.

### High threshold energy

- Single-ring-like objects only