Are Dark Matter Interactions Favoured by Cosmological Data?

Deanna C. Hooper

Based on DH, Murgia, Archidiacono, Lesgourgues (1807.XXXX)

Dark Side of the Universe, LAPTh, Annecy

Overview

- 1. LCDM tensions
 - Small scale
 - Large scale
- 2. Possible solutions
 - Models
 - Problems

- 3. DM-DR (ETHOS)
 - Model
 - Effects on observables
- 4. Does this solve our problem?
- 5. Outlook

Missing satellite problem

N-body simulations predict more DM halos around the Milky Way (MW) than we have observed

- Missing satellite problem
 N-body simulations predict more DM halos around the Milky
 Way (MW) than we have observed
- Cusp-core problem talk by Arianna Di Cintio
 N-body simulations predict too much DM in the innermost regions of galaxies

- Missing satellite problem
 N-body simulations predict more DM halos around the Milky
 Way (MW) than we have observed
- Cusp-core problem talk by Arianna Di Cintio
 N-body simulations predict too much DM in the innermost regions of galaxies
- Too-big-to-fail problem
 Too much mass enclosed in the satellites

- Missing satellite problem
 N-body simulations predict more DM halos around the Milky
 Way (MW) than we have observed
- Cusp-core problem talk by Arianna Di Cintio
 N-body simulations predict too much DM in the innermost regions of galaxies
- Too-big-to-fail problem
 Too much mass enclosed in the satellites
- Possible solutions: baryon feedback, WDM, DM interactions
 talk by Laura Lopez Honorez

LCDM Cosmology - H₀

H₀ from Planck (68% CL):

$$H_0 = 67.74 \pm 0.46$$

(Planck Collaboration 1502.01589)

H₀ from Supernova:

$$H_0 = 73.52 \pm 1.62$$

(Riess et al. 1804.10655)

Riess et al. 1604.01424

LCDM Cosmology - σ_8

 σ_8 = measurement of the amplitude of the power spectrum on the scale of 8 Mpc/h $S_8 \equiv \sigma_8 \sqrt{(\Omega_m/0.3)}$

S₈ from Planck (68% CL)

$$S_8 = 0.852 \pm 0.018$$

(Planck Collaboration 1502.01589)

S₈ from DES:

$$S_8 = 0.783 \pm 0.023$$

(DES Collaboration 1708.01530)

S₈ from KiDS:

$$S_8 = 0.651 \pm 0.058$$

(Köhlinger et al. 1706.02892)

- Lower S₈: massive neutrinos talk by Yvonne Wong
 - Free streaming, small scale matter power suppression, lower S₈
 - Less lensing, not compatible with CMB
 - CMB peaks shift to the left → lower H₀

Lower S₈: massive neutrinos *talk by Yvonne Wong*

Free streaming, small scale matter power suppression, lower S₈

Less lensing, not compatible with CMB

CMB peaks shift to the left → lower H₀

- Lower S₈: massive neutrinos ! talk by Yvonne Wong
 - Free streaming, small scale matter power suppression, lower S₈ ✓

Less lensing, not compatible with CMB

CMB peaks shift to the left → lower H₀

- Higher H₀: extra DR (increase N_{eff}). H₀ increases to maintain Z_{eq}
 - Damping the CMB spectrum at high \(\ell \)
 - Matter power spectrum enhanced on small scales → higher S₈

- Lower S₈: massive neutrinos | talk by Yvonne Wong
 - Free streaming, small scale matter power suppression, lower S₈ ✓

Less lensing, not compatible with CMB

CMB peaks shift to the left → lower H₀

Higher H_0 : extra DR (increase N_{eff}). H_0 increases to maintain Z_{eq}

Damping the CMB spectrum at high

Matter power spectrum enhanced on small scales → higher S₈ X

ETHOS: generic, flexible parameterisation of DM-DR interactions (Cyr-Racine et al. 1512.05344)

ETHOS: generic, flexible parameterisation of DM-DR interactions (Cyr-Racine et al. 1512.05344)

fermionic dark matter + fermionic dark radiation + mediator

 \rightarrow scattering rate $\propto T^4$

ETHOS: generic, flexible parameterisation of DM-DR interactions (Cyr-Racine et al. 1512.05344)

fermionic dark matter + fermionic dark radiation + mediator

→ scattering rate $\propto T^4$

 $LCDM + \{a_{dm-dr}, \xi, m_{dm}, f_{idm}\}$

ETHOS: generic, flexible parameterisation of DM-DR interactions (Cyr-Racine et al. 1512.05344)

fermionic dark matter + fermionic dark radiation + mediator

 \rightarrow scattering rate $\propto T^4$

$$LCDM + \{a_{dm-dr}, \xi, m_{dm}, f_{idm}\}$$

- $a_{dm-dr} \rightarrow$ amplitude of the scattering rate
- $\xi = T_{\rm dr}/T_{\gamma} \rightarrow {\rm amount\ of\ dark\ radiation\ (\sim N_{\rm eff})}$
 - $m_{
 m dm}
 ightharpoonup
 m dark \ matter \ mass \ (in \ eV)$ $_{\it talk \ by \ Francis-Yan \ Cyr-Racine}$

 f_{idm} \rightarrow fraction of interacting dark matter

Effects on Observables

- Matter power spectrum like lcdm up to some step-like feature in k
- No change to the background history relative to LCDM + N_{eff}, DR always relativistic
- DR self interactions preserve
 CMB peak scale
- DM-DR behaves as coupled fluid at early time, enhances peaks on small scales, compensates damping

Bohr et al. 1706.06870

Also applicable to other DM-DR interactions, like NADM (Buen-Abad et al. 1708.09406)

- Lower S₈: massive neutrinos
 - Free streaming, small scale matter power suppression, lower S₈

Less lensing, not compatible with CMB

CMB peaks shift to the left → lower H₀

Higher H_0 : extra DR (increase N_{eff}). H_0 increases to maintain Z_{eq}

Damping the CMB spectrum at high

Matter power spectrum enhanced on small scales → higher S₈ X

- Lower S₈: massive neutrinos
 - Free streaming, small scale matter power suppression, lower S₈

- Less lensing, not compatible with CMB
- CMB peaks shift to the left → lower H₀
- Higher H_0 : extra DR (increase N_{eff}). H_0 increases to maintain Z_{eq}

- Damping the CMB spectrum at high \(\ell \)
- Matter power spectrum enhanced on small scales → higher S₈

- Lower S₈: massive neutrinos dm-dr interactions
 - Free streaming, small scale matter power suppression, lower S₈ ✓

- Less lensing, not compatible with CMB
- CMB peaks shift to the left → lower H₀
- Higher H_0 : extra DR (increase N_{eff}). H_0 increases to maintain Z_{eq}

- Damping the CMB spectrum at high \(\epsilon \)
- Matter power spectrum enhanced on small scales → higher S₈

DM-DR Constraints

DM-DR Constraints

	LCDM	DM-DR (+3 d.o.f.)	$\Delta \chi^2$	σ
Planck	6759.62	6758.80	-0.36	0.065
Planck + HST	6763.25	6761.67	-3.16	0.90
Planck + HST + BAO	6766.94	6766.00	-1.88	0.53
Planck + HST + lensing + LSS	6780.24	6768.05	-24.38	4.3
Planck + HST + BAO + lensing + LSS	6787.01	6773.00	-28.02	4.6

DM-DR Constraints

Summary

- Some unresolved tensions in LCDM still remain
- Interacting Dark Matter Dark Radiation models offer many possibilities to alleviate cosmological tensions
- Can also alleviate small scale crisis (Bohr et al. 1706.06870)
- Lyman-alpha data crucial to constrain these models
- Hints of Dark Matter interactions in cosmological data?

Thank you for your attention

Problem with SZ?

The validity of the Planck Sunyaev-Zeldovich (SZ) cluster counts likelihood has been questioned (Pan et al. 1801.07348)

$$\Delta \chi^2 = -0.52$$

$$\sigma \sim 1.1$$