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Outline 

•  Motivation & science capability of  LLR 
•  Historical LLR performance 
•  APOLLO system and status  

< 1-2 mm range precision accuracy 
•  Computational model improvements underway 

to extract gravitational physics constraints 
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The motivation to search 

•  All fundamental forces deserve experimental scrutiny 
  

•  General Relativity and Quantum Mechanics are 
fundamentally incompatible. Gravity is relatively poorly tested 

•  Scalar fields from string-inspired models can produce 
measurable effects: 
– Violation of  equivalence principle 
– Time variation of  fundamental constants 
  

•  Precision tests of  gravity provide  
incisive tests of  post-Einstein theories 
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LLR: a precision probe of  gravity 

6/28/18 

•  Weak EP     Δa/a  10-13 
•  Strong EP      η   10-4    
•  1/r2 deviations       10-10  FG 
•  (dG/dt)/G       10-12 yr-1  (1% over the age of  the Universe) 

•  Gravitomagnetism     0.1% 

•  Geodetic precession     0.5% 

Earth-Moon has v2/c2 ~ 10-8 in the Solar System frame 
Expect relativistic phenomena of  order (10-8)(4e8) m ~ 4 m 

these are existing constraints – expect 10x improvement with APOLLO 
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•  Weak EP     Δa/a  10-13 
•  Strong EP      η   10-4    
•  1/r2 deviations       10-10  FG 
•  (dG/dt)/G       10-12 yr-1 

•  Gravitomagnetism     0.1% 

•  Geodetic precession     0.5% 

MICROSCOPE  10-14 

Touboul et al., PRL 2017 (arXiv:1712.01176)  
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Pulsar triple system 
J0337+1715  
Gusinskaia et al., J. Phys. Conf. (2017) 
but no limits published yet... 

these are existing constraints – expect 10x improvement with APOLLO 



The Equivalence Principles 

Weak:  Mass, composition 
Strong: Binding energy 
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Strong Equivalence Principle 

6/28/18 James Battat, Wellesley College 7 

EB.E. = �GM1M2

R

MB.E. =
EB.E.

c2Sky & Telescope 
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EP Violation in the Lunar Orbit 

to the Sun 
“Nominal” Lunar orbit 



EP Violation in the Lunar Orbit 

to the Sun 
“Nominal” Lunar orbit 
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Orbit under EP violation 
(polarized) 



to the Sun 

SEP Violation in the Lunar Orbit 

� � 5� 10�4

by LLR
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29.53 days 



Lunar Laser Ranging 101 
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Round trip time ~ 2.5 seconds 
Measure to 7 ps for 1 mm one-way 
range 
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Big Bang Theory: making it look easy! 



Lunar Laser Ranging 102 
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Round trip time ~ 2.5 seconds 
 
Geometric Attenuation ~ 1/r4 

one photon per 1017 survives 
2 km spot  
on Moon 

20 km spot  
on Earth 



LLR Targets 

Apollo 11 

1,ooo km 
Apollo 14 

Apollo 15 

Lunokhod  1  

Lunokhod  2 

Williams, Turyshev, Boggs, gr-qc/0507083 
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5120150116134120000000025037908297936370610118			384552B	72948		2713	5320A	477A	

James Battat, Wellesley College 20 



6/28/18 

5120150116134120000000025037908297936370610118			384552B	72948		2713	5320A	477A	

�⌧
2015 Jan 16 13:41:20 Round trip time = 2.5037908297936 seconds 

⌧1
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Historical Laser Ranging Performance 
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 Station   Dish  Seeing  Rate (γ/min) 

MLRS, USA  0.8 m  3”  1 

OCA, France  1.5 m  1-7”  4 

APOLLO, USA  3.5 m  1”  1,000 
Infrared ranging @ OCA: 
Courde et al., A&A 2017 (arXiv:
1704.06443) 



Historical Laser Ranging Performance 
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 Station   Dish  Seeing  Rate (γ/min) 

MLRS, USA  0.8 m  3”  1 

OCA, France  1.5 m  1-7”  4 

APOLLO, USA  3.5 m  1”  1,000 
APOLLO System description:  
Murphy et al., PASP 2008 (arXiv:0710.0890) 



Historical Laser Ranging Performance 
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 Station   Dish  Seeing  Rate (γ/min) 

MLRS, USA  0.8 m  3”  1 

OCA, France  1.5 m  1-7”  4 

APOLLO, USA  3.5 m  1”  1,000 

Depends on both data and model 

Indicates current data accuracy 
and prospect for Model-Data 
agreement 



APOLLO Collaboration 
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U. Washington 
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APOLLO: The Earth-End 

3.5 meter 

Sloan 2.5 meter 

laser 

people 
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Laser Ranging Apparatus: 
Transmit 

Detector 
Array START 

3.5m primary 

LASER 

Corner cube 
2.3 Watt Nd:YAG laser 
95  ps FWHM 
110 mJ per pulse, 20 Hz 

T/R 



Laser Ranging Apparatus: Receive 

Detector 
Array STOP 

3.5m primary 

LASER 

T/R 
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  28  γ

 6,624  γ
40 minutes 

 4 minutes 

 McDonald (Texas) 
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peut-être? 
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Yearly Photon Yield  

 

OCA 
 

 

McDonald 
 



Yearly Photon Yield 

 

OCA 
 

 

McDonald 
 

1 (good) hour on 
APOLLO 



Sub-mm precision ranging demonstrated 
2007.11.19 Apollo 15 

•  6624 photons in 5000 shots 
•  369,840,578,287.4 ± 0.8 mm 
•  4 detections with 10 photons 

represents system 
capability: laser; 
detector; timing 
electronics; etc. 

RMS = 120 ps 
(18 mm) 

Laser+detector+lunar array 

Laser+detector 
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Limitation: lunar libration & 
size of reflector array 

We cannot resolve individual 
corner cubes within an array 



APOLLO Data Precision 

•  Uncertainties are per night, per reflector; pre-APOLLO sub-centimeter rare 
•  Medians are 2.4, 2.7, 2.4, 1.8, 3.3 mm for A11, L1, A14, A15, L2, respectively 
•  Combined nightly median range error is 1.4 mm 
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Model vs. Data comparison 
Residuals are APOLLO data since September 2013 
Fit uses entire LLR archive 

Problem!  Residual RMS is ~10-20mm !!! 
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Model vs. Data comparison 
Residuals are APOLLO data since September 2013 
But fit used all archival LLR data 

Color = reflector 
Color separation per night = poor lunar orientation model 

A11 A14 A15 L1 L2 



Absolute Calibration System 

•  Calibration laser pulses inserted at a known rate 
•  Simultaneous with lunar ranging 

An “optical ruler” overlaid on data. 

6/28/18 

	
Fiber	Laser	
Top9ca	
PicoFYb	
80	MHz	

	

	
Cesium	frequency	

standard	
Microsemi	5071A	

df/f	~	10-12	
	

Laser locked to Cs standard 

< 10ps pulse width 
< 1 ps jitter 

12.5000 ns 
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Adelberger et al. CQG, 2017 arXiv:1706.09550 
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 Gravitational Redshift:     3.0 x 10-13 

Cs clock intrinsic:    -1.3 x 10-13 

Net:      1.7 x 10-13 

 
Predict: 15 ns/day phase accumulation 

Aside:  Gravitational Redshift 

�f/f

Atomic clock at 2.8 km 
   vs. 

GPS clock “at” sea level 
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GPS has excellent long-term 
stability, but worse short-term 
stability than Cs. 
  
GPS clock offsets equivalent to 
~2.5 mm added in quadrature to 
the raw range precision. 
  

Now use the Cs clock (sub-mm) 
  
Have back-corrected our 10-year 
data archive as well! 

GPS clock offset [mm one-way lunar range] 

Measure GPS-Cs clock offset 
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Laser ranging with ACS overlay 

6/28/18 

Incoming  
lunar  

returns 

Se
ns

or
 

Receiver optics 
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No lunar photons in center of  collimated beam 
because of  shadow of  telescope secondary mirror. 



Laser ranging with ACS overlay 

6/28/18 

1064 nm 
Incoming  

lunar  
returns 

Se
ns

or
 

Calibration laser 

Receiver optics 

 
Custom electro-optics 

for pulse picking & 
attenuation 

 Injection of  ACS 
causes no loss of  
lunar returns 
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Compare APOLLO measurements of  Δt of  
ACS pulse pairs with N*12.500000 ns 

 
Demonstrated sub-mm timing accuracy  
(in-situ, simultaneous with LLR 
observations) 
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Adelberger et al. CQG, 2017 arXiv:1706.09550 



ACS calibration atop Lunar Returns 2016.09.12 

Total shots (10k) 
ACS photons (11k) 
Lunar returns (3k) 
Neither (bkg) 
– clock comparison 
 
Can tag ACS photons very 
efficiently even when overlaid 
with Lunar returns. 
 
Use knowledge of ACS clock 
phase relative to GPS clock 
 

25
ps

/b
in

 

GPS 
Cs 

6/28/18 

~10 minutes 

Time relative to GPS clock 
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ACS calibration atop Lunar returns 2016.09.12 

Lunar returns 
ACS photons 
Neither (bkg) 
 
 
Clear Lunar signal (3k 
photons in 10k shots), even 
amid heavy ACS rate (11k 
photons in 10k shots) 

6/28/18 

Time relative to lunar 
prediction 
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Adelberger et al. CQG, 2017 arXiv:1706.09550 



The Absolute Calibration System shows that: 

•  APOLLO accuracy is 1–2 mm, characterized at the sub-mm 
level 
Confident that range model deficiencies cause the ~10 mm residuals 

  

•  GPS clock offsets caused ~2.5 mm range error (correctable) 
Back-correction applied to the entire 10-year APOLLO data archive (clock logs) 
reduces typical archival range error from 2.5 mm to 1.6 mm 

•  Cs clock now in use & on-demand calibration now standard 
Enables routine monitoring of  system stability 

•  The ball is squarely in the modeling community’s court now. 
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Adelberger et al., CQG (2017) arXiv:1706.09550 
Liang et al., CQG (2017) arXiv:1706.09421 



Ongoing: Solar System model upgrades 

•  Very few capable models          APOLLO residuals 
(rms) 
France, Russia, Germany, USA (JPL and Harvard)    JPL: ~15 mm 
Some groups are in communication to share ideas    PEP: ~30 mm 
               Planetary Ephemeris Program  

•  Current focus of  model development 
–  Find bugs/limitations (e.g. some series truncated for cm accuracy) 
–  Improve/expand models 

Lunar interior, solar radiation pressure (4 mm effect!), atmospheric loading, CoM motion 
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Ongoing: Solar System model upgrades 

•  Very few capable models          APOLLO residuals 
(rms) 
France, Russia, Germany, USA (JPL and Harvard)    JPL: ~15 mm 
Some groups are in communication to share ideas    PEP: ~30 mm 
               Planetary Ephemeris Program  

•  Current focus of  model development 
–  Find bugs/limitations (e.g. some series truncated for cm accuracy) 
–  Improve/expand models 

Lunar interior, solar radiation pressure (4 mm effect!), atmospheric loading, CoM motion 
  

•  PEP advantages 
–  Full monolithic integration of  Solar System + Moon 
–  Broad datasets (radar, doppler, planetary fly-bys, pulsar timing) 
–  Tight coupling between APOLLO & PEP: ~real-time testing 
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Conclusion 

•  LLR provides frontier constraints on gravity 
•  APOLLO delivers millimeter-accurate LLR data 
•  Model improvements are required for improved 

gravitational constraints 
•  A close and productive APOLLO-PEP 

collaboration is underway 
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EXTRAS 
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To	
rcvr	

80	MHz	
<	10ps	pulse	width	
<	1ps	jiRer	

Electro-optic system 

pulse picker 
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Absolute Calibration System 

•  Part 1:  Clock:  Cs vs. GPS 
     Installed February 2016 

•  Part 2:   Laser, pulse selection and overlay with 
         LLR observations 
     Installed August 2016 
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Phase 1: Clock installation (Feb. 2016) 

Cs clock 

GPS clock 

Universal Counter 
(Clock comparison) 
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Allan Deviation of  Cs and XL-DC clocks 
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Uses Cs clock as the 
reference for XL-DC 
measurements. 
 
Cs Allen deviation 
measured by 
manufacturer relative to 
a hydrogen maser 
 
Cs has better short-term 
stability  
 
XL-DC does better at 
>1e6 seconds due to 
GPS tie-in 
 
Note difficulty of GPS 
solution at 1e3 second 
timescale (atmospheric 
effects) 



Yukawa Interaction Constraints 

Adelberger, Heckel, Nelson 
hep-ph/0307284 
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Fitting the Return & Reflector 
Trapezoid 
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Sensing the Array Size & Orientation 
2007.10.28 2007.10.29 2007.11.19 2007.11.20 
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Libration dominates the error budget 
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