The APOLLO Lunar Ranging Program

James Battat Wellesley College

DSU 2018, Annecy le Vieux June 28, 2018

Outline

- Motivation & science capability of LLR
- Historical LLR performance
- APOLLO system and status
 < 1-2 mm range precision accuracy
- Computational model improvements underway to extract gravitational physics constraints

The motivation to search

- All fundamental forces deserve experimental scrutiny
- General Relativity and Quantum Mechanics are fundamentally incompatible. Gravity is relatively *poorly tested*
- Scalar fields from string-inspired models can produce measurable effects:
 - Violation of equivalence principle
 - Time variation of fundamental constants
- Precision tests of gravity provide incisive tests of post-Einstein theories

LLR: a precision probe of gravity

these are existing constraints – expect 10x improvement with APOLLO

- Weak EP $\Delta a/a \ 10^{-13}$
- Strong EP η 10⁻⁴
- 1/r² deviations
- (dG/dt)/G 10^{-12} yr^{-1} (1% over the age of the Universe)

 $10^{-10} \text{ F}_{\text{G}}$

- Gravitomagnetism 0.1%
- Geodetic precession 0.5%

Earth-Moon has $v^2/c^2 \sim 10^{-8}$ in the Solar System frame Expect relativistic phenomena of order $(10^{-8})(4e8)$ m ~ 4 m

LLR: a precision probe of gravity

these are existing constraints – expect 10x improvement with APOLLO

Υ

- Weak EP
- Strong EP
- $1/r^2$ deviations
- (dG/dt)/G

$$\Delta a/a \ 10^{-13}$$
 $\eta \ 10^{-4}$
 $10^{-10} F_G$
 $10^{-12} yr^{-1}$

0.5%

MICROSCOPE 10⁻¹⁴ Touboul et al., PRL 2017 (arXiv:1712.01176)

Pulsar triple system -J0337+1715 Gusinskaia et al., J. Phys. Conf. (2017) but no limits published yet...

- 0.1% Gravitomagnetism
- Geodetic precession

6/28/18

The Equivalence Principles

Weak: Mass, composition Strong: Binding energy

James Battat, Wellesley College

Strong Equivalence Principle

6/28/18

0

James Battat, Wellesley College

EP Violation in the Lunar Orbit

"Nominal" Lunar orbit

to the Sun

EP Violation in the Lunar Orbit

"Nominal" Lunar orbit Orbit under EP violation (polarized)

SEP Violation in the Lunar Orbit

to the Sun

Round trip time ~ 2.5 seconds Measure to 7 ps for 1 mm one-way range

Big Bang Theory: making it look easy!

Round trip time ~ 2.5 seconds

Geometric Attenuation ~ $1/r^4$ one photon per 10¹⁷ survives

2 km spot on Moon

20 km spot on Earth

James Battat, Wellesley College

James Battat, Wellesley College

Historical Laser Ranging Performance

Historical Laser Ranging Performance

Historical Laser Ranging Performance

APOLLO Collaboration

pache P oint bservatory unar aser-ranging L peration

U.C. San Diego Tom Murphy (PI) Bob Reasenberg Nick Colmenares Sanchit Sabhlok

Wellesley College James Battat

U. Washington Eric Adelberger Erik Swanson Harvard University Christopher Stubbs John Chandler

Irwin Shapiro

Humboldt State U. C. D. Hoyle

Northwest Analysis Ken Nordtvedt

Apache Point Observatory Russet McMillan

APOLLO: The Earth-End

Laser Ranging Apparatus: Transmit

Laser Ranging Apparatus: Receive

Then

Observed Minus Theory

Then

Observed Minus Theory

Now

Observed Minus Theory

Yearly Photon Yield

Yearly Photon Yield

Sub-mm precision ranging demonstrated

APOLLO Data Precision

- Uncertainties are per night, per reflector; pre-APOLLO sub-centimeter rare
- Medians are 2.4, 2.7, 2.4, 1.8, 3.3 mm for A11, L1, A14, A15, L2, respectively
- Combined nightly median range error is 1.4 mm

6/28/18

James Battat, Wellesley College

Model vs. Data comparison

6/28

Model vs. Data comparison

6/28

Absolute Calibration System

Adelberger et al. CQG, 2017 arXiv:1706.09550

- Calibration laser pulses inserted at a known rate
- Simultaneous with lunar ranging An "optical ruler" overlaid on data.

Aside: Gravitational Redshift

Measure GPS-Cs clock offset

GPS clock offset [mm one-way lunar range]

GPS has excellent long-term stability, but worse short-term stability than Cs.

GPS clock offsets equivalent to ~2.5 mm added in quadrature to the raw range precision.

Now use the Cs clock (sub-mm)

Have back-corrected our 10-year data archive as well!

Laser ranging with ACS overlay

Laser ranging with ACS overlay

Compare APOLLO measurements of Δt of ACS pulse pairs with N*12.500000 ns

Adelberger et al. CQG, 2017 arXiv:1706.09550

ACS calibration atop Lunar Returns 2016.09.12

Total shots (10k) ACS photons (11k) Lunar returns (3k) Neither (bkg) – clock comparison

Can tag ACS photons very efficiently even when overlaid with Lunar returns.

Use knowledge of ACS clock phase relative to GPS clock

ACS calibration atop Lunar returns 2016.09.12

The Absolute Calibration System shows that:

• APOLLO accuracy is 1–2 mm, characterized at the sub-mm level

Confident that **range model deficiencies** cause the ~ 10 mm residuals

- GPS clock offsets caused ~2.5 mm range error (correctable) Back-correction applied to the entire 10-year APOLLO data archive (clock logs) reduces typical archival range error from 2.5 mm to 1.6 mm
- Cs clock now in use & on-demand calibration now standard Enables routine monitoring of system stability
- The ball is squarely in the modeling community's court now.

Adelberger et al., CQG (2017) arXiv:1706.09550 Liang et al., CQG (2017) arXiv:1706.09421

Ongoing: Solar System model upgrades

- Very few capable models

 (rms)
 France, Russia, Germany, USA (JPL and Harvard)
 Some groups are in communication to share ideas
- Current focus of model development
 - Find bugs/limitations (e.g. some series truncated for cm accuracy)
 - Improve/expand models
 Lunar interior, solar radiation pressure (4 mm effect!) atmospheric loading. CoM motion

APOLLO residuals

JPL: ~15 mm PEP: ~30 mm **Planetary Ephemeris Program**

Ongoing: Solar System model upgrades

Very few capable models

 (rms)
 France, Russia, Germany, USA (JPL and Harvard)
 Some groups are in communication to share ideas

APOLLO residuals

JPL: ~15 mm PEP: ~30 mm **Planetary Ephemeris Program**

- Current focus of model development
 - Find bugs/limitations (e.g. some series truncated for cm accuracy)
 - Improve/expand models
 Lunar interior, solar radiation pressure (4 mm effect!), atmospheric loading, CoM motion

• **PEP** advantages

- Full monolithic integration of Solar System + Moon
- Broad datasets (radar, doppler, planetary fly-bys, pulsar timing)
- Tight coupling between APOLLO & PEP: ~real-time testing

Conclusion

- LLR provides frontier constraints on gravity
- APOLLO delivers millimeter-accurate LLR data
- Model improvements are required for improved gravitational constraints
- A close and productive APOLLO-PEP collaboration is underway

EXTRAS

Absolute Calibration System

• Part 1: Clock: Cs vs. GPS Installed February 2016

• Part 2: Laser, pulse selection and overlay with LLR observations
Installed August 2016

Phase 1: Clock installation (Feb. 2016)

Allan Deviation of Cs and XL-DC clocks

Uses Cs clock as the reference for XL-DC measurements.

Cs Allen deviation measured by manufacturer relative to a hydrogen maser

Cs has better short-term stability

XL-DC does better at >1e6 seconds due to GPS tie-in

10⁶ Note difficulty of GPS solution at 1e3 second timescale (atmospheric effects)

Yukawa Interaction Constraints

Fitting the Return & Reflector Trapezoid

Sensing the Array Size & Orientation

6/28/18

James Battat, Wellesley College

Libration dominates the error budget

