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Gravitational
Waves (GWs)

detected !

Einstein 1916 … LIGO/VIRGO 2015/16/17

We can observe 
the Universe 
through GWs

Milestone 
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* Late Universe: Hubble diagram from Binaries 

* Early Universe: High Energy Particle Physics 

Cosmology with GWs

Can we really probe High Energy Physics
using Gravitational Waves (GWs) ? How ?
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GRAVITATIONAL WAVES (GW): PROBING the EARLY
UNIVERSE (t . 1 s)

1 WEAKNESS of GRAVITY:

ADVANTAGE: GW DECOUPLE upon Production
DISADVANTAGE: DIFFICULT DETECTION

2 ADVANTAGE: GW ! Probe for Early Universe

!
⇢

Decouple! Spectral Form Retained
Specific HEP , Specific GW

3 Physical Processes:

8
>><

>>:

Inflation
Reheating
Phase Transitions
Turbulence

GWs: probe of the early Universe

Cosmic Defects@ Early Universe
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Particle 
Production

(�t . 1s)

Cosmic 
Defects

Quantum 
Fluctuations

Phase 
Transitions

The Early Universe
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Particle 
Production
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Phase 
Transitions

Probe of  
the early  
UniverseGWs

The Early Universe

Cosmic 
Defects

Quantum 
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 0) GW in Cosmology (def.)

OUTLINE

1) GWs from Inflation

2) GWs from Preheating

3) GWs from Phase Transitions

4) GWs from Cosmic Defects 

   Early 
Universe
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Gravitational Waves in Cosmology1. Gravitational Waves (GWs) [Basics]
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Source: Anisotropic StressCreation/Propagation GWs 

Transverse-Traceless (TT)
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 0) GW definition

Gravitational Waves as a 
probe of the early Universe

OUTLINE

1) GWs from Inflation

2) GWs from Preheating

3) GWs from Phase Transitions

4) GWs from Cosmic Defects 

   Early 
Universe
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Irreducible GW background from Inflation
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Irreducible GW background from Inflation
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Irreducible GW background from Inflation

Dashed Line Theoretical  
Inflation Expectation

r ⇠ 10�2 � 10�3 ) E⇤ ⇠ 5 · 1015GeV

r ⌘ �t/�s < 0.07 (2�)

(!)

Planck/Keck

next goal
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B- MODE: Depends only  
on Tensor Perturbations !
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Search of B-modes @ 
CMB, might be only 
change to detect 

Inflationary Tensors !
 Ground: 

AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G

     Balloons                                           Satellites

EBEX 10k, Spider                CMBPol, COrE, LiteBIRD,

Irreducible GW background from Inflation
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INFLATIONARY COSMOLOGY

( )initial
cond.

Inflation            = {Primordial 
perturbations

Tensor

Scalar

Irreducible GW
Background
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INFLATIONARY COSMOLOGY

( )initial
cond.

Inflation            = {

Scenarios

Primordial 
perturbations

Tensor

Scalar

Irreducible GW
Background

Enhanced
GWs

Enhanced Scalar Pert.

Extra species/symmetries

Modified Gravity, 
spectator fields, 

graviton mass, …

{
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INFLATIONARY MODELS

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation
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[J. Cook, L. Sorbo (arXiv:1109.0022)] [N. Barnaby, E. Pajer, M. Peloso (arXiv:1110.3327)]

inflaton      = pseudo-scalar axion'

Chiral
instability

where “h.c.” denotes the Hermitian conjugate of the preceding term, the annihilation/creation

operators obey [

aλ(k), a
†
λ′(k′)

]

= δλλ′δ(3)(k− k′) (2.9)

Here ϵ⃗λ are circular polarization vectors satisfying k⃗ · ϵ⃗±
(

k⃗
)

= 0, k⃗× ϵ⃗±
(

k⃗
)

= ∓ikϵ⃗±
(
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)

,

ϵ⃗±
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= ϵ⃗±
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k⃗
)∗

, and normalized according to ϵ⃗λ
(

k⃗
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· ϵ⃗λ′

(

k⃗
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= δλλ′ .

Inserting the decomposition (2.8) into eq. (2.5) results in the equation of motion

[
∂2

∂τ2
+ k2 ± 2kξ

τ

]

A±(τ, k) = 0, ξ ≡ αφ̇

2fH
(2.10)

for the c-number mode functions A±. During inflation the parameter ξ may be treated as

constant, as its time variation is subleading in a slow roll expansion.

From equation (2.10) we see that one of the polarizations of A⃗λ experiences a tachyonic

instability for k/(aH) <∼ 2ξ. Without loss of generality, we assume that φ̇ > 0 during

inflation, so that the mode exhibiting the instability is A+. In appendix A we review the

solutions of (2.10) and show that the growth of fluctuations is well described by [15]

A+(τ, k) ∼=
1√
2k

(
k

2ξaH

)1/4

eπξ−2
√

2ξk/(aH) (2.11)

in the interval (8ξ)−1 <∼ k/(aH) <∼ 2ξ [18] of phase space that accounts for most of the

power in the produced gauge fluctuations. The phase space of growing modes is non-

vanishing for ξ >∼ O(1), which we assume throughout. Notice the exponential enhancement

eπξ in the solution (2.11), which arises due to tachyonic instability, and reflects significant

nonperturbative gauge particle production in the regime ξ >∼ 1. On the other hand, the

production of gauge field fluctuations is uninterestingly small for ξ < 1. Note also that the

other polarization state, A−(τ, k), is not produced and can therefore be ignored.

We have thus seen that the motion of the homogeneous inflaton φ(t) leads to produc-

tion of gauge field quanta δAµ. There are two key physical effects associated with the

interactions of these produced quanta with the inflaton. The first effect is the backreaction

of the produced quanta on the homogeneous dynamics of φ(t), a(t). In the next subsec-

tion we study the conditions under which backreaction effects are negligible. The second

key physical effect is the production of inflaton fluctuations via inverse decay ; this is the

subject of subsection 2.3.

2.2 Backreaction Effects

Backreaction effects can be accounted for using the mean of the field equations (2.6):

φ̈+ 3Hφ̇+ V ′(φ) =
α

f
⟨E⃗ · B⃗⟩ (2.12)

3H2 =
1

M2
p

[
1

2
φ̇2 + V (φ) +

1

2
⟨E⃗2 + B⃗2⟩

]

(2.13)

where we have switched to physical time. The expectation values appearing in (2.12,2.13)

encode the backreaction of the produced gauge quanta on the homogeneous dynamics of
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From equation (2.10) we see that one of the polarizations of A⃗λ experiences a tachyonic

instability for k/(aH) <∼ 2ξ. Without loss of generality, we assume that φ̇ > 0 during

inflation, so that the mode exhibiting the instability is A+. In appendix A we review the

solutions of (2.10) and show that the growth of fluctuations is well described by [15]

A+(τ, k) ∼=
1√
2k

(
k

2ξaH

)1/4

eπξ−2
√

2ξk/(aH) (2.11)

in the interval (8ξ)−1 <∼ k/(aH) <∼ 2ξ [18] of phase space that accounts for most of the

power in the produced gauge fluctuations. The phase space of growing modes is non-

vanishing for ξ >∼ O(1), which we assume throughout. Notice the exponential enhancement

eπξ in the solution (2.11), which arises due to tachyonic instability, and reflects significant

nonperturbative gauge particle production in the regime ξ >∼ 1. On the other hand, the

production of gauge field fluctuations is uninterestingly small for ξ < 1. Note also that the

other polarization state, A−(τ, k), is not produced and can therefore be ignored.

We have thus seen that the motion of the homogeneous inflaton φ(t) leads to produc-

tion of gauge field quanta δAµ. There are two key physical effects associated with the

interactions of these produced quanta with the inflaton. The first effect is the backreaction

of the produced quanta on the homogeneous dynamics of φ(t), a(t). In the next subsec-

tion we study the conditions under which backreaction effects are negligible. The second

key physical effect is the production of inflaton fluctuations via inverse decay ; this is the

subject of subsection 2.3.

2.2 Backreaction Effects

Backreaction effects can be accounted for using the mean of the field equations (2.6):

φ̈+ 3Hφ̇+ V ′(φ) =
α

f
⟨E⃗ · B⃗⟩ (2.12)

3H2 =
1

M2
p

[
1

2
φ̇2 + V (φ) +

1

2
⟨E⃗2 + B⃗2⟩

]

(2.13)

where we have switched to physical time. The expectation values appearing in (2.12,2.13)

encode the backreaction of the produced gauge quanta on the homogeneous dynamics of

– 6 –

Photon: 

2 helicities

A+ / e⇡⇠ , |A�| ⌧ |A+| A+ exponentially amplified, 


V (') +
↵

f
Fµ⌫ F̃

µ⌫

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation

r ⌘
PGW

P⇣
, ns � 1 ⌘

d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏V , ⌘V )

✏V ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 ⌘V ⌘ M2
p

V,��

V
⌧ 1

• Flatness and gaussianity ! small self-couplings

Axion (Natural) Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation

r ⌘
PGW

P⇣
, ns � 1 ⌘

d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏V , ⌘V )

✏V ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 ⌘V ⌘ M2
p

V,��

V
⌧ 1

• Flatness and gaussianity ! small self-couplings

Axion (Natural) Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation

r ⌘
PGW

P⇣
, ns � 1 ⌘

d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏V , ⌘V )

✏V ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 ⌘V ⌘ M2
p

V,��

V
⌧ 1

• Flatness and gaussianity ! small self-couplings

Axion (Natural) Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll inflation

r ⌘
PGW

P⇣

, ns � 1 ⌘
d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏, ⌘)

• Flatness and gaussianity ! small inflaton self-couplings

• Shift symmetry (broken by V ) on couplings to other fields has advantages

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

Planck ’15

Ps / kns�1 r =
Pt

Ps

• No observed departure from (primordial) gaussianity, h⇣3i ⌧ h⇣2i3/2

Local NG : � (x) = �g (x) + f local
NL

⇥
�2

g (x)�
⌦
�2

g

↵⇤

• Agreement with standard single field slow roll

r, ns � 1, fNL = O(✏, ⌘)

✏ ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 , ⌘ ⌘ M2
p

V,��

V
⌧ 1

• CMB in agreement with simplest models of slow-roll inflation

r ⌘
PGW

P⇣

, ns � 1 ⌘
d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏, ⌘)

• Flatness and gaussianity ! small inflaton self-couplings

• Shift symmetry (broken by V ) on couplings to other fields has advantages

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

Planck ’15

Ps / kns�1 r =
Pt

Ps

• No observed departure from (primordial) gaussianity, h⇣3i ⌧ h⇣2i3/2

Local NG : � (x) = �g (x) + f local
NL

⇥
�2

g (x)�
⌦
�2

g

↵⇤

• Agreement with standard single field slow roll

r, ns � 1, fNL = O(✏, ⌘)

✏ ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 , ⌘ ⌘ M2
p

V,��

V
⌧ 1

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Axion⇤ Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Shi
ft sym

metry
�! �+ C. E.g

. axio
n (na

tur
al)

infl
atio

n

Fre
ese

, Fr
iem

an,
Olint

o ’90

L =
1
2
(@µ

�)
2 + Vshif

t (�
)+

C

f
@µ�

 ̄ �
µ �5 

+
↵

f
�Fµ⌫

F̃
µ⌫

• Sm
alln

ess
of V

shif
t
tec

hni
call

y nat
ura

l. �V / Vshif
t

• Con
stra

ined
cou

plin
gs

to
matt

er (pr
edic

tivi
ty)

��!
  

'
C
2

2⇡f
2
m�

m
2
 

��!
AA

=

↵
2

64⇡
f
2
m
3
�

�! AA
typ

ical
ly con

tro
ls reh

eat
ing

. Only
rec

ent
ly rea

lize
d

tha
t it can

play
an

impor
tan

t role
also

dur
ing

infl
atio

n.

—
—

Couplings in axion inflation

Freese, Frieman, Olinto ’90

. . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

��!  '
c2 

2⇡f2
m�m

2
 ��!AA =

↵2

64⇡ f2
m3
�

�! AA typically controls reheating. More recently, realized

that it can play an important role also during inflation

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Slow roll inflation requires very flat potential V , and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, �V / Vshift

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Slow roll inflation requires very flat potential V , and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, �V / Vshift

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Slow roll inflation requires very flat potential V , and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, �V / Vshift

Axion-Inflation ' ! '+ const.

19



INFLATIONARY MODELS

chiral GWs !

1. Gravitational Waves (GWs) [Basics]

• GW: ds2 = a2(�d⌘2 + (�
ij

+ h
ij

)dxidxj), TT :

⇢
h
ii

= 0
h
ij

,
j

= 0

Eom: h00
ij

+ 2Hh0
ij

�r2h
ij

= 16⇡G⇧TT

ij

, ⇧
ij

= T
ij

� hT
ij

i
FRW

Transverse-Traceless (TT) dof carry energy out of the source!!!

• GW Source(s): ( SCALARS , VECTOR , FERMIONS )

⇧TT

ij

/ {@
i

�a@
j

�a}TT , {E
i

E
j

+B
i

B
j

}TT , { ̄�
i

D
j

 }TT

1. Gravitational Waves (GWs) [Basics]

• GW: ds2 = a2(�d⌘2 + (�
ij

+ h
ij

)dxidxj), TT :

⇢
h
ii

= 0
h
ij

,
j

= 0

Eom: h00
ij

+ 2Hh0
ij

�r2h
ij

= 16⇡G⇧TT

ij

, ⇧
ij

= T
ij

� hT
ij

i
FRW

Transverse-Traceless (TT) dof carry energy out of the source!!!

• GW Source(s): ( SCALARS , VECTOR , FERMIONS )

⇧TT

ij

/ {@
i

�a@
j

�a}TT , {E
i

E
j

+B
i

B
j

}TT , { ̄�
i

D
j

 }TT/

Chiral AµGW left-chirality only ! 

inflaton      = pseudo-scalar axion'V (') +
↵

f
Fµ⌫ F̃

µ⌫

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation

r ⌘
PGW

P⇣
, ns � 1 ⌘

d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏V , ⌘V )

✏V ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 ⌘V ⌘ M2
p

V,��

V
⌧ 1

• Flatness and gaussianity ! small self-couplings

Axion (Natural) Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation

r ⌘
PGW

P⇣
, ns � 1 ⌘

d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏V , ⌘V )

✏V ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 ⌘V ⌘ M2
p

V,��

V
⌧ 1

• Flatness and gaussianity ! small self-couplings

Axion (Natural) Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation

r ⌘
PGW

P⇣
, ns � 1 ⌘

d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏V , ⌘V )

✏V ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 ⌘V ⌘ M2
p

V,��

V
⌧ 1

• Flatness and gaussianity ! small self-couplings

Axion (Natural) Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll inflation

r ⌘
PGW

P⇣

, ns � 1 ⌘
d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏, ⌘)

• Flatness and gaussianity ! small inflaton self-couplings

• Shift symmetry (broken by V ) on couplings to other fields has advantages

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

Planck ’15

Ps / kns�1 r =
Pt

Ps

• No observed departure from (primordial) gaussianity, h⇣3i ⌧ h⇣2i3/2

Local NG : � (x) = �g (x) + f local
NL

⇥
�2

g (x)�
⌦
�2

g

↵⇤

• Agreement with standard single field slow roll

r, ns � 1, fNL = O(✏, ⌘)

✏ ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 , ⌘ ⌘ M2
p

V,��

V
⌧ 1

• CMB in agreement with simplest models of slow-roll inflation

r ⌘
PGW

P⇣

, ns � 1 ⌘
d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏, ⌘)

• Flatness and gaussianity ! small inflaton self-couplings

• Shift symmetry (broken by V ) on couplings to other fields has advantages

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

Planck ’15

Ps / kns�1 r =
Pt

Ps

• No observed departure from (primordial) gaussianity, h⇣3i ⌧ h⇣2i3/2

Local NG : � (x) = �g (x) + f local
NL

⇥
�2

g (x)�
⌦
�2

g

↵⇤

• Agreement with standard single field slow roll

r, ns � 1, fNL = O(✏, ⌘)

✏ ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 , ⌘ ⌘ M2
p

V,��

V
⌧ 1

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Axion⇤ Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Shi
ft sym

metry
�! �+ C. E.g

. axio
n (na

tura
l) infl

atio
n

Fre
ese

, Fr
iem

an,
Olint

o ’90

L =
1
2
(@µ

�)
2 + Vshif

t (�
)+

C

f
@µ�

 ̄ �
µ �5 

+
↵

f
�Fµ⌫

F̃
µ⌫

• Sm
alln

ess
of V

shif
t
tec

hni
call

y nat
ura

l. �V / Vshif
t

• Con
stra

ined
cou

plin
gs

to matte
r (pre

dict
ivit

y)

��!
  

'
C
2

2⇡f
2
m�

m
2
 

��!
AA

=

↵
2

64⇡
f2
m
3
�

�! AA
typ

ical
ly con

trol
s reh

eat
ing

. Only
rec

ent
ly rea

lize
d

tha
t it can

play
an

impor
tan

t role
also

dur
ing

infl
atio

n.

—
—

Couplings in axion inflation

Freese, Frieman, Olinto ’90

. . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

��!  '
c2 

2⇡f2
m�m

2
 ��!AA =

↵2

64⇡ f2
m3
�

�! AA typically controls reheating. More recently, realized

that it can play an important role also during inflation

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Slow roll inflation requires very flat potential V , and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, �V / Vshift

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Slow roll inflation requires very flat potential V , and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, �V / Vshift

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Slow roll inflation requires very flat potential V , and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, �V / Vshift

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation

r ⌘
PGW

P⇣
, ns � 1 ⌘

d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏V , ⌘V )

✏V ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 ⌘V ⌘ M2
p

V,��

V
⌧ 1

• Flatness and gaussianity ! small self-couplings

Axion (Natural) Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation

r ⌘
PGW

P⇣
, ns � 1 ⌘

d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏V , ⌘V )

✏V ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 ⌘V ⌘ M2
p

V,��

V
⌧ 1

• Flatness and gaussianity ! small self-couplings

Axion (Natural) Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll cosmic inflation

r ⌘
PGW

P⇣
, ns � 1 ⌘

d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏V , ⌘V )

✏V ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 ⌘V ⌘ M2
p

V,��

V
⌧ 1

• Flatness and gaussianity ! small self-couplings

Axion (Natural) Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

• CMB in agreement with simplest models of slow-roll inflation

r ⌘
PGW

P⇣

, ns � 1 ⌘
d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏, ⌘)

• Flatness and gaussianity ! small inflaton self-couplings

• Shift symmetry (broken by V ) on couplings to other fields has advantages

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

Planck ’15

Ps / kns�1 r =
Pt

Ps

• No observed departure from (primordial) gaussianity, h⇣3i ⌧ h⇣2i3/2

Local NG : � (x) = �g (x) + f local
NL

⇥
�2

g (x)�
⌦
�2

g

↵⇤

• Agreement with standard single field slow roll

r, ns � 1, fNL = O(✏, ⌘)

✏ ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 , ⌘ ⌘ M2
p

V,��

V
⌧ 1

• CMB in agreement with simplest models of slow-roll inflation

r ⌘
PGW

P⇣

, ns � 1 ⌘
d lnP⇣

d ln k
, fNL ⇠

h⇣3i
h⇣2i2

= O(✏, ⌘)

• Flatness and gaussianity ! small inflaton self-couplings

• Shift symmetry (broken by V ) on couplings to other fields has advantages

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

Planck ’15

Ps / kns�1 r =
Pt

Ps

• No observed departure from (primordial) gaussianity, h⇣3i ⌧ h⇣2i3/2

Local NG : � (x) = �g (x) + f local
NL

⇥
�2

g (x)�
⌦
�2

g

↵⇤

• Agreement with standard single field slow roll

r, ns � 1, fNL = O(✏, ⌘)

✏ ⌘
M2

p

2

⇣
V,�

V

⌘2

⌧ 1 , ⌘ ⌘ M2
p

V,��

V
⌧ 1

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Axion⇤ Inflation

• Shift symmetry on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Shi
ft sym

metry
�! �+ C. E.g

. axio
n (na

tur
al)

infl
atio

n

Fre
ese

, Fr
iem

an,
Olint

o ’90

L =
1
2
(@µ

�)
2 + Vshif

t (�
)+

C

f
@µ�

 ̄ �
µ �5 

+
↵

f
�Fµ⌫

F̃
µ⌫

• Sm
alln

ess
of V

shif
t
tec

hni
call

y nat
ura

l. �V / Vshif
t

• Con
stra

ined
cou

plin
gs

to
matt

er (pr
edic

tivi
ty)

��!
  

'
C
2

2⇡f
2
m�

m
2
 

��!
AA

=

↵
2

64⇡
f
2
m
3
�

�! AA
typ

ical
ly con

tro
ls reh

eat
ing

. Only
rec

ent
ly rea

lize
d

tha
t it can

play
an

impor
tan

t role
also

dur
ing

infl
atio

n.

—
—

Couplings in axion inflation

Freese, Frieman, Olinto ’90

. . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

��!  '
c2 

2⇡f2
m�m

2
 ��!AA =

↵2

64⇡ f2
m3
�

�! AA typically controls reheating. More recently, realized

that it can play an important role also during inflation

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Slow roll inflation requires very flat potential V , and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, �V / Vshift

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Slow roll inflation requires very flat potential V , and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, �V / Vshift

We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production / exp
�
�̇
�

GW signal naturally grows at interferometer scales, while small at CMB

scales

Axion⇤ Inflation

• Shift symmetry �! �+ C on couplings to other fields

Freese, Frieman, Olinto ’90; . . .

(review Pajer, MP ’13)

L =
1

2
(@µ�)

2 + Vshift (�) +
c 

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

has the advantage that

• Smallness of Vshift technically natural. �V / Vshift

• Constrained couplings to matter (predictivity)

⇤ Not the QCD axion; reference values f ⇠ 1016 GeV , m� ' 1013 GeV

Slow roll inflation requires very flat potential V , and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, �V / Vshift

' ! '+ const.Axion-Inflation

20



INFLATIONARY MODELS
JCAP12(2016)026

Figure 4. Spectrum of GWs today h2⌦GW obtained from a numerical integration of the dynamical
equations of motion (for a model of quadratic inflaton potential, with inflaton - gauge field coupling
f = MPl/35), versus the local parametrization h2⌦GW / (f/f⇤)nT , evaluated at various pivot fre-
quencies f⇤ and with the spectral tilt nT obtained from successive approximations to the analytic
expression (3.13).

In figure 4, we compare the analytic expression (3.13) for the spectral tilt nT against the
result of a numerical evolution of ⌦GWh2. For definiteness, we choose a quadratic inflaton
potential, and we fix the coupling between the gauge field and the inflaton to f = MPl/35.
This gives ⇠N=60 ' 2.46 at the CMB scales. We observe from the figure that the final
expression for the tilt in (3.13) provides a very good approximation (red segments in the
figure) to the slope of the numerical result (blue solid line in the figure). The term (1� ✏) in
the denominator of (3.13), due to the fractional change of the Hubble rate Ḣ/H2, contributes
to nT only to second order in slow-roll parameters, and hence we disregard it. The expression
nT ' �4✏+ (4⇡⇠ � 6)(✏� ⌘) predicts correctly the slope of the numerical signal, within the
LISA frequency range, to better than ⇠ 4%. In the figure, the di↵erence between the red
segments and the true numerical signal cannot be distinguished by eye.

Let us note that for the range of ⇠ that LISA can probe [⇠ & 3.5, see figure (5)], the
term �4✏ in the final expression of (3.13) is actually negligible compared to the other terms.
We can thus further approximate the expression for the tilt as nT ' (4⇡⇠ � 6) (✏� ⌘), which
still predicts correctly the slope of the numerical signal within the LISA frequency range,
for instance in the fiducial chaotic quadratic model to better than ⇠ 10%. The advantage
of using this simplified expression for the tilt is that it allows us to reduce the number of
independent variables that the GW signal depends on, from {HN , ⇠, ✏, ⌘} to {HN , ⇠, (✏� ⌘)}.
This simplifies our next goal, which is to obtain a model-independent parameter estimation
based on the LISA sensitivity curves.

In figure 5 we plot the region in the parameter space (⇠, ✏ � ⌘) that LISA is capa-
ble of probing, with the left and right panels depicting, LISA’s best (A5M5) and worst
(A1M2) configurations, respectively. In both panels we take as a pivot scale f⇤ the frequency

of the minimum of each LISA sensitivity curve h2⌦(AiMj)
GW (f), with f⇤|A5M5 ' 0.00346 Hz
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Gauge fields 

source a


blue tilted 

& chiral


 GW background

GW energy spectrum today

vacuum fluctuations

LISA

Axion-Inflation

Bartolo et al ’16, 1610.06481 

21



What if there are arbitrary  
fields coupled to the inflaton ?

(i.e. no need of extra symmetry)
large excitation of fields !?

will they create GWs?
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the circumstances i), ii) or iii) are met during inflation, can significantly overtake

the irreducible GW signal due to quantum fluctuations. However, as the features of

the inflationary quantum vacuum fluctuations reflect the underlying gravity theory,

circumstance iv) may also a↵ect significantly the form of the irreducible background.

We discuss case i) in Section 5.1, case ii) in Section 5.2.1, case iii) in Section 5.2.2,

and finally case iv) in Section 5.4. In all these circumstances, the spectrum of GWs

can be rather large and blue-tilted, or exhibit a large-amplitude bump at specific scales.

Therefore, the perspective of detecting these inflation-related backgrounds with GW

interferometers, is very compelling. These scenarios represent a new source of GWs,

providing an attractive target for the upcoming GW detectors like e.g. LISA, which

will have the ability to probe a significant fraction of the parameter space of these

scenarios [151].

Let us note that other considerations not encompassed by circumstances i)-iv),

may also lead to large backgrounds of GWs, still related to inflation. In particular,

in Section 5.3.2, we will consider the case of an inflationary potential leading to the

formation of large peaks in the scalar spectrum at small scales. These peaks may

eventually collapse into primordial black holes after horizon re-entry and, upon later

merging, lead to a large background of GWs. For completeness, we also consider in

Section 5.5 the GW background produced from alternative theories to inflation, namely

bounce and string gas cosmologies.

5.1. Particle Production during Inflation

Gravitational waves can be emitted classically during inflation if an anisotropic stress

is present during the inflationary stage. If such is the case, GWs produced inside the

horizon during inflation are diluted by the exponential expansion of the background.

Only once a given wavelength crosses outside the Hubble radius, does the GW amplitude

remains constant. Therefore, in order to minimize the amount of dilution, in order

to provide a non-negligible GW signal, mechanisms of GW generation by a non-zero

anisotropic stress during inflation, must operate su�ciently close to the Hubble scale.

The emission of GWs by particle production during inflation pertains to this

category of GW generation. Several models of particle production have been discussed

in the literature. In general, particle production during inflation is possible because,

as the inflaton rolls down its potential, it provides a time-dependent background that

carries the energy necessary for the production of su�ciently light species [152]. The

energy momentum tensor of the produced species represents an anisotropic stress over

the background energy-momentum tensor, hence sourcing GWs. In the following we

consider two cases, di↵erentiated by the transient and sustainable nature of the particle

production mechanism.

5.1.1. Transient particle production Let us consider either a scalar field � or some

fermion species  , coupled to the inflaton � with Lagrangian �L� = (@�)2/2 +
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g2(� � �0)2�2/2, and �L =  ̄�µ@µ + g(� � �0) ̄ , respectively. Alternatively,

we can also consider the dynamics of a gauge field Aµ following the Lagrangian

L = �1
4
Fµ⌫F

µ⌫ � |(@µ � gAµ)�)|2 � V (�†�) [153, 154], where Fµ⌫ = @µA⌫ � @⌫Aµ

is the field strength, and � = �ei✓ is a complex field. In this latter case, we do not

identify � with the inflaton⇤. We assume however that � evolves during inflation in

such a way that its amplitude vanishes at some point �(t0) ⌘ �0 = 0. In either of the

three scenarios, when � crosses around �0 (�0 6= 0 if � is the inflaton, �0 = 0 otherwise),

the mass m = g(�(t) � �0) vanishes exactly at t = t0 when �(t0) = �0. For a short

period of time �tna around t0,

�tna ⇠ 1/µ , µ2 ⌘ g�̇0 , (138)

the mass changes non-adiabatically as ṁ � m2, leading to an explosive production of

particles† [155]. The occupation number of the quanta created is actually independent

of the spin of excited species (given the interactions considered), and it reads nk =

Exp{�⇡(k/µ)2} [156]. This shows clearly that only long wave modes k ⌧ µ modes are

excited, as short modes evolve adiabatically around t0.

In all three cases (scalars, fermions, and vectors), GWs are generated by the

anisotropic distribution of the created species. Since particle production happens around

the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing

the GWs depends on the spin of the excited species, Barnaby et al [156] has shown

that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)
h (k) = P (vac)

h (k) + P (pp)
h (k), with

P (vac)
h (k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed

calculations [154, 157, 156] show that the contribution P (pp)
h (k) from the newly created

particles, distorts the total tensor power spectrum like

�Ph

Ph

⌘ P (tot)
h � P (vac)

h

P (vac)
h

⌘ P (pp)
h

P (vac)
h

⇠ few ⇥ O(10�4)
H2

m2
pl

W (k⌧0)
⇣ µ

H

⌘3

ln2(µ/H) ,

(139)

with W (x) ⌘ (sin(x)�x cos(x))2

x3

, and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g2 � H2/|�̇|.
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is the field strength, and � = �ei✓ is a complex field. In this latter case, we do not

identify � with the inflaton⇤. We assume however that � evolves during inflation in

such a way that its amplitude vanishes at some point �(t0) ⌘ �0 = 0. In either of the

three scenarios, when � crosses around �0 (�0 6= 0 if � is the inflaton, �0 = 0 otherwise),

the mass m = g(�(t) � �0) vanishes exactly at t = t0 when �(t0) = �0. For a short

period of time �tna around t0,

�tna ⇠ 1/µ , µ2 ⌘ g�̇0 , (138)

the mass changes non-adiabatically as ṁ � m2, leading to an explosive production of

particles† [155]. The occupation number of the quanta created is actually independent

of the spin of excited species (given the interactions considered), and it reads nk =

Exp{�⇡(k/µ)2} [156]. This shows clearly that only long wave modes k ⌧ µ modes are

excited, as short modes evolve adiabatically around t0.

In all three cases (scalars, fermions, and vectors), GWs are generated by the

anisotropic distribution of the created species. Since particle production happens around

the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing

the GWs depends on the spin of the excited species, Barnaby et al [156] has shown

that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)
h (k) = P (vac)

h (k) + P (pp)
h (k), with

P (vac)
h (k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed

calculations [154, 157, 156] show that the contribution P (pp)
h (k) from the newly created

particles, distorts the total tensor power spectrum like
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with W (x) ⌘ (sin(x)�x cos(x))2

x3

, and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g2 � H2/|�̇|.
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excited, as short modes evolve adiabatically around t0.
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the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing

the GWs depends on the spin of the excited species, Barnaby et al [156] has shown

that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)
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h (k), with
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h (k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed
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, and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g2 � H2/|�̇|.
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is the field strength, and � = �ei✓ is a complex field. In this latter case, we do not

identify � with the inflaton⇤. We assume however that � evolves during inflation in

such a way that its amplitude vanishes at some point �(t0) ⌘ �0 = 0. In either of the

three scenarios, when � crosses around �0 (�0 6= 0 if � is the inflaton, �0 = 0 otherwise),

the mass m = g(�(t) � �0) vanishes exactly at t = t0 when �(t0) = �0. For a short
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of the spin of excited species (given the interactions considered), and it reads nk =
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excited, as short modes evolve adiabatically around t0.
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the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing
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that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)
h (k) = P (vac)

h (k) + P (pp)
h (k), with

P (vac)
h (k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed

calculations [154, 157, 156] show that the contribution P (pp)
h (k) from the newly created
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with W (x) ⌘ (sin(x)�x cos(x))2

x3

, and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g2 � H2/|�̇|.
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the circumstances i), ii) or iii) are met during inflation, can significantly overtake

the irreducible GW signal due to quantum fluctuations. However, as the features of

the inflationary quantum vacuum fluctuations reflect the underlying gravity theory,

circumstance iv) may also a↵ect significantly the form of the irreducible background.

We discuss case i) in Section 5.1, case ii) in Section 5.2.1, case iii) in Section 5.2.2,

and finally case iv) in Section 5.4. In all these circumstances, the spectrum of GWs

can be rather large and blue-tilted, or exhibit a large-amplitude bump at specific scales.

Therefore, the perspective of detecting these inflation-related backgrounds with GW

interferometers, is very compelling. These scenarios represent a new source of GWs,

providing an attractive target for the upcoming GW detectors like e.g. LISA, which

will have the ability to probe a significant fraction of the parameter space of these

scenarios [151].

Let us note that other considerations not encompassed by circumstances i)-iv),

may also lead to large backgrounds of GWs, still related to inflation. In particular,

in Section 5.3.2, we will consider the case of an inflationary potential leading to the

formation of large peaks in the scalar spectrum at small scales. These peaks may

eventually collapse into primordial black holes after horizon re-entry and, upon later

merging, lead to a large background of GWs. For completeness, we also consider in

Section 5.5 the GW background produced from alternative theories to inflation, namely

bounce and string gas cosmologies.

5.1. Particle Production during Inflation

Gravitational waves can be emitted classically during inflation if an anisotropic stress

is present during the inflationary stage. If such is the case, GWs produced inside the

horizon during inflation are diluted by the exponential expansion of the background.

Only once a given wavelength crosses outside the Hubble radius, does the GW amplitude

remains constant. Therefore, in order to minimize the amount of dilution, in order

to provide a non-negligible GW signal, mechanisms of GW generation by a non-zero

anisotropic stress during inflation, must operate su�ciently close to the Hubble scale.

The emission of GWs by particle production during inflation pertains to this

category of GW generation. Several models of particle production have been discussed

in the literature. In general, particle production during inflation is possible because,

as the inflaton rolls down its potential, it provides a time-dependent background that

carries the energy necessary for the production of su�ciently light species [152]. The

energy momentum tensor of the produced species represents an anisotropic stress over

the background energy-momentum tensor, hence sourcing GWs. In the following we

consider two cases, di↵erentiated by the transient and sustainable nature of the particle

production mechanism.

5.1.1. Transient particle production Let us consider either a scalar field � or some

fermion species  , coupled to the inflaton � with Lagrangian �L� = (@�)2/2 +V (�)
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g2(� � �0)2�2/2, and �L =  ̄�µ@µ + g(� � �0) ̄ , respectively. Alternatively,

we can also consider the dynamics of a gauge field Aµ following the Lagrangian

L = �1
4
Fµ⌫F

µ⌫ � |(@µ � gAµ)�)|2 � V (�†�) [153, 154], where Fµ⌫ = @µA⌫ � @⌫Aµ

is the field strength, and � = �ei✓ is a complex field. In this latter case, we do not

identify � with the inflaton⇤. We assume however that � evolves during inflation in

such a way that its amplitude vanishes at some point �(t0) ⌘ �0 = 0. In either of the

three scenarios, when � crosses around �0 (�0 6= 0 if � is the inflaton, �0 = 0 otherwise),

the mass m = g(�(t) � �0) vanishes exactly at t = t0 when �(t0) = �0. For a short

period of time �tna around t0,

�tna ⇠ 1/µ , µ2 ⌘ g�̇0 , (138)

the mass changes non-adiabatically as ṁ � m2, leading to an explosive production of

particles† [155]. The occupation number of the quanta created is actually independent

of the spin of excited species (given the interactions considered), and it reads nk =

Exp{�⇡(k/µ)2} [156]. This shows clearly that only long wave modes k ⌧ µ modes are

excited, as short modes evolve adiabatically around t0.

In all three cases (scalars, fermions, and vectors), GWs are generated by the

anisotropic distribution of the created species. Since particle production happens around

the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing

the GWs depends on the spin of the excited species, Barnaby et al [156] has shown

that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)
h (k) = P (vac)

h (k) + P (pp)
h (k), with

P (vac)
h (k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed

calculations [154, 157, 156] show that the contribution P (pp)
h (k) from the newly created

particles, distorts the total tensor power spectrum like
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with W (x) ⌘ (sin(x)�x cos(x))2

x3

, and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g2 � H2/|�̇|.

-18.0 -14.0 -10.0 -6.0 -2.0 2.0 6.0 10.0
Log[f]

-16.0

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

Lo
g[
h 0

2 Ω
G
W
]

Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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g2(� � �0)2�2/2, and �L =  ̄�µ@µ + g(� � �0) ̄ , respectively. Alternatively,

we can also consider the dynamics of a gauge field Aµ following the Lagrangian

L = �1
4
Fµ⌫F

µ⌫ � |(@µ � gAµ)�)|2 � V (�†�) [153, 154], where Fµ⌫ = @µA⌫ � @⌫Aµ

is the field strength, and � = �ei✓ is a complex field. In this latter case, we do not

identify � with the inflaton⇤. We assume however that � evolves during inflation in

such a way that its amplitude vanishes at some point �(t0) ⌘ �0 = 0. In either of the

three scenarios, when � crosses around �0 (�0 6= 0 if � is the inflaton, �0 = 0 otherwise),

the mass m = g(�(t) � �0) vanishes exactly at t = t0 when �(t0) = �0. For a short

period of time �tna around t0,

�tna ⇠ 1/µ , µ2 ⌘ g�̇0 , (138)

the mass changes non-adiabatically as ṁ � m2, leading to an explosive production of

particles† [155]. The occupation number of the quanta created is actually independent

of the spin of excited species (given the interactions considered), and it reads nk =

Exp{�⇡(k/µ)2} [156]. This shows clearly that only long wave modes k ⌧ µ modes are

excited, as short modes evolve adiabatically around t0.

In all three cases (scalars, fermions, and vectors), GWs are generated by the

anisotropic distribution of the created species. Since particle production happens around

the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing

the GWs depends on the spin of the excited species, Barnaby et al [156] has shown

that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)
h (k) = P (vac)

h (k) + P (pp)
h (k), with

P (vac)
h (k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed

calculations [154, 157, 156] show that the contribution P (pp)
h (k) from the newly created

particles, distorts the total tensor power spectrum like
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with W (x) ⌘ (sin(x)�x cos(x))2

x3

, and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g2 � H2/|�̇|.
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we can also consider the dynamics of a gauge field Aµ following the Lagrangian
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is the field strength, and � = �ei✓ is a complex field. In this latter case, we do not

identify � with the inflaton⇤. We assume however that � evolves during inflation in

such a way that its amplitude vanishes at some point �(t0) ⌘ �0 = 0. In either of the

three scenarios, when � crosses around �0 (�0 6= 0 if � is the inflaton, �0 = 0 otherwise),
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period of time �tna around t0,
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the mass changes non-adiabatically as ṁ � m2, leading to an explosive production of

particles† [155]. The occupation number of the quanta created is actually independent

of the spin of excited species (given the interactions considered), and it reads nk =

Exp{�⇡(k/µ)2} [156]. This shows clearly that only long wave modes k ⌧ µ modes are

excited, as short modes evolve adiabatically around t0.

In all three cases (scalars, fermions, and vectors), GWs are generated by the

anisotropic distribution of the created species. Since particle production happens around

the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing

the GWs depends on the spin of the excited species, Barnaby et al [156] has shown

that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)
h (k) = P (vac)

h (k) + P (pp)
h (k), with

P (vac)
h (k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed

calculations [154, 157, 156] show that the contribution P (pp)
h (k) from the newly created
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with W (x) ⌘ (sin(x)�x cos(x))2
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, and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g2 � H2/|�̇|.
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identify � with the inflaton⇤. We assume however that � evolves during inflation in
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the mass m = g(�(t) � �0) vanishes exactly at t = t0 when �(t0) = �0. For a short
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the mass changes non-adiabatically as ṁ � m2, leading to an explosive production of

particles† [155]. The occupation number of the quanta created is actually independent

of the spin of excited species (given the interactions considered), and it reads nk =

Exp{�⇡(k/µ)2} [156]. This shows clearly that only long wave modes k ⌧ µ modes are

excited, as short modes evolve adiabatically around t0.

In all three cases (scalars, fermions, and vectors), GWs are generated by the

anisotropic distribution of the created species. Since particle production happens around

the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing

the GWs depends on the spin of the excited species, Barnaby et al [156] has shown

that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)
h (k) = P (vac)

h (k) + P (pp)
h (k), with

P (vac)
h (k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed

calculations [154, 157, 156] show that the contribution P (pp)
h (k) from the newly created

particles, distorts the total tensor power spectrum like

�Ph

Ph

⌘ P (tot)
h � P (vac)

h

P (vac)
h

⌘ P (pp)
h

P (vac)
h

⇠ few ⇥ O(10�4)
H2

m2
pl

W (k⌧0)
⇣ µ

H

⌘3

ln2(µ/H) ,

(139)

with W (x) ⌘ (sin(x)�x cos(x))2

x3

, and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g2 � H2/|�̇|.

( Sorbo et al 2011, Peloso et al 2012-2013, Caprini & DGF 2018)
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3

where the numerical factor 4/9 comes from the relation between scalar metric perturbation in the longitudinal and
comoving gauges on large scales in a radiation-dominated era [49].
In the second-order perturbed Einstein field equations we see the effect of first-order perturbations as a source term

(Sij) for second-order tensor perturbations. After putting all first-order perturbation terms to the right-hand side of
the Einstein field equation, we have

h′′
ij + 2Hh′

ij + k2hij = STT
ij , (8)

where STT
ij indicates the transverse-tracefree part of the source term. If we neglect first order tensor and vector

perturbations in comparison with first order density perturbations, the right hand side of this equation is the trans-
verse and trace-free part quadratic in first-order scalar perturbations. This behaves like a source term for induced
gravitational waves [30, 31]

Sij = 2Φ∂i∂jΦ− 2Ψ∂i∂jΦ+ 4Ψ∂i∂jΨ+ ∂iΦ∂jΦ− ∂iΦ∂jΨ− ∂iΨ∂jΦ+ 3∂iΨ∂jΨ

−
4

3(1 + w)H2
∂i(Ψ

′ +HΦ)∂j(Ψ
′ +HΦ)

−
2c2s
3wH

[3H(HΦ−Ψ′) +∇2Ψ] ∂i∂j(Φ−Ψ) (9)

where w = P/ρ is the equation of state and c2s = P ′/ρ′ is the adiabatic sound speed.
These equations are written in the real space but in order to derive the power spectrum of gravitational waves we

need to transform to Fourier space [30]

hij(x, η) =

∫

d3k

(2π)
3

2

eik.x[hk(η)eij(k) + h̄kēij(k)] , (10)

where eij(k) and ēij(k) are the polarization tensors. The two polarization tensors eij(k) and ēij(k) can be given in
terms of the orthonormal basis

eij(k) =
1√
2
[ei(k)ej(k) − ēi(k)ēj(k)]

ēij(k) =
1√
2
[ei(k)ēj(k) + ēi(k)ej(k)] , (11)

where e and ē are unit vectors orthogonal to one another and k:

eik
i = ēik

i = eiē
i = 0 (12)

The gravitational waves have a power spectrum in Fourier space

⟨hk(η)hk′(η)⟩ =
1

2

2π2

k3
δ3(k+ k

′)Ph(k, η) , (13)

The effective density of a stochastic background of gravitational waves, on scales much smaller than the Hubble scale,
is given by [21]

ρGW =
1

32πG
⟨ḣij ḣ

ij⟩ =
k2

32πGa2

∫

d(ln k) Ph(k, η) . (14)

The fraction of the critical energy density in gravitational waves per logarithmic range of wavenumber k in the
radiation era is thus

ΩGW (k, η) =
1

12

(

k

H

)2

Ph(k, η) . (15)

After the radiation-dominated era, the density of gravitational waves on sub-Hubble scales then redshifts exactly as
any non-interacting relativistic particle species and in the present day we have

ΩGW,0(k) =
Ωγ,0

12

(

k

H

)2

Ph(k, η) , (16)

where we neglect additional numerical factors due to the detailed thermal history, such as the heating of photons by
the annihilation of other relativistic particle species [45, 50]. The present density of photons is Ωγ,0 ≃ 4.8 × 10−5

where here, and throughout this paper, we take H0 ≃ 72 km s−1Mpc−1 for the present value of the Hubble rate.

(2nd Order Pert.)⇠ � ⇤ �

Phys.Rev. D81 (2010) 023527 Phys.Rev. D75 (2007) 123518 D. Wands et al, 2006-2010
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III. CONSTRAINTS ON PRIMORDIAL DENSITY PERTURBATIONS

In the standard cosmological scenario, second-order gravitational waves are generated during the radiation-
dominated era after inflation. Non-linear interactions can in principle lead to density perturbations integrated over
a range of scales contributing to the gravitational wave amplitude on a given wavenumber, k, but in practice the
second-order gravitational waves are primarily produced when first-order density perturbations on the similar on
same scale, ∼ k, come inside the Hubble scale during the radiation era [30].
Assuming a power-law spectrum for the primordial density perturbation, Eq. (7), the energy density of second-order

gravitational waves, relative to the critical density at the present time, which were produced during the radiation-
dominated era (ν > 10−15 Hz), can be written as

Ωgw,0(k) = Frad Ωγ,0△4
R(k) . (17)

where, for modes which are well inside the horizon at the end of the radiation-dominated era (kηeq ≫ 1), we have [30]

Frad =
8

3

(

2162

π3

)

8.3× 10−3fns (18)

and fns is weakly-dependent on the spectral tilt. fns ≈ 1 if the density perturbation is scale-invariant [30], but
becomes slightly smaller than one for a red spectrum (e.g, fns ≈ 0.97 for ns = 0.9) and bigger than one for a blue
spectrum (e.g, fns ≈ 1.05 for ns = 1.1).
It is also possible to consider the spectrum of gravitational waves generated by density perturbations with a sharply

peaked power spectrum [30, 34]. Considering a delta-function power spectrum, P (k) = (4/9)∆2
R(kp)δ(ln(k/kp)), the

resulting gravitational wave spectrum is described by a sharply rising spectrum for k < kp [34]

Ωgw,0(k) = 29Ωγ,0△4
R(kp)

(

k

kp

)2

, (19)

with an abrupt cut-off for k > 2kp.
In the following numerical estimates we take Frad ≈ 30 in Eq. (17) corresponding to an approximately scale-

invariant spectrum of scalar perturbations, ns ≈ 1. This is expected to be a conservative lower bound on Frad for
the blue spectra with ns > 1 required to produce a detectable background of gravitational waves on scales much
smaller than the CMB scale. In the rest of this section we show, how Eq. (17) enables us to use constraints on the
stochastic background of gravitational waves generated during the radiation era, Ωgw,0(k), to place upper bounds
on the primordial density perturbation on the corresponding scales, ∆2

R(k). In addition Eq. (19) indicates how
observational constraints on Ωgw,0(k) at a given wavenumber k also places a weaker bound on the primordial density
perturbation, ∆2

R(kp) ∝ (kp/k), at higher wavenumbers, kp > k. Our results are presented graphically in Figure .

A. Cosmological density constraints

1. Constraint from BBN

If the energy density carried by gravitational waves at the time of primordial big bang nucleosynthesis (BBN) were
large, the abundances of the light nuclei produced would be altered with respect to the predictions of standard BBN.
Hence, BBN can be used to constrain the total energy carried by gravitational waves at the time of nucleosynthesis
(T ≃ 1 MeV) [51].
Primordial abundances of the light elements, usually quoted as a bound on the effective number of relativistic

species at the time of BBN, gives the 95% c.l. upper bound on a primordial gravitational wave background [37]

Ωgw,0 < 1.5× 10−5 (20)

Substituting this bound into Eq. (17) gives

△2
R < 0.1

(

Frad

30

)− 1

2

. (21)

This denotes the upper bound on the primordial density perturbation on the Hubble scale at the time when the
gravitational waves are generated.
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2. Constraint from CMB

A very similar bound on the effective energy density of primordial gravitational waves can be obtained around
the time of last scattering of the cosmic microwave background. Again a limit on the number of massless neutrino
species [52] can be translated into a bound on the gravitational wave background [53]. Unlike the BBN constraint,
however, the CMB constraint depends upon the nature of inhomogeneous perturbations about the average density.
For a gravitational wave background produced from a Gaussian random field of primordial density perturbations on
small scales, we expect the effective energy density on long wavelengths (on scales of order 100 Mpc) to be independent
of the density perturbations on this scale. Thus long wavelength perturbations of the gravitational wave background
are non-adiabatic and Smith et al [53] give a 95% c.l. bound

Ωgw,0 < 1.3× 10−5 , (25)

for a “homogeneous” gravitational wave background. This is marginally stronger than the BBN constraint (20). It
gives effectively the same constraint on the primordial density perturbation (21), and the effective spectral index
(24), but extends to longer wavelengths ∼ 10−15 Hz, corresponding to scales inside the Hubble scale at the time of
last-scattering.
Future data from CMB experiments such as Planck and the proposed CMBPol mission are expected to improve

the CMB bound. For Planck the expected bound corresponds to Ωgw,0 < 2.7× 10−6 [53] which would bound

△2
R < 0.04

(

Frad

30

)− 1

2

. (26)

B. Constraints from ground-based detectors

1. Current LIGO/VIRGO

We can obtain a tighter constraint on the primordial density perturbation on scales probed by direct detectors,
such as the Laser Interferometer Gravitational Wave Observatory (LIGO) [37] and gravitational wave detector at the
European gravitational observatory (VIRGO) [38]. LIGO’s maximum sensitivity is around a frequency, ν = 100 Hz.
The latest results from the LIGO S5 science run give a bound on the energy density of gravitational waves on this
scale [39]

Ωgw,0 < 6.9× 10−6 . (27)

Hence from Eq. (17) the constraint on the density perturbation on the LIGO/VIRGO scale is

△2
R < 0.07

(

Frad

30

)− 1

2

. (28)

This is a slightly tighter bound than that currently obtained from BBN and the CMB, Eq. (21), however unlike the
BBN and CMB bound it only applies to LIGO/VIRGO scales. The corresponding constraint on ns on this scale
comes from Eq. (23)

ns < 1.37−
1

40
log10

(

Frad

30

)

. (29)

2. Advanced LIGO/VIRGO

Advanced LIGO/VIRGO will give us an improved constraint on a stochastic background of gravitational waves
on the same scales [38, 54]. The smallest density of gravitational waves which could be detected by Advanced
LIGO/VIRGO is 103 times smaller than current LIGO/VIRGO bounds. Considering the smallest detectable energy
density Ωgw,0 < 10−9 in Eq. (17) returns

△2
R < 8× 10−4

(

Frad

30

)− 1

2

(30)
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△2
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Frad
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)− 1

2
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⌦gw,0 < 10�13
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Equation (23) gives the expected constraint on ns from Advanced LIGO/VIRGO (taking ν = 100 Hz)

ns < 1.27−
1

40
log10

(

Frad

30

)

. (31)

C. Constraints from LISA

The Laser Interferometer Space Antenna (LISA) is the first gravitational wave detector planned in space and is
the most sensitive detector currently planned. Assuming LISA’s instrumental noise is well-behaved [55], it could
detect a stochastic background of gravitational waves at a level Ωgw,0 ∼ 10−11 at frequencies νLISA ∼ 10−3 Hz
[40, 41]. However the sensitivity of LISA leads to many potential overlapping sources and hence the problem of source
confusion. In particular the astrophysical background from unresolved extra-galactic white-dwarf binaries is expected
to limit LISA’s ability to distinguish a primordial gravitational wave background to [55, 56]

Ωgw,0 < 10−10 . (32)

The corresponding upper bound on the primordial density perturbation on LISA scales comes from (17):

△2
R < 3× 10−4

(

Frad

30

)− 1

2

(33)

The constraint on ns on LISA scales comes from Eq. (23)

ns < 1.34−
1

30
log10

(

Frad

30

)

. (34)

This is a slightly weaker bound on the effective spectral index compared with Advanced LIGO, as LISA is sensitive
on length scales much larger than LIGO scales.

D. Constraints from BBO/DECIGO

The Big Bang Observer (BBO) [42] and the DECi-hertz Interferometer Gravitational wave Observatory (DECIGO)
[43] are ambitious proposals for future space-based observatories to detect cosmological gravitational waves. They
should be able to detect a stochastic background of gravitational waves down to an effective energy density Ωgw,0 ≈
10−16 at νBBO ≈ 1 Hz. This waveband is chosen to avoid the confusion noise due to white dwarf binary mergers
which cuts off above 0.2 Hz. The designs of BBO and DECIGO are based on the requirement to identify and remove
the remaining foregrounds from neutron star and black hole binaries [57].
If induced gravitational waves during the radiation era are not detected with BBO/DECIGO, then we will be able

to place a tight constraint on the primordial density perturbation and hence ns on this scale (1 Hz). From (17) and
(23) we obtain

△2
R < 3× 10−7

(

Frad

30

)− 1

2

, (35)

and hence

ns < 1.11−
1

36
log10

(

Frad

30

)

. (36)

E. Constraints from pulsar timings

Analysis of pulse data from pulsars shows that they are very stable clocks. Measurement of timing residuals,
which is the difference between the observed time of arrival and predicted time of arrival, can in principle be used
to directly detect gravitational waves passing between the pulsar and the observer [35, 36]. The data from current

1⇥ 10�5

⌦gw,0 < 10�17
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log10
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30

)
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2
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△2
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(

Frad

30

)− 1

2
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and hence
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36
log10

(

Frad

30

)
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E. Constraints from pulsar timings

Analysis of pulse data from pulsars shows that they are very stable clocks. Measurement of timing residuals,
which is the difference between the observed time of arrival and predicted time of arrival, can in principle be used
to directly detect gravitational waves passing between the pulsar and the observer [35, 36]. The data from current
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observations of an array of pulsars places an upper bound on the stochastic background of gravitational waves, with
periods comparable to the total observation time span. This is typically 1-10 years, and corresponds to 10−8-10−9

Hz. For ν = 10−8 Hz, the constraint on the present density of gravitational waves is [36]

Ωgw,0 < 4× 10−8 . (37)

Substituting (37) in (17), gives us the current constraints on the primordial density perturbation

△2
R < 5× 10−3

(

Frad

30

)− 1

2

. (38)

The constraint on ns comes from (17)

ns < 1.63−
1

20
log10

(

Frad

30

)

. (39)

Saito and Yokoyama [34] have recently used similar constraints, on the induced gravitational wave background
from pulsar timing arrays, to rule out the large amplitude of primordial density perturbations required to produce
any significant number of primordial black holes in the intermediate mass range, 4× 102M⊙ ≤ MPBH ≤ 5× 103M⊙,
corresponding to 8×1035 g ≤ MPBH ≤ 1037g, which from Eq. (2) would have formed at temperatures T ≈ 3−10 MeV.
Future pulsar timing will give a better constraint. If gravitational waves are not detected, the upper limit, based

on timing 20 pulsars over 5 years, would be Ωgw,0 < 10−10 [36]. From (17), the future constraint on the primordial
density perturbation in five years time for ν = 10−8 Hz would be

△2
R < 3× 10−4

(

Frad

30

)− 1

2

. (40)

The future constraint on ns would then be

ns < 1.50−
1

20
log10

(

Frad

30

)

. (41)

IV. CONCLUSION

Despite remarkable recent progress in astronomical observations mapping density perturbations on large scales (10-
1000 Mpc) in our Universe, we know little about the primordial distribution of matter on much smaller scales. This
is due to Silk damping and free-streaming of relativistic particles in the early universe, and subsequent non-linear
evolution of matter perturbations at much later times. The only constraints on these scales come from gravitational
relics of the very early universe. Previous work has focussed on the possible formation of primordial black holes from
large over-densities.
In this paper we have shown how limits on a stochastic background of gravitational waves can be used to place

limits on density perturbations in the early radiation-dominated era of the standard hot big bang cosmology.
BBN and CMB limits on a primordial gravitational wave background places only a weak constraint on the amplitude

of primordial density perturbations, △2
R < 0.1, but this applies across a wide range of frequencies, from 10−15 Hz

to frequencies as high as 108 Hz, depending on the maximum temperature at the start of the radiation-dominated
era. By contrast, gravitational wave detectors such as LIGO and VIRGO place slightly tighter bounds, currently
△2

R < 0.07, but only over a narrower range determined by the frequency response of the detector.
Future gravitational wave experiments offer the prospect of much tighter bounds on, or a detection of, a stochastic

gravitational wave background and hence the primordial density perturbation on small scales. A space-based experi-
ment such as LISA could detect gravitational waves produced by density perturbations △2

R ∼ 10−4, and future data
from pulsar timing arrays could have similar sensitivity. The most ambitious current proposed gravitational wave
observatories including BBO and DECIGO offer the prospect of detecting gravitational waves as small as △2

R ∼ 10−7.
If gravitational wave background is not detected by these experiments it would imply that the primordial power

spectrum remains close to scale-invariant, or decreases in power on small scales, ns < 1.29, which provides a valuable
new constraint on models for the origin of structure. Nonetheless it remains a challenge to design an experiment that
could detect gravitational waves produced by primordial density perturbations of the same power, △2

R ∼ 10−9, as
seen on the largest scales in the universe today.
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Saito and Yokoyama [34] have recently used similar constraints, on the induced gravitational wave background
from pulsar timing arrays, to rule out the large amplitude of primordial density perturbations required to produce
any significant number of primordial black holes in the intermediate mass range, 4× 102M⊙ ≤ MPBH ≤ 5× 103M⊙,
corresponding to 8×1035 g ≤ MPBH ≤ 1037g, which from Eq. (2) would have formed at temperatures T ≈ 3−10 MeV.
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1000 Mpc) in our Universe, we know little about the primordial distribution of matter on much smaller scales. This
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evolution of matter perturbations at much later times. The only constraints on these scales come from gravitational
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In this paper we have shown how limits on a stochastic background of gravitational waves can be used to place

limits on density perturbations in the early radiation-dominated era of the standard hot big bang cosmology.
BBN and CMB limits on a primordial gravitational wave background places only a weak constraint on the amplitude

of primordial density perturbations, △2
R < 0.1, but this applies across a wide range of frequencies, from 10−15 Hz

to frequencies as high as 108 Hz, depending on the maximum temperature at the start of the radiation-dominated
era. By contrast, gravitational wave detectors such as LIGO and VIRGO place slightly tighter bounds, currently
△2

R < 0.07, but only over a narrower range determined by the frequency response of the detector.
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gravitational wave background and hence the primordial density perturbation on small scales. A space-based experi-
ment such as LISA could detect gravitational waves produced by density perturbations △2

R ∼ 10−4, and future data
from pulsar timing arrays could have similar sensitivity. The most ambitious current proposed gravitational wave
observatories including BBO and DECIGO offer the prospect of detecting gravitational waves as small as △2

R ∼ 10−7.
If gravitational wave background is not detected by these experiments it would imply that the primordial power

spectrum remains close to scale-invariant, or decreases in power on small scales, ns < 1.29, which provides a valuable
new constraint on models for the origin of structure. Nonetheless it remains a challenge to design an experiment that
could detect gravitational waves produced by primordial density perturbations of the same power, △2

R ∼ 10−9, as
seen on the largest scales in the universe today.
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INFLATIONARY MODELS

INFLATION 
non-monotonic

IF {multi-field

{

�2
R

possible to 
enhance      

(at small scales)

IF       very 
enhanced

�2
R Primordial Black Holes (PBH) may be produced!

PBH candidate for Dark Matter ?

Has LIGO detected PBH’s ?

Clesse & Garcia-Bellido, 2015-2017 
Ali-Haimoud et al 2016-2017

See papers by
Ali-Haimoud, Byrnes,

Garcia-Bellido, Zumalacarregui, …
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INFLATIONARY COSMOLOGY

( )initial
cond.

Inflation            
= {

Scenarios

Primordial 
perturbations Tensor

Scalar

Enhanced Scalar Pert.

…
Enhanced GWs

Extra species/symmetries

: Irreducible GWs{

Reheating = New GW productionMatching inflation 
with Thermal Era( )
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GWs from (p)Reheating
PHYSICAL CONTEXT: REHEATING

INFLATION �! REHEATING �! BIG BANG THEORY
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SCALAR (P)REHEATING
Chaotic Scenarios: PARAMETRIC RESONANCE

Massless : X 00
k +(2 + g2

� cn2(z))Xk = 0 (Lamé Eq.)

Massive : X 00
k +(Ak � 2q cos(2z))Xk = 0 (Mathieu Eq.)
q = g2�2/(2µ)2, Ak = (k/a)2/µ2 + 2q

9

>

>

=

>

>

;

Xk ⇠ eµk t

nk ⇠ eµk t

Chaotic Inflation (KLS94,GKLS97)

1) Chaotic Scenarios: PARAMETRIC RESONANCE

V (�, �) = V (�) + 1
2m2

��2 + 1
2g2�2�2 (Chaotic Models)

X 00
k + [2 + m2(�)]Xk = 0 (Fluctuations of Matter)
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SCALAR (P)REHEATING
Chaotic Scenarios: PARAMETRIC RESONANCE

Massless : X 00
k +(2 + g2

� cn2(z))Xk = 0 (Lamé Eq.)

Massive : X 00
k +(Ak � 2q cos(2z))Xk = 0 (Mathieu Eq.)
q = g2�2/(2µ)2, Ak = (k/a)2/µ2 + 2q

9

>

>

=

>

>

;

Xk ⇠ eµk t

nk ⇠ eµk t

Chaotic Inflation (KLS94,GKLS97)

1) Chaotic Scenarios: PARAMETRIC RESONANCE

V (�, �) = V (�) + 1
2m2

��2 + 1
2g2�2�2 (Chaotic Models)

X 00
k + [2 + m2(�)]Xk = 0 (Fluctuations of Matter)

1. Non-Perturbative Excitation of fields

Bosons: g2�2�2 : Oscillations ! �� Particle Creation
(Non-Pert., Out-of-Eq.)

d2

dt2�k + !2

k(t)�k(t) = 0 , d
dt!k � !2

k(t)
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SCALAR (P)REHEATING
2)Reheating (Hybrid Scenarios): SPINODAL INSTABILITY
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Reheating (Hybrid Scenarios): SPINODAL INSTABILITY
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INFLATIONARY PREHEATINGEXPECTATIONs of (p)REHEATING: SubH-GW

Physics of (p)REHEATING: '̈
k

+ !2(k, t)'
k

= 0

⇢
Hybrid Preheating : !2 = k2 + m2(1� V t) < 0 (Tachyonic)

Chaotic Preheating : !2 = k2 + �2(t) sin2 µt (Periodic)

At k
i

: '
ki , nki ⇠ eµ(k,t)t ) Inhomogeneities:

8
>>><

>>>:

L
i

⇠ 1/k
i

�⇢/⇢ & 1

v ⇡ c

(p)REHEATING: VERY EFFECTIVE GW GENERATOR
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INFLATIONARY PREHEATINGEXPECTATIONs of (p)REHEATING: SubH-GW

Physics of (p)REHEATING: '̈
k

+ !2(k, t)'
k

= 0

⇢
Hybrid Preheating : !2 = k2 + m2(1� V t) < 0 (Tachyonic)

Chaotic Preheating : !2 = k2 + �2(t) sin2 µt (Periodic)

At k
i

: '
ki , nki ⇠ eµ(k,t)t ) Inhomogeneities:

8
>>><

>>>:

L
i

⇠ 1/k
i

�⇢/⇢ & 1

v ⇡ c

(p)REHEATING: VERY EFFECTIVE GW GENERATOR
Easther, Giblin, Lim ’06-’08       

             DGF, Ga-Bellido, et al ’07-’10  
Kofman, Dufaux et al ’07-’09

  Preheating: Very Effective GW generator !  
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Parameter Dependence (Peak amplitude)

Chaotic Models:
where q is the so called resonance parameter

q ⌘ g2�2

i

!2

⇤
. (2.6)

Depending on the potential, the resonance parameter may be written as proportional to the
expression provided in Eq. (2.6), with a proportionality factor4 of order ⇠ O(1). However,
this is purely conventional, and what really matters is, of course, the dimensionless ratio
/ g

2
�

2
i

!

2
⇤

captured in Eq. (2.6).
In most relevant situations in the early Universe where parametric resonance takes place,

the oscillatory field � is considered to be initially in a homogeneous classical field configuration,
whereas the field � is considered to be a quantum field, initially in vacuum. The scalar field �
can be promoted into a quantum operator by means of the standard quantization procedure

�(x, t) ⌘ a(t)X(x, t) =

Z
dk

(2⇡)3
e�ik·x

h
â
k

�
k

(t) + â†�k

�⇤
k

(t)
i
, (2.7)

where the creation/annihilation operator satisfy the canonical commutation relations

[â
k

, â†
k

0 ] = (2⇡)3 �(3)(k� k

0), (2.8)

with other commutators vanishing. The (initial) vacuum state is defined as usual, given by
â
k

|0i = 0. Given our choice of Eqs. (2.7), (2.8), we note that the mode functions �
k

have
dimensions of (Energy)�1/2. From Eq. (2.5) we obtain the EOM for the latter as

d2

dz2
�
k

+
�
2 + q'2

�
�
k

' 0 ,  ⌘ k

!⇤
, (2.9)

where we have discarded the term / 1

a

d

2
a

dz

2 in the rhs of the equation, as it is negligible
at sub-horizon scales 2 � 1

a

(da
dz

)2, 1
a

d

2
a

dz

2 . Given the oscillatory nature of ', Eq. (2.9) can
exhibit unstable solutions of the type �



⇠ eµq

()z, with µ
q

() some complex exponent.
For certain values of {q,}, Re[µ



] > 0, causing an exponential growth of the given field
mode amplitude. It is precisely this unstable behavior, occurring only within finite-momenta
’resonance bands’ with Re[µ



] > 0, that we call parametric resonance. For a thoughtful
description of the phenomena of parametric resonance in the early Universe see [15]. For a
fit-parameter analysis based on numerical simulations of parametric resonance in the early
Universe, see [59].

2.1 Spectrum of gravitational waves

The exponential growth of the �
k

modes experiencing parametric resonance, generate a sig-
nificant anisotropic stress ⇧

ij

⇠ @
i

�@
j

�, which in turn creates gravitational waves (GW), as
we will see next. Gravitational waves correspond the transverse and traceless (TT) degrees
of freedom of metric perturbations,

ds2 = �dt2 + a2(t) (�
ij

+ h
ij

) dxidxj . (2.10)
4For example, in the case of a quartic potential V (�) = ��4/4, Eq. (2.6) states that q = g2/�, matching

exactly the resonance parameter definition in the Lamé equation [7]. Therefore, in this case, there is no need
to add any proportionality constant. However, in the case of a quadratic potential V (�) = m2

�

�2/2, with
m

�

some mass scale, one normally defines the resonance parameter as q ⌘ g2�2
i /4m

2
�

, introducing the extra
factor 1/4 to match the resonance parameter definition in the Mathieu equation, see [6].

– 4 –

!2
⇤ ⌘ V 00(�I)

(DGF, Torrentí 2017)

Resonance 
Param.

INFLATIONARY PREHEATING

⌦(o)
GW ⇠ A2 !6

⇢m2
p

q�1/2

Figure 9. The top panels show the time-evolution of the GW spectra ⌦GW(, z) for the quadratic
preheating model, for both q = 21000 (top-left) and q = 100000 (top-right). The spectra are depicted
at times z = 0, 5, 10, . . . , and go from red (early-times) to blue (late-times). The bottom panels show
the same quantities, but zoomed to observe the peak better.

GW are also populated. During this displacement, a peak forms at a given scale p > M .
We will refer to the final amplitude of this peak as ⌦

(f)

GW

(p). As the position of this peak
cannot be properly observed in the top panels of Fig. 9, we have plotted the same spectra
in the bottom panels, zooming in the last stages of GW production. The position 

p

clearly
indicates the transition from short to large momenta, so that for  > p, the amplitude of
the GW spectra starts decreasing significantly. It constitutes therefore an estimate of the
maximum momenta attained by the GW spectra, due to the population of UV modes outside
the initial radius  . M , when the system becomes non-linear at z & z

br

.
In Fig. 10 we show the position p and amplitude ⌦

GW

(p) of the peak in the GW
spectra, extracted from our lattice simulations for different values of q. We observe that as
we increase q, the position of the peak p in the saturated spectra moves to the UV, while
the amplitude of the peak decreases. We have found the following fits to the peak amplitude
and position,

p ⇡ 48
⇣ q

104

⌘
0.67

, ⌦
(f)

GW

(p) ⇡ 3.8⇥ 10�6

⇣ q

104

⌘�0.43
. (3.40)

Let us remark that the fit for q . 25000 should be taken with a ’grain of salt’, as the position
of the peak is not so clearly distinguishable (given that the spectral amplitude flattens out).
Not surprisingly, we see that the linear prediction for the peak position at p ⇠ q1/4 is not
well verified, given that the location indicated in Eq. (3.40) corresponds to the final peak,
measured after the system became non-linear and ceased to source GWs. The mentioned

– 28 –
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Parameter Dependence (Peak amplitude)

Chaotic Models: f
o

⇠ 108 � 109 Hz⌦(o)
GW ⇠ 10�11 , @

Large amplitude ! … but at high Frequency !

Very unfortunate… but unobservable !

INFLATIONARY PREHEATING
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Parameter Dependence (Peak amplitude)

Chaotic Models: f
o

⇠ 108 � 109 Hz⌦(o)
GW ⇠ 10�11 , @

Large amplitude ! … but at high Frequency !

⌦GW / q�1/2 Spectroscopy of particle couplings ?

different couplings 
… different peaks ?

INFLATIONARY PREHEATING
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Parameter Dependence (Peak amplitude)

Chaotic Models: f
o

⇠ 108 � 109 Hz⌦(o)
GW ⇠ 10�11 , @

Large amplitude ! … but at high Frequency !

Very unfortunate… no detectors there !

INFLATIONARY PREHEATING

40



Parameter Dependence (Peak amplitude)

Hybrid Models: ⌦(o)
GW /

✓
v

m
p

◆2

⇥ f(�, g2) f
o

⇠ �1/4 ⇥ 109 Hz,

⌦(o)
GW ⇠ 10�11 , @

Large amplitude !
(for v ' 10

16
GeV)

realistically speaking …          

f
o

⇠ 108 � 109 Hz

f
o

⇠ 102 Hz
{ � ⇠ 0.1

(natural)

� ⇠ 10
�28

(fine-tuning)

INFLATIONARY PREHEATING
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INFLATIONARY COSMOLOGY

( )initial
cond.

Inflation            

'cures' hBB

= {

Scenarios

Primordial 
perturbations Tensor

Scalar

Enhanced Scalar Pert.

…
Enhanced GWs

Extra species/symmetries

: Irreducible GWs{

Reheating  
Large GW production scalar Preheating

gauge Preheating

fermion Preheating

(high freq)
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INFLATIONARY COSMOLOGY
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1203.4943, 1306.6911

1006.0217, 1706.02365
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 0) GW definition

Gravitational Waves as a 
probe of the early Universe

OUTLINE

1) GWs from Inflation

2) GWs from Preheating

3) GWs from Phase Transitions

4) GWs from Cosmic Defects 

   Early 
Universe
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source:        
anisotropic stress

⇧ij ⇧ij ⇠ �2(⇢+ p) vivj

⇧ij ⇠
(E2 +B2)

3
� EiEj �BiBj

⇧ij ⇠ @i�@j�

true and false vacua
quantum tunneling

Universe expands, T decreases: phase transition triggered !

First order phase transitions

(Bubble wall collisions)

(Sound waves/Turbulence)

(MHD)
46



BUBBLE COLLISIONs

⇥ ' H⇤
�

, H⇤ R⇤

fc = f⇤
a⇤
a0

=
2 · 10�5

✏⇤

T⇤
1TeV

Hz

SOUND WAVES &  
MDH TURBULENCE

What is the freq. in 1st Order PhT’s ?

GW generation <—> bubbles properties

: duration of PhT size of bubbles 
at collision

��1

vb  1
R⇤ = vb ��1

: speed of bubble walls
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Parameters determining the GW spectrum

↵ =
⇢vac

⇢⇤rad

 =
⇢kin

⇢vac
⇢⇤
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⇢⇤
tot

=
 ↵

1 + ↵

⇥ ' H⇤
�

, H⇤ R⇤
�

H⇤
, vb , T⇤

fc = f⇤
a⇤
a0

=
2 · 10�5
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1TeV

Hz

⌦
GW

⇠ ⌦
rad

✏2⇤

✓
⇢⇤
s

⇢⇤
tot

◆
2

Parameter List 

(not independent)
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MHD turbulence

Example of spectrum

10-5 10-4 0.001 0.01 0.110-16

10-14

10-12

10-10

10-8

f@HzD

h2
W
G
W
HfL

Caprini et al,  
arXiv:1512.06239

sound waves

wall collisiontotal

peak of fluid-related processes 1/R⇤�peak of bubble collisions 

49



Evaluation of the signal

• bubble collisions: analytical and numerical simulations 

• sound waves: numerical simulations of scalar field and fluid

• MDH turbulence: analytical evaluation

(Huber and Konstandin arXiv:0806.1828)

(Caprini et al arXiv:0909.0622)

(Hindmarsh et al arXiv:1504.03291)1304.2433
[ 1504.03291 ,1608.04735, 1704.05871 ]

[ astro-ph/9310044, 0711.2593, 0901.1661 ]
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Evaluation of the signal

• bubble collisions: analytical and numerical simulations 

• sound waves: numerical simulations of scalar field and fluid

• MDH turbulence: analytical evaluation

(Huber and Konstandin arXiv:0806.1828)

(Caprini et al arXiv:0909.0622)

(Hindmarsh et al arXiv:1504.03291)1304.2433
[ 1504.03291 ,1608.04735, 1704.05871 ]

[ astro-ph/9310044, 0711.2593, 0901.1661 ]

Cosmology and Particle Physics interplay!  

Connections with baryon asymmetry & dark matter 

LISA —> new probe of BSM physics! 

(complementary to particle colliders)
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0. SYMMETRY BREAKING ! COSMIC DEFECTS

MAGNETIC FIELD DYNAMICS: Hybrid Preheating (Abelian-Higgs)
[Dufaux, DGF, G

a
-Bellido, PRD’10]

U(1) Breaking (after Hybrid Inflation):  Mag. Fields

What about
Cosmic Defects ?

(aftermath products of a PhT)

Dufaux et al, 2010 52
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Conclusions

GW emission from cosmic string networks

Loops once formed, decay by radiation emission

−→

Gravitational
Scalar/Gauge boson
Synchrotron/Radio/γ-ray
Neutrinos
UHERC

Also, cosmic strings create:

i. imprints on the CMB (anisotropies, non-Gaussianity)
ii. lensing events
iii. 21-cm signatures

Observational probes already used:

CMB experiments (e.g., Planck XXV)
Lensing surveys (e.g., Christiansen et al. 2009)
Diffuse γ-ray background (e.g., Santana Mota & Hindmarsh 2014)
GWs (EPTA, NANOGrav, LIGO)

DESY GW and Cosmology workshop / 3rd eLISA Cosmology WG meeting, DESY, Hamburg 5/22

* Widely believed that GW represents
dominant emission channel (Nambu-Goto)

* However… Abelian-Higgs field theory
simulations show loops decay into bosons

* GW emission 
* Boson emission 
* UHCR 
* …

Extra emission of GWs !

Extra emission of GWs ! (Vilenkin ’81)

What about if Defects are Cosmic Strings ?

59



Cosmic
(super)strings
Basics

Evolution

Observational
signatures

GW emission

Cosmic string
SGWB
GW Spectrum

Modelling

Tension limits

eLISA vs.
PTAs
Parameter space

eLISA vs. SKA No.1

Large loops

eLISA vs. SKA No.2

eLISA performance

Conclusions

GW emission from cosmic string networks

Loops once formed, decay by radiation emission

−→

Gravitational
Scalar/Gauge boson
Synchrotron/Radio/γ-ray
Neutrinos
UHERC

Also, cosmic strings create:

i. imprints on the CMB (anisotropies, non-Gaussianity)
ii. lensing events
iii. 21-cm signatures

Observational probes already used:

CMB experiments (e.g., Planck XXV)
Lensing surveys (e.g., Christiansen et al. 2009)
Diffuse γ-ray background (e.g., Santana Mota & Hindmarsh 2014)
GWs (EPTA, NANOGrav, LIGO)
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GW emission from cosmic string networks

GW emission “engines”: cusps and kinks

Emission in a series of harmonics (modes) n:

fn = 2nc/ℓ, n = 1 → ∞

Emitted GW power per mode:

dEgw,loop

dt
= PnGµ2c , Pn = Γn−q/

∞∑
m=1

m−q

Given a loop number density n(ℓ, t)

Ωgw(f) =
2Gµ2c3

ρcrita5(t0)f

∞∑
j=1

jPj

∫ t0

tf

a5(t′)nj(f, t
′)dt′

Also GW emission from:

• Infinite cosmic strings (Kawasaki et al. 2010; Matsui et al. 2016)
• Scaling evolution in the radiation era (Figueroa et al. 2013)

DESY GW and Cosmology workshop / 3rd eLISA Cosmology WG meeting, DESY, Hamburg 6/22

* GW emission 
* Boson emission 
* UHCR 
* …

Extra emission of GWs !

Extra emission of GWs ! (Vilenkin ’81)

What about if Defects are Cosmic Strings ?

String loop  (length l) oscillates under tension μ 
  emits GWs in a series of harmonic modes

Assuming GW emission dominates …
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FIG. 1: The GW energy density per logarithmic frequency
interval Ωgw(f)h2 of a cosmic string network with Gµ/c2 =
10−7, α = 10−3 and n∗ = 1. The black (solid) line is the full
spectrum from the network due to loops formed in both radi-
ation and matter eras, whereas the red (dashed) line is that
from the radiation-dominated era and the blue (dot-dashed)
line is from the matter-dominated era. The grey shaded area
shows the frequency window probed with the highest sensi-
tivity by PTA experiments with duration between 5 and 10
years.

D. Intercommutation probability

Whenever two field theory cosmic strings collide they
exchange partners with an intercommutation probability
p = 1 [70]. This is not necessarily the case for cosmic su-
perstrings however, which intercommute with a reduced
intercommutation probability p < 1. This can be at-
tributed to the extra dimensions in which cosmic super-
strings are moving, with a successful intercommutation
requiring their collision in all dimensions and not just in
the three spatial dimensions visible to us. If p < 1 then
the scaling density of long strings is increased in order
to increase the number of intersections per unit time and
hence allow the network to lose the requisite amount of
energy necessary to maintain scaling. This will increase
the number of loops and hence will increase the ampli-
tude of the SGWB by a uniform scaling. There is, how-
ever, some controversy as to the exact dependence on p.
Jones, Stoica and Tye [19], argued that the self-similar
length scale, L, of the cosmic string network should scale
as L ∝ pt, which would mean that ρ∞ ∝ L−2 ∝ p−2.
In that case, even a small decrease in p would lead to a
dramatic increase in the amplitude of the SGWB. How-
ever, in such a case the inter-string distance ds, due to
the higher string density, is smaller than the length scale
of the network L, whereas in the one-scale model L ∼ ds,
suggesting that this argument needs to be modified.
Sakellariadou [83] has performed simulations of cosmic

superstring networks in Minkowski spacetime which sug-
gest that L ∝ p1/2t, implying that ρ∞ ∝ p−1. It was
suggested the discrepancy with the results of Jones et
al. stems from the small-scale structure of cosmic stings,

which ensures more intersection points when two strings
collide, and therefore there are more chances for success-
ful loop production.
There are two techniques used to model the dynam-

ics of strings in the Nambu-Goto approximation: one
is the Minkowski spacetime approach used in [83]; the
other is to model the expansion of the Universe. The
results of such simulations are reported by Avgoustidis
and Shellard in [84, 85]. They find that when p ≤ 0.1
then ρ∞ ∝ p−0.6, whereas for 0.1 < p ≤ 1.0 they find
ρ∞ ∝ p−1. They also suggest that small-scale structure
is responsible for the difference from the ρ∞ ∝ p−2 scal-
ing law and they propose a simple two-scale model which
describes quite accurately their simulation results. The
difference in the scaling laws of [83] and [85] has to do
with fitting model parameters to results of fundamen-
tally different simulations, so the exact reasons for this
discrepancy are not easy to trace.
In this work we will not make a judgement on the pre-

cise dependence of the scaling density of infinite strings
as a function of p except that it can be modeled by a
power law

A(p) =
A(1)

pk
, (25)

where k is the model parameter and A(1) = 52 and
A(1) = 31 in the radiation and matter eras respectively.
The results of [83] suggest that k = 1, whereas those
of [84, 85] suggest k = 0.6 for p ≤ 0.1 and k = 1
for 0.1 < p ≤ 1.0. The consequence of this assump-
tion is that the amplitude of the SWGB will scale as
Ωgw(f) ∝ p−k independent of f .

III. CHARACTERISTICS OF COSMIC STRING
INDUCED SPECTRA

A. Low frequency cut-off due to newborn large
loops.

As we mentioned in Sec. II B, each cosmic string loop
emits GWs into an ensemble of harmonics defined by
fn = 2nc/ℓ. This means that there is a low frequency
cut-off on the GWs that a cosmic string network emits,
defined by the first emission mode of the largest loops
present. The largest loops are those created at the
present time t0 and have length ℓ0 = frαdH(t0), with
a corresponding low frequency cut-off f0 ∝ 1/αt0. The
redshifted frequencies of the GWs emitted by loops pre-
viously born will always be higher than f0 in both the
radiation- and matter-dominated eras. For example, in
the radiation era the frequency of the first emission mode
of a loop formed at time t1 redshifted to the present is

f1 ∝ t1/6eq /α(t1/21 t2/30 ) > f0, where teq ≈ 25, 000 yrs is the
time of radiation-matter equality. The same calculation

in the matter era gives f1 ∝ 1/α(t1/31 t2/30 ), which is also
greater than f0. To demonstrate the strength of this in-
equality, in the matter era, the GWs of the first emission

(RD)
(MD)

Sanidas et al 2012

Example of GW emission from Loops

Cosmic Strings Network: Loop configurations
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FIG. 4: Plots of normalized gravitational wave energy den-
sity per logarithmic frequency interval, Ωgwh

2, due to cosmic
string networks with different tensions but the same fiducial
values of α, n∗, q and p. The thick blue lines are for networks
in the large loop regime and the thin red lines are from net-
works in small loop regime. The dashed black line signifies
the network for which α = ΓGµ/c2. The analytic approxima-
tions of the peak frequency are also shown: the approximation
found in CA92 (red long dashed curve) and our improved ap-
proximation (short dashed green curve).

different behavior in the large and small loops regimes
and indeed this can be seen in Fig. 4. Moreover, even in
the large loop regime where it seems to be in reasonable
agreement, the more we decrease the string tension the
worse the approximation becomes.
We have managed to construct a better approximate

formula for fpeak, where we do not make any assumption
about the birth time of the loop population responsible
for the peak emission. Instead, we created a general,
approximate formula and we determine when these loops
were formed by comparing the analytic results with those
of our computations.
The peak frequency must originate from the redshifted

emission in the n = 1 mode of this population, the lowest
frequency it ever emitted. Using Eq. (26) for the birth
time of loops we introduce the concept of loop genera-
tions, g. We will refer to loops which die right now, and
therefore, were born at time t1 = tb(t0), as generation
g = 1 loops. The loops of generation g = 2 are those
which died when the loops of g = 1 were born and have
a birth time t2 = tb(t1). In the same way, the loops of
generation g are those which die when the loops of gen-
eration g− 1 were born. From Eq. (26) we find the birth
time tg of generation g loops to be

tg =

(

1 +
3frαc2

ΓGµ

)−g

t0 . (27)

The lowest GW frequency (n = 1) emitted by loops of
generation g in the matter era is

fg,em =
2

3frαtg
=

2

3frαt0

(

1 +
3frαc2

ΓGµ

)g

, (28)
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FIG. 5: Ωgwh2 for cosmic string networks with different values
of α and the fiducial values of Gµ/c2, n∗, q and p. With thick
blue lines we plot the networks in the regime of large loops and
with thin red lines the networks in the regime of small loops.
With dashed line we plot the network with α = ΓGµ/c2 which
signifies the critical point after which we have no amplitude
decrease.

and when we redshift it to the present day, its observed
frequency is

fg =
a(tg)

a(t0)

2

3frαtg
=

2

3frαt0

(

1 +
3frαc2

ΓGµ

)g/3

. (29)

Eq. (29) is the general approximation for the peak fre-
quency, without making any assumptions about which
generation’s loops created it. Using the results of our
computations, we found out that the best approximation
to the peak frequency is given by

fpeak =
2

3frαt0

(

2 +
3frαc2

ΓGµ

)10/9

, (30)

which is plotted with a short dashed green line in Fig. 4.
This means that the peak region is due to loops of gen-
eration g ∼ 10/3, i.e. of loops born just before the third
generation loops. We have changed the numerical factor
in the parenthesis of Eqs. (29), (30) from 1 to 2, so to
achieve a perfect fit. In any case, this is a minor cor-
rection (less than 3%) which only affects networks with
ΓGµ/c2 > α.

2. Varying α

The effects of varying α in the large/small loop re-
gions are the inverse of those seen when varying Gµ/c2.
In Fig. 5 we present the GW spectra for cosmic string
networks with the fiducial values of Gµ/c2, n∗, q and p
for various values of α.
In the large loop regime (blue thick lines), as α de-

creases the most prominent feature is a decrease of the
amplitude of the overall spectrum. This decrease is

↵
loop
size

(relative to  
horizon)

Cosmic Strings Network: Loop configurations
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eLISA configurations: Performance

Results for 6 links, SNR=20

A1M2
Conservative limit: Gµ/c2 < 4.4× 10−10

Large loops: Gµ/c2 < 1.5× 10−16

A2M2
Conservative limit: Gµ/c2 < 1.1× 10−10

Large loops: Gµ/c2 < 2.1× 10−17

A2M5
Conservative limit: Gµ/c2 < 7.0× 10−11

Large loops: Gµ/c2 < 1.3× 10−17

A5M5
Conservative limit: Gµ/c2 < 1.4× 10−11

Large loops: Gµ/c2 < 4.4× 10−18

Improvement (on conservative upper limits):

A1→A2: ×3.8− 4.8
A2→A5: ×4.6− 5
M2→M5: ×1.6

DESY GW and Cosmology workshop / 3rd eLISA Cosmology WG meeting, DESY, Hamburg 21/22

LISA Prospects

! v . 1010GeV

(From Sanidas et al, LISA GW cosmology 3rd encounter)

Cosmic Strings Network: Loop configurations
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SUMMARY

1) GWs from Inflation

2) GWs from Preheating

3) GWs from Phase Transitions

4) GWs from Cosmic Defects 

   Early 
Universe
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THANKS 4 YOUR ATTENTION !

Review on Cosmological 
Gravitational Wave Backgrounds

Caprini & Figueroa
arXiv:1801.04268
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Cosmology and Particle Physics interplay!  

Connections with baryon asymmetry & dark matter 

LISA —> new probe of BSM physics! 

(complementary to particle colliders)
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