DSU18 LAPTh, Annecy 29 June, 2018

Primordial Black holes and gravitational waves

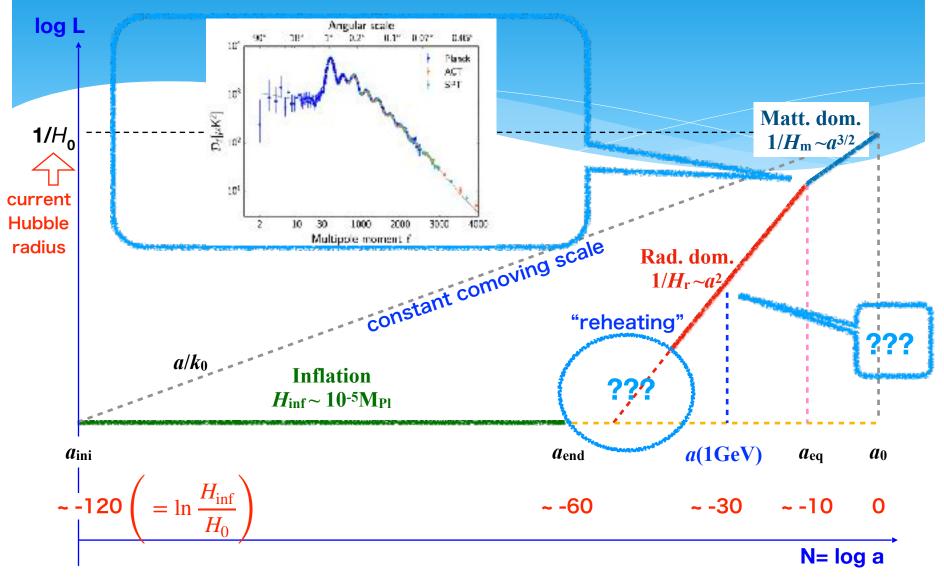
MATHEMATICS OF THE UNIVERSE

Kavli IPMU, University of Tokyo YITP, Kyoto University University LeCosPA, National Taiwan University

AVLI

Inflation & PBH formation

cosmic spacetime diagram



curvature perturbation from inflation

• inflaton (~massless) vacuum fluctuations (=Gaussian)

$$\left|\left\langle \phi \left| \vec{k} \right\rangle \right|^2 = \left| \varphi_k \right|^2, \quad \varphi_k \sim \frac{1}{\sqrt{2w_k}} e^{-iw_k t}; \quad w_k = \frac{k}{a} \gg H$$

rapid expansion renders oscillations frozen at k/a < H(fluctuations become "classical" on superhorizon scales)

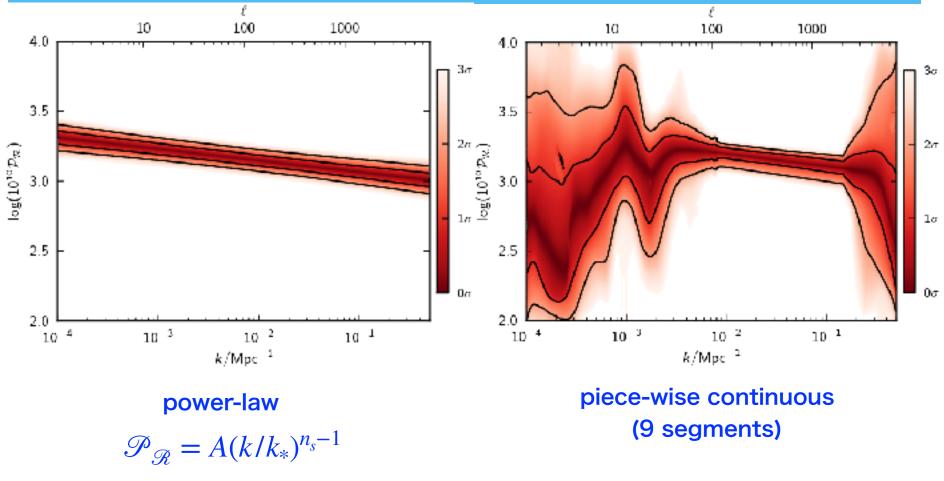
$$\varphi_k \sim \frac{H}{\sqrt{2k^3}}; \quad \frac{k}{a} \ll H \quad \Rightarrow \quad \left\langle \delta \varphi_k^2 \right\rangle = \left(\frac{H}{2\pi}\right)_{k/a \sim H}^2 \cdots \text{ almost scale-invariant}$$
for $\epsilon = -\frac{\dot{H}}{H^2} \ll 1$

curvature perturbation on comoving slices

 $\Re_c = -\frac{H}{\dot{\phi}}\delta\phi$... conserved on superhorizon scale for single-field slow-roll models (almost scale-invariant if $\dot{\phi}$ is also slowly varying)

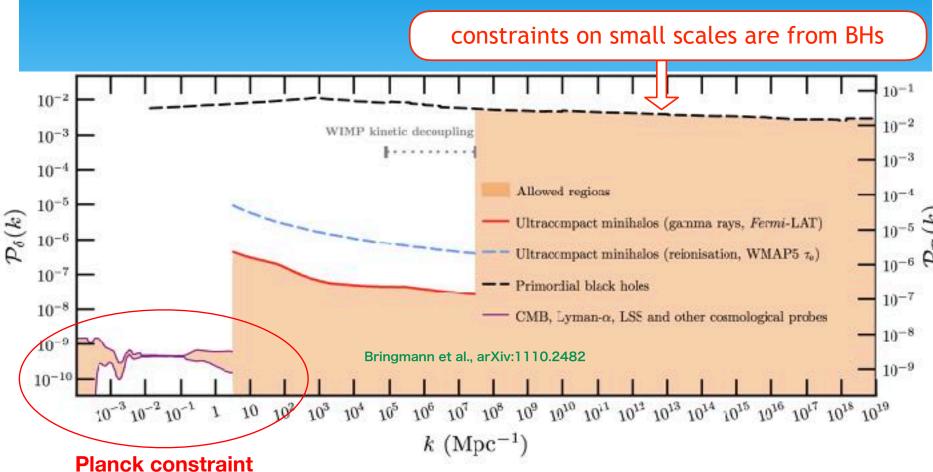
observational constraint on inflation

Planck 2015 results XX



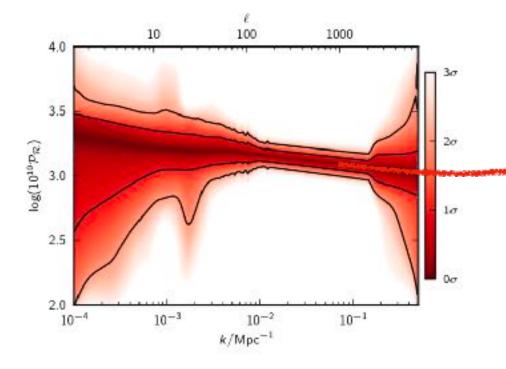
 $n_{\rm s} \approx 0.968 \cdots$ almost scale-invariant

observational constraint on inflation



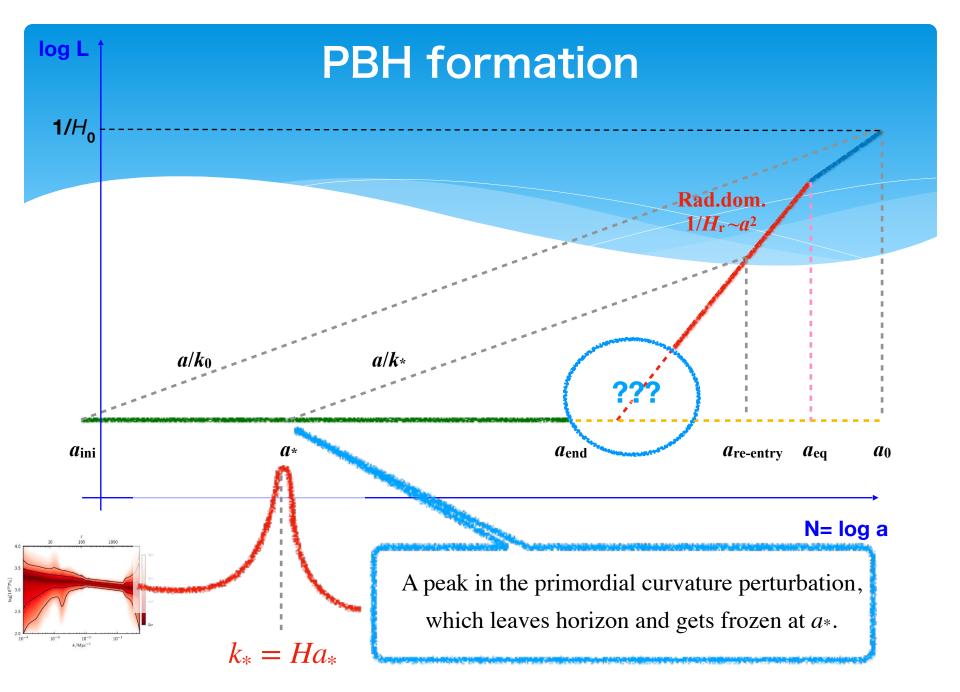
There are some constraints on small scales, but quite weak.

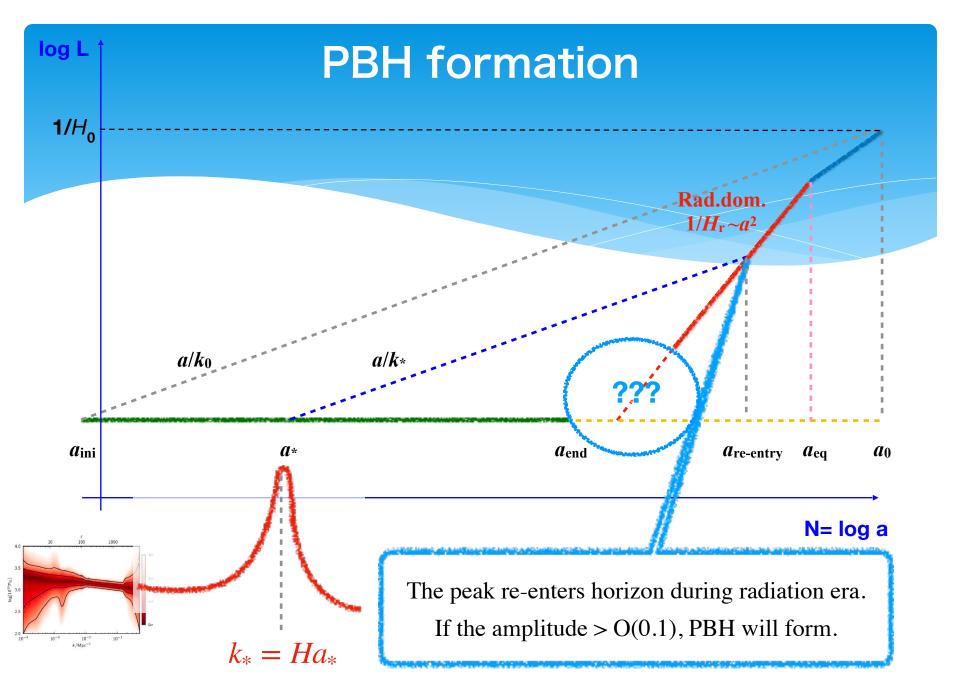
Bayesian reconstruction of the primordial power spectrum with *I* < 2300. (Planck 2015)

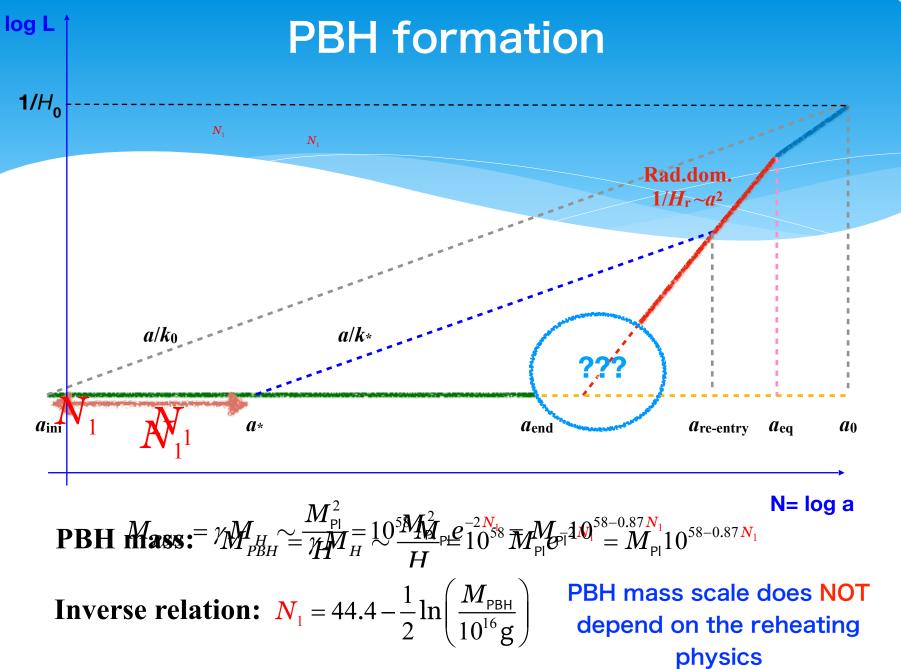


No resolution to say anything precise about higher *k*.

?







Primordial Black Holes

What are Primordial BHs?

PBH = BH formed before recombination epoch (ie at z >>1000) conventionally during radiation-dominated era

> Hubble size region with $\delta \rho / \rho = O(1)$ collapses to form BH Carr (1975),

Such a large perturbation may be produced by inflation Carr & Lidsey (1991), ...

> PBHs may dominate Dark Matter.

Ivanov, Naselsky & Novikov (1994), ...

> Supermassive BHs $(M \gtrsim 10^6 M_{\odot})$ may originate from PBHs.

Curvature perturbation to PBH

> gradient expansion/separate universe approach

 $6H^{2}(t,x) + R^{(3)}(t,x) = 16\pi G\rho(t,x) + \cdots$ Hamiltonian constraint (Friedmann eq.)

 $> If R^{(3)} \sim H^2 \quad (\Leftrightarrow \delta \rho_c /, \rho t - q) llapses to form BH$ Young, Byrnes & MS '14 $M_{PBH} \sim \rho H^{-3} \sim 10^5 M_{\odot} \left(\frac{t}{1s}\right) \sim 20 M_{\odot} \left(\frac{k}{1 \text{ pc}^{-1}}\right)^{-2}$

>Spins of PBHs are expected to be very small

examples

hybrid-type inflation Garcia-Bellido, Linde & Wands '96, ...

 \mathcal{R}_{C} grows near the saddle point non-Gauss may become large Abolhasani, Firouzjahi & MS '11,...

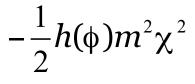
Pattison et al. 1707.00537

P(k) inflationary potential $n_s - 1 \sim 2/|i|$ nrst dha Total nflaton Curvaton second phase ----- Tensor k/ko 104 108 1012

non-minimal curvaton

Domenech & MS '16

$$L = -\frac{1}{2} f(\phi) g^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi$$



Accretion to PBH?

Bondi accretion

$$\dot{M} = \lambda \cdot 4\pi r_B^2 \rho c_s$$
: $c_s = \sqrt{P / \rho} \left(= 1 / \sqrt{3} \right)$, $r_B = \frac{GM}{c_s^2}$, $\lambda \leq O(1)$

accretion rate/Hubble time

$$\stackrel{i}{\longrightarrow} \frac{\dot{M}}{HM} = \lambda \frac{3}{4} \frac{H}{H_{M}}: \quad M = \frac{4\pi\rho_{M}}{3} \left(c_{s}H_{M}^{-1}\right)^{3} = \frac{c_{s}^{3}}{2GH_{M}}, \quad \frac{H}{H_{M}} = \left(\frac{a_{M}}{a}\right)^{2}$$

$$\stackrel{i}{\longrightarrow} \text{horizon size at the time of PBH}$$

$$\stackrel{i}{\longrightarrow} \int_{a_{M}}^{\infty} \frac{\dot{M}}{H} \frac{da}{a} \simeq \lambda \frac{3}{8} \frac{\text{formation}}{M} \quad \text{PBH mass can increase by a factor of 1.5 at most}$$

Mass increase can be ignored, given other ambiguities

Effect on CMB?

accretion can lead to radiative emission

• Eddington luminosity: max luminosity from accretion $L_{edd} = \frac{4\pi GMm_pc}{\sigma_T};$ $m_p = proton mass$ $\sigma_T = Thomson cross section$

 $L = \varepsilon L_{edd}; \varepsilon \le 1$... luminosity from PBH

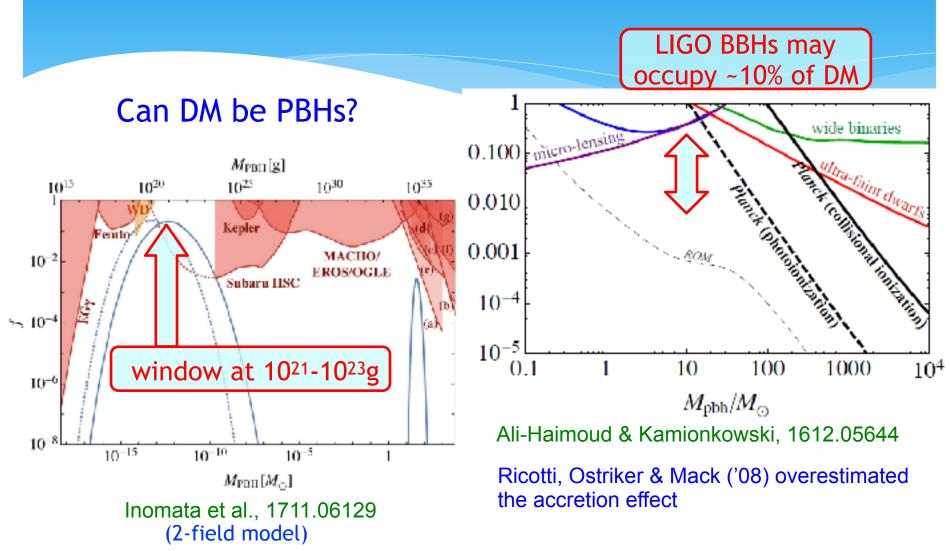
energy output/Hubble time

$$\frac{\dot{\rho}_{R}}{H\rho_{R}} = \varepsilon \frac{n_{PBH}L_{edd}}{H\rho_{R}} = \varepsilon \frac{\rho_{PBH}}{\rho_{R}} \frac{4\pi Gm_{p}}{\sigma_{T}H} = \varepsilon f_{PBH} \left(\frac{a}{a_{eq}}\right)^{3} \frac{4\pi Gm_{p}}{\sigma_{T}H_{eq}}$$
$$\simeq 10^{-4}\varepsilon f_{PBH} \left(\frac{a}{a_{eq}}\right)^{3}; \quad f_{PBH} = \frac{\Omega_{PBH}}{\Omega_{CDM}}$$

small, but may not be entirely negligible...

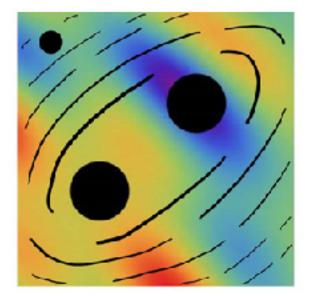
2

Constraints on PBHs

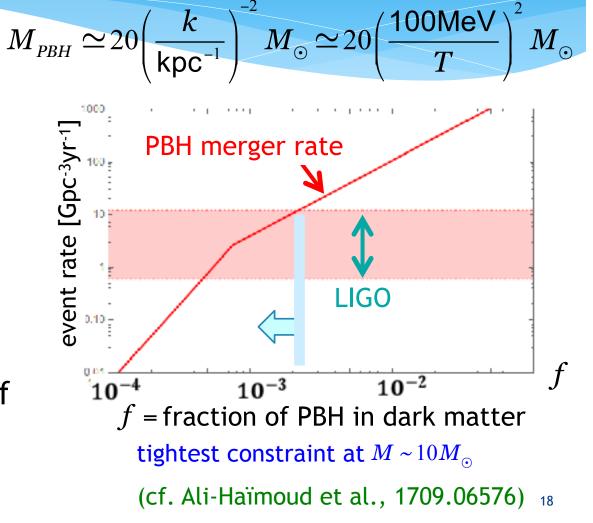


LIGO BHs = PBHs?

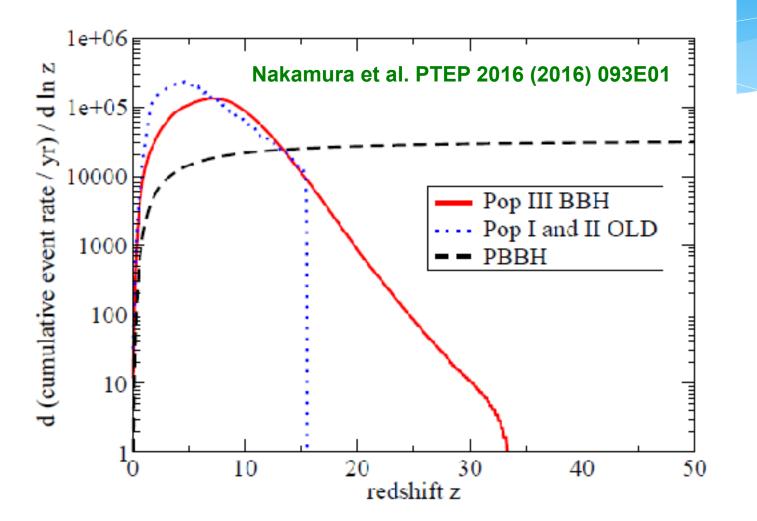
MS, Suyama, Tanaka & Yokoyama '16



3-body interaction leads to formation of BH binaries



testing PBH hypothesis



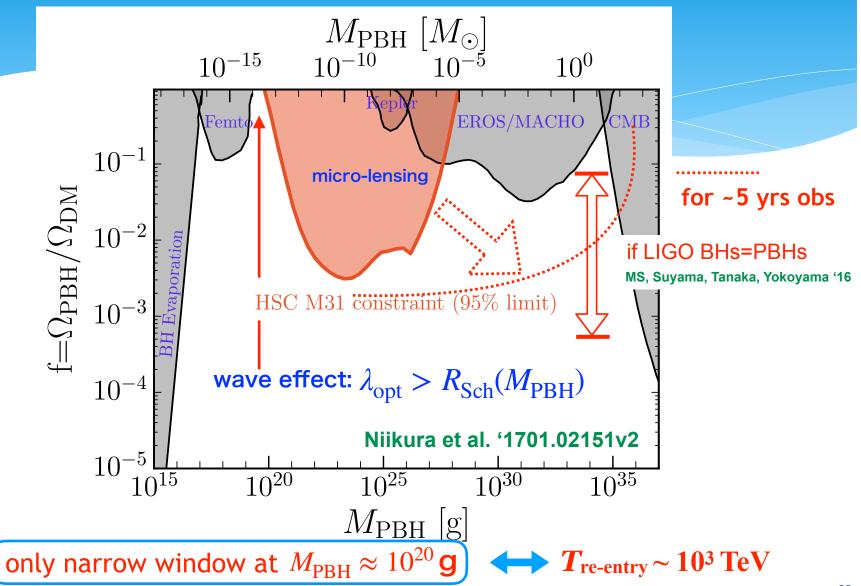
testing PBH hypothesis 2

Kocsis, Suyama, Tanaka, Yokoyama, arXiv:1709.09007

BBH Merger Rate at time t: mass function $\mathcal{R}(m_1, m_2, t) = \frac{n_{\rm BH}}{2} f(m_1) f(m_2) P_{\rm intr}(m_1, m_2, t)$ intrinsic probability $P_{in}(m_1 m_2 t) \propto g(m_1)g(m_2)m_t^{\alpha}: m_t = m_1 + m_2$ $\iff \alpha(m_1, m_2, t) \equiv -m_1^2 \frac{\partial^2}{\partial m_1 \partial m_2} \ln \mathcal{R}(m_1, m_2, t)$ • PBH binary scenario $\frac{36}{37} < \alpha < \frac{22}{21}$ clearly • Dynamical formation in distinguishable! <mark>α</mark> ≈ 4 dense stellar systems O'Leary et al (2016)

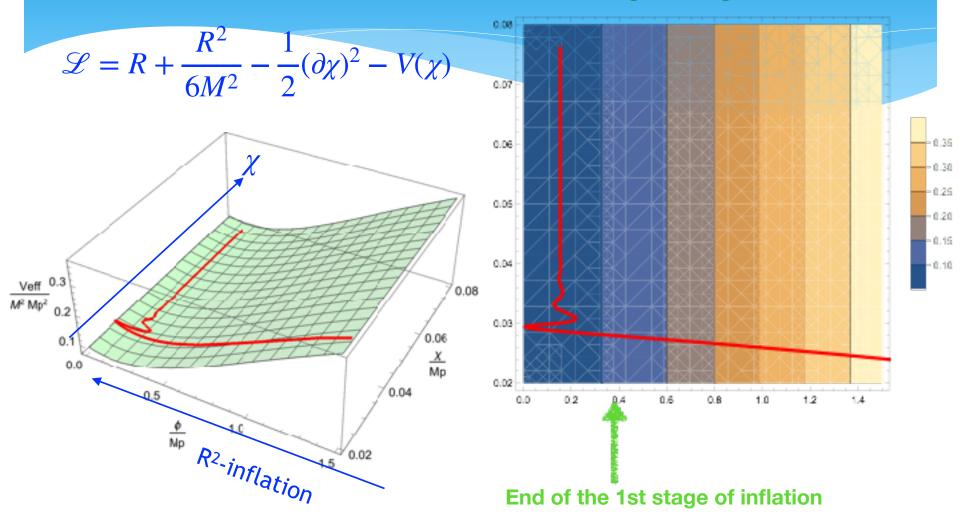
PBHs = CDM?

PBH constraints:revised



monocromatic PBH production

Zhang, Hwang, Pi & MS '18



sharp peak in $P(k) \rightarrow spike$ in f $\begin{array}{c} M_{\rm PBH} \ [M_{\odot}] \\ 10^{-10} \ 10^{-5} \end{array}$ 10^{-10} 10^{-15} 10^{0} spike - $\left(-\frac{1}{\mathscr{P}(k)}\right)$ EROS/MACHO CMB $f \propto \exp \left[\int f \left(f - f \right) \right]$ 10^{-1} $\operatorname{MO}_{\mathrm{HBH}}$ 10⁻³ sharp peak HSC M31 constraint (95% limit) 10^{-4} 10^{4} 24 n² Mp1⁴ P₇/V₀ 10^{-5} 10^{20} 10^{25} 10^{30} $10^{\overline{35}}$ $M_{\rm PBH}$ [g] $\mu = 8$ and the second second µ=5 $\mu^2 \approx \frac{H_{\rm 2nd}^2}{H_{\rm c}^2}$ µ=4 µ=3 0.01 10 0.010.10 100 24 k/k⊭

2nd order GW constraints on PBH

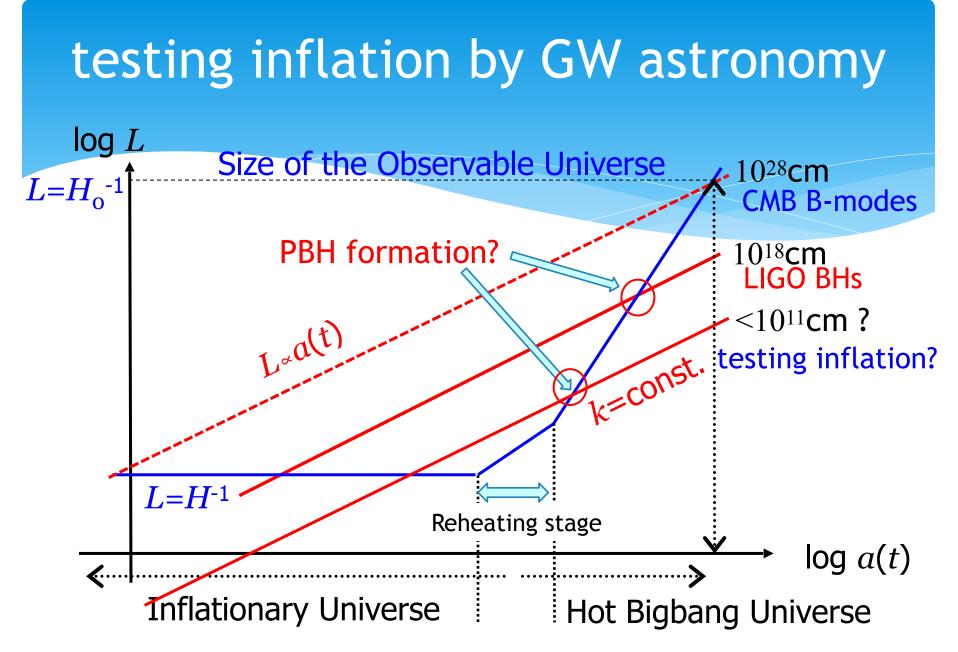
Saito & Yokoyama '09, Alabidi et al. '12, ...

• Non-negligible PBH formation means $\mathcal{P}_{s}(k) \sim 10^{-2.5} - 10^{-2}$

$$\ddot{h}_{ij} + 3H\dot{h}_{ij} - a^{-2}\Delta h_{ij} = S_{ij}$$

$$S_{ij} \simeq \frac{1}{a^2} \partial_i \mathcal{R}_c \partial_j \mathcal{R}_c + \cdots \sim \frac{k^2}{a^2} \mathcal{P}_s(k)$$

 $\log_{10}(M_{\text{PBH}}/1\text{g})$ GWs are produced with 35 30 20 15 0 amplitude: initial LIGO -1 advanced LIGO LCGT $h_{ij} \sim rac{k^2}{\sigma^2 H^2} \mathcal{P}_{S}(k) \sim \mathcal{P}_{S}(k)$ -6 AGIS (ground) pulsar -2 -8 $og_{10} \left(\Omega_{GW} h^2 \right)$ -3 $\log_{10}(\mathcal{A}^2)$ **PPTA** -10 LISA 2nd order GWs -12 DECIGO/BBO $(0.1, 10^{20} \text{g})$ -5 would dominate -14 ultimate-DECIGO -6 $(\Omega_{PBH}h^2, M_{PBH}) = (10^{-5}, 100 M_{\odot})$ at f>10⁻¹⁰ Hz AGIS (space) -7 -18 IMBH DM $(k>10^4 Mpc^{-1})$ -10 -8 -6 0 2 $\log_{10}(f/Hz)$



Summary

Inflation has become the standard model of the Universe.
 further tests are needed to confirm inflation.

Inflation can produce large curvature perturbation on small scales.
 PBHs are virtually the only probe on very small scales.

LIGO BHs may be primordial.

advanced GW detectors(+G lensing) will prove/disprove the scenario.

CDM can be dominated by PBHs of M~10²⁰g.
 secondary GWs may be detected by future GW detectors.

* Multi-frequency GW astronomy/astrophysics is arriving!

GWs will be an essential tool for proving/ falsifying PBH scenarios