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curvature perturbation from inflation
• inflaton (~massless) vacuum fluctuations (=Gaussian)
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rapid expansion renders oscillations frozen at k/a < H 
(fluctuations become “classical” on superhorizon scales)
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• curvature perturbation on comoving slices

··· conserved on superhorizon scale   
    for single-field slow-roll models

··· almost scale-invariant
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observational constraint on inflation
Planck 2015 results XX

power-law piece-wise continuous 
(9 segments)$ℛ = A(k /k*)ns−1

ns ≈ 0.968 ⋯ almost scale-invariant
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Planck constraint

There are some constraints on small scales, but quite weak.

Bringmann et al., arXiv:1110.2482

constraints on small scales are from BHs

observational constraint on inflation
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No resolution to say 
anything precise 
about higher k.

?

Bayesian reconstruction of the 
primordial power spectrum 

with l < 2300. (Planck 2015)
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N= log a
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The peak re-enters horizon during radiation era.
If the amplitude > O(0.1), PBH will form. 
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Primordial Black Holes
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What are Primordial BHs?

➢PBH = BH formed before recombination epoch (ie at z >>1000)

➢Hubble size region with δρ/ρ=O(1) collapses to form BH

➢Such a large perturbation may be produced by inflation

➢PBHs may dominate Dark Matter.

Carr (1975), ….

Carr & Lidsey (1991), …

Ivanov, Naselsky & Novikov (1994), ...

conventionally during radiation-dominated era
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➢Supermassive BHs                        may originate from PBHs.(M ≳ 106M⊙)
➢….
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Curvature perturbation to PBH

 

➢If                                          , it collapses to form BH 

 

➢Spins of PBHs are expected to be very small

Hamiltonian constraint 
(Friedmann eq.)

( )3 2 1  ( ) ~~ cR H δρ ρ⇔ /
Young, Byrnes & MS ‘14

3 2( ) ~R H3 0( )R !

2 36 16( )( , ) ( , ) ( , )H t x R t x G t xπ ρ+ = + ⋅ ⋅ ⋅

➢ gradient expansion/separate universe approach

R(3) ≈ − 4
a2 ∇2ℛc ≈ 8πG

3 δρc
δρc

ρ
≈ ℛc

k2

a2 = H2at



examples
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hybrid-type inflation

CR     grows near the saddle point 
non-Gauss may become large

non-minimal curvaton
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Garcia-Bellido, Linde & Wands ‘96, … Domenech & MS ‘16

Abolhasani, Firouzjahi & MS ’11,..

Pattison et al. 1707.00537
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Accretion to PBH?
➢ Bondi accretion
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" PBH mass can increase by a factor of 1.5 at 
most

Mass increase can be ignored, given other ambiguities

• accretion rate/Hubble time
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Effect on CMB?

• Eddington luminosity: max luminosity from 
accretion 4
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small, but may not be entirely negligible…

accretion can lead to radiative emission

• energy output/Hubble time

luminosity from PBH…



Constraints on PBHs 

Can DM be PBHs?

Ali-Haimoud & Kamionkowski, 1612.05644
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Ricotti, Ostriker & Mack (’08) overestimated 
the accretion effect

 window at 1021-1023g

Inomata et al., 1711.06129

LIGO BBHs may 
occupy ~10% of DM

(2-field model)



LIGO BHs = PBHs?
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MS, Suyama, Tanaka & Yokoyama ‘16

fraction of PBH in dark matter
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testing PBH hypothesis
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Nakamura et al. PTEP 2016 (2016) 093E01 
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testing PBH hypothesis 2
Kocsis, Suyama, Tanaka, Yokoyama, arXiv:1709.09007

BBH Merger Rate  at time t:

1 2 1 2 1 2i n t r    , ,( ) ( ) ( ) :t tP m m t g m g m m m m mα∝ = +

36 22
37 21

α< <• PBH binary scenario

• Dynamical formation in 
dense stellar systems 4α ≈

O'Leary et al (2016)

mass function

intrinsic probability

clearly 
distinguishable!



PBHs = CDM?
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PBH constraints:revised
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Figure 5 The red-color shaded region show the 95% C.L. upper bound on the PBH mass fraction to DM
in the halo regions of MW and M31, derived from our microlensing search of M31 stars based on the
“one-night” HSC/Subaru data. To derive this constraint, we took into account the effect of finite source
size assuming that all source stars in M31 have a solar radius (see text for details). The effect weakens
the upper bounds at M

<⇠ 10

�7
M�. Our constraint can be compared with other observational constraints

as shown by the gray shaded regions: extragalactic �-rays from PBH evaporation [32], femtolensing of
�-ray burst (“Femto”) [33], microlensing search of stars from the satellite 2-years Kepler data (“Kepler”)
[18], MACHO/EROS/OGLE microlensing of stars (“EROS/MACHO”) [15], and the accretion effects on
the CMB observables (“CMB”) [34], updated from the earlier estimate [35].

8

Niikura et al. ‘1701.02151v2

micro-lensing

λopt > RSch(MPBH)wave effect:

MPBH ≈ 1020g Tre-entry ~ 103 TeV

if LIGO BHs=PBHs
MS, Suyama, Tanaka, Yokoyama ‘16

only narrow window at

for ~5 yrs obs 
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monocromatic PBH production

End of the 1st stage of inflation

ℒ = R + R2

6M2 − 1
2 (∂χ)2 − V(χ)

χ

R2-inflation

Zhang, Hwang, Pi & MS ‘18



f ≈ 0.73
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Figure 5 The red-color shaded region show the 95% C.L. upper bound on the PBH mass fraction to DM
in the halo regions of MW and M31, derived from our microlensing search of M31 stars based on the
“one-night” HSC/Subaru data. To derive this constraint, we took into account the effect of finite source
size assuming that all source stars in M31 have a solar radius (see text for details). The effect weakens
the upper bounds at M

<⇠ 10

�7
M�. Our constraint can be compared with other observational constraints

as shown by the gray shaded regions: extragalactic �-rays from PBH evaporation [32], femtolensing of
�-ray burst (“Femto”) [33], microlensing search of stars from the satellite 2-years Kepler data (“Kepler”)
[18], MACHO/EROS/OGLE microlensing of stars (“EROS/MACHO”) [15], and the accretion effects on
the CMB observables (“CMB”) [34], updated from the earlier estimate [35].
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μ = 8

μ = 8

sharp peak

sharp peak in P(k)          spike in f

spike
f ∝ exp [− 1

$(k) ]

μ2 ≈ H2
2nd

H2
1st
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Figure 5 The red-color shaded region show the 95% C.L. upper bound on the PBH mass fraction to DM
in the halo regions of MW and M31, derived from our microlensing search of M31 stars based on the
“one-night” HSC/Subaru data. To derive this constraint, we took into account the effect of finite source
size assuming that all source stars in M31 have a solar radius (see text for details). The effect weakens
the upper bounds at M
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as shown by the gray shaded regions: extragalactic �-rays from PBH evaporation [32], femtolensing of
�-ray burst (“Femto”) [33], microlensing search of stars from the satellite 2-years Kepler data (“Kepler”)
[18], MACHO/EROS/OGLE microlensing of stars (“EROS/MACHO”) [15], and the accretion effects on
the CMB observables (“CMB”) [34], updated from the earlier estimate [35].
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2nd order GW constraints on PBH

13

Saito & Yokoyama ’09, Alabidi et al. ’12, …

• Non-negligible PBH formation means 2 5 210 10.( )S k
- --P ∼

23ij ij ij ijh Hh a h S-+ - D =!! !
2

2 2

1 ( )ij i c j c S
kS k

a a
¶ ¶ + × × ×R R P! ∼

• GWs are produced with 
amplitude:

2 510 100( , ) ( , )PBH PBHh M M-W = ⊙

200 110 g( . , )

2

2 2 ( ) ( )ij S S
kh k k
a H

P P∼ ∼

2nd order GWs 
would dominate 

at f>10-10 Hz
(k>104 Mpc-1)
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Inflationary Universe Hot Bigbang Universe

testing inflation by GW astronomy

k=const.

L=H0-1
1028cm

<1011cm ?
testing inflation?

Reheating stage

1018cm
LIGO BHs

CMB B-modes
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PBH formation?



∗ Inflation has become the standard model of the Universe. 
       further tests are needed to confirm inflation. 

∗ Inflation can produce large curvature perturbation on small scales.  
       PBHs are virtually the only probe on very small scales. 

∗ LIGO BHs may be primordial. 
       advanced GW detectors(+G lensing) will prove/disprove the scenario. 

∗ CDM can be dominated by PBHs of M~1020g. 
       secondary GWs may be detected by future GW detectors. 

∗ Multi-frequency GW astronomy/astrophysics is arriving!

Summary

GWs will be an essential tool for proving/
falsifying PBH scenarios
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