

Implications of LIGO/Virgo gravitational wave detections

Loïc Rolland

for the Virgo Collaboration and the LIGO Scientific Collaboration

The gravitational wave spectrum

Detecting gravitational waves with ground-based interferometers

Masses in motion Space-time deformation Gravitational wave

$$\delta L_x(t) = \frac{1}{2} h(t) L_0$$

h(t): amplitude of the GW (*h* has no dimension)

For GW170814, first Virgo detected event: $h = 5x10^{-22} \rightarrow \delta L = \pm 0.8 \times 10^{-18} m$

An international network of detectors

- ✓ Rejection of spurious local noise (coincidence) \rightarrow better sensitivity
- ✓ Source localisation (triangulation)
- ✓ Wave polarization

 \rightarrow astronomy

L. Rolland - 29 June 2018 - LAPth

Comparing the detected GW signals

Shape of the GW signal \rightarrow information on the source type and parameters

Binary compact objects masses

L. Rolland (LAPP) - 29 June 2018 - DSU 2018

Event sky localisations

Implications of binary black hole (BBH) detections

Phenomenological tests of General Relativity

Look for phase deviations from GR at different post-Newtonian orders

$$\tilde{h}(f) = \tilde{A}(f; \overrightarrow{\theta_{GR}}) \, \mathrm{e}^{\mathrm{i}[\Psi(f; \overrightarrow{\theta_{GR}}) + \delta \Phi(f; \overrightarrow{\theta_{GR}}, X_{modGR})]}$$

 \rightarrow Bounds combining GW150914, GW151226 and GW170104

 \rightarrow No evidence for deviation from GR in waveform

L. Rolland - 29 June 2018 - LAPth

First tests of GW polarization

General Relativity

 \rightarrow 2 polarization modes for GW

Generic metric theories of gravity

 \rightarrow 6 modes allowed

New tests with GW170814

Interferometer sensitive to GW projected onto the detector local + mode Can study GW polarization modes using multiple detectors with different orientations

→ pure + and x modes favoured with respect to pure scalar of vector polarizations (polarization mixtures no tested yet)

Test of modified dispersion relation

$$E^2 = p^2 c^2 + A p^{\alpha} c^{\alpha} \quad \alpha \ge 0$$

E, *p*: energy and momentum of the gravitational radiation *A*: amplitude of the dispersion

→ dephasing of GW relative to the phase evolution in GR, with modified group velocity of GW: $\frac{v_g}{c} = 1 + \frac{(\alpha - 1)}{2} A E^{\alpha - 2}$

In brief: physics with binary black holes

L. Rolland - 29 June 2018 - LAPth

The first multi-messenger detection of a binary neutron star (BNS) merger: GW170817

- Electro-magnetic follow-up
- GRB association
- Kilonova
- Measurement of the Hubble constant
- Searching for neutrinos

GW170817 source localisation

This is the closest and most precisely localized gravitational-wave signal!

- → triggered follow-up observations
- \rightarrow and identification of NGC4993 as host galaxy

Abbott et al., The Astrophysical Journal Letters, 848:L12 (2017)

16.4d

Radio

Association with a gamma-ray burst

GRB170817A detected by Fermi and INTEGRAL

- γ -ray emission started ~1.7 s after merger time
- 3 times more likely to be a short GRB than a long GRB

GRB sky localisation (90% CL)

Time and localisation association chance probability: 5.0 x 10^-8 \rightarrow association validated within 5.3 σ

→ First direct evidence that binary neutron star mergers are progenitors of (at least some) short gamma-ray bursts!

GW/GRB association and speed of gravity

Implications on gravitation models

Viable after GW170817

Non-viable after GW170817

From Ezquiaga & Zumalacarregui, arxiv 1710.05901 + 1710.06394, 1710.05893, 1710.05877....

Kilonova and nucleosynthesis of heavy nuclei

What is the merger remnant?

Estimation of intrinsic parameters:		Spin limit consistent with observed population	spin limit
Bayesian fit of the waveform		low-spin ($ \chi < 0.05$)	high-spin $(\chi < 0.89)$
	$M_{chirp}(M_{\odot})$	$1.188\substack{+0.004\\-0.002}$	
Mass parameters	$m_1 (M_\odot)$	1.36 - 1.60	1.36 - 2.26
	$m_2~(M_{\odot})$	1.17 - 1.36	0.86 - 1.36
	$m_{tot}~(M_{\odot})$	$2.74^{+0.04}_{-0.01}$	$2.82^{+0.47}_{-0.09}$

Masses of the initial objects

Degeneracy between mass ratio and aligned spin components

 \rightarrow masses consistent with two neutron stars

Abbott et al., PRL, 119, 161101 (2017)

About the remnant NS NS Mt > (1.3-1.6)Mmax M1 < 1.2M long-lived SMNS Prompt Collapse HMNS or short-lived SMNS Interface Dynamical M ~ 10⁻² M_☉ v ~ 0.2-0.3 c nterface Dynamical M ~ 10⁻² M_o, y ~ o live Disk Winds (long-lived NS) M ~ 10⁻²-10⁻¹ M₂, y ~ c Blue Disk Winds (long-lived NS) M ~ 10²-10¹ M_m v ~ 0.1 c (Mostly) Red Disk Winds M ~ 10⁻²-10⁻² M., v ~ 0.1 Tidal Tail Dynamical Tidal Tail Tidal Tail Dynamical M ~ 10⁻⁴-10⁻² M_®))•{ Dynamical M < 10⁻² M_o v ~ c - Banker ~ 10⁻⁴-10⁻² M V~0.2-0.3 c V~0.2-0.3 c Red Disk Winds (short-lived NS M~10⁻²-10⁻¹ M_{*}, v~0.1 c From Margalit & Metzger, arxiv 1710.05938

Imprint in both GW and EM signals, but lack of sensitivity and difficult to interpret

 \rightarrow unknown nature of the remnant:

- black hole
- hypermassive neutron star
- long-lived supramassive neutron star

What is the equation of state of neutron stars?

Estimation of intrinsic parameters:		Spin limit consistent with observed population	Theoretical spin limit	
Bayesian fit of the waveform		low-spin ($ \chi < 0.05$)	high-spin $(\chi < 0.89)$	
	$M_{chirp}(M_{\odot})$	$1.188\substack{+0.004\\-0.002}$		
Mass parameters	$m_1 \ (M_{\odot})$	1.36–1.60	1.36 - 2.26	
	$m_2 (M_{\odot})$	1.17 - 1.36	0.86 - 1.36	
	$m_{tot} (M_{\odot})$	$2.74^{+0.04}_{-0.01}$	$2.82^{+0.47}_{-0.09}$	
Dimensionless tidal deformability $\Lambda(1.4 M_{\odot})$		< 800	< 1400	
Tidal field of the companions Deformation of the neutron stars		Imprint on the shape of the gravitational wave, from f>600 Hz (→ parameter Λ)		
		 Collision happens earlier than without tidal effect Modified final spin 		
		→ disfavour equa stars that predi radi	ations of state of neutron ct less compact stars: us < 15 km	

New measurement of the Hubble constant

Abbot et al., Nature, vol. 551, 7678 (2017)

Search for high-energy neutrinos from GW170817

 \rightarrow no significant neutrino counterpart within 500 s around GW170817, nor in the subsequent 14 days

Consistent with typical GRB observed off-axis, or with low luminosity GRB

0° EE optimisti prompt 10^{-3} 10^{3} Auger 10^{2} E^2F [GeV cm⁻²] ANTARES 10^{1} IceCube Fang & 10^{0} Metzger 30 days 10^{-1} Fang & 10^{-2} Metzger 3 days 14 day time-window 10^{-3} 1010 10 10^{6} 107 10^{8} 109 10^{3} 10^{4} 10^{5} E/GeV

Will continue rapid search for neutrino candidates from GW sources \rightarrow could improve fast localisation of GW events down to ~1 deg²

A long non-exhaustive list of new data and tests

Towards observation run O3 in 2019

LIGO-Virgo commissioning/upgrade period before O3

Summary

