Boosted Dark Matter & Surface Detectors

D. Kim, K. Kong, JCP, S. Shin [arXiv: 1804.07302]

Surface v Detectors

Physics Motivation?

Surface v Detectors: SBN

Short-Baseline Neutrino (SBN) Program @ Fermilab

- ✓ Physics @ SBN: *v* oscillation, sterile *v*, etc.
- ✓ E spectrum & flavor of *v*'s produced by the Booster Neutrino Beam
- ✓ Development of the LAr-TPC technology for DUNE

Surface v Detectors: ProtoDUNE

✤ ProtoDUNE: a prototype of the Deep Underground Neutrino Experiment (DUNE)

@ CERN

Physics @ DUNE: neutrino, BSM, etc. \checkmark

<Originally>

- To test the long-term stability & operation \checkmark
- To calibrate beam & cosmic-ray responses \checkmark

Surface v Detectors: Status

SBN Program

ProtoDUNE

- ✓ MicroBooNE: on-going since July 2015 (BNB: operational since October 2015)
- ✓ **ICARUS**: planned to start of operation in **2019**
- ✓ **SBND**: planned to start of operation in 2019/2020
- ProtoDUNE: operation from September 2018 & now planned to take cosmic-origin data for new physics searches

Surface v Detectors

Other Physics Motivation?

Any physics potential with the SBN/ProtoDUNE detectors,

especially BSM physics?

Surface v Detectors

Other Physics Sics potent:

Any physics potent

JOUNE detectors,

. physics?

Surface v Detectors: Common Belief

- Huge amount of backgrounds (mainly) due to their location (almost on the ground)
 - → Signal events would get buried inside the huge cosmic backgrounds.

Surface v Detectors: Common Belief

- Huge amount of backgrounds (mainly) due to their location (almost on the ground)
 - → Signal events would get buried inside the huge cosmic backgrounds.
 - → Search for cosmic-origin new physics signal @ surface detectors is hopeless.

Surface v Detectors: Common Belief

- Huge amount of backgrounds (mainly) due to their location (almost on the ground)
 - → Signal events would get buried inside the huge cosmic backgrounds.
 - → Search for cosmic-origin new physics signal @ surface detectors is hopeless.
 - → Solution: Installing detectors deep under the ground!

Surface v Detectors: New Approach

- Signals leaving appreciable tracks: the source direction is inferred from the track.
 (due to good detector performance: positon/angular/energy resolution, etc.)
 - → Restricting to events coming through the Earth from the opposite side of the detector location. (Similar to up-going *v* searches @ SK, IceCube, NOvA, etc)
 - → Potential backgrounds in that direction are significantly suppressed while signals are intact. (→ will be discussed in detail, soon!)
- ★ A signal with many unique features (e.g. *i*BDM): Possible to reject cosmic background events sufficiently → See Doojin Kim's talk!

Two-component BDM Scenario

G. Belanger, **JCP** (2011)

Two-component BDM Scenario

G. Belanger, JCP (2011)

"Assisted Freeze-out" Mechanism

- $\checkmark \text{ Heavier relic } \chi_0 \text{: hard to detect it due to tiny} \\ \text{ coupling to SM}$
- ✓ Lighter relic χ_1 : hard to detect it due to small relic
 - $\rightarrow \chi_1$: Negligible, Non-relativistic relic

Two-component BDM Scenario

G. Belanger, **JCP** (2011)

[Agashe, Cui, Necib, Thaler (2014)]

Earth Shielding

- BG: Cosmic muons Signal: Boosted DM
- ✓ Background and signal events are coming from everywhere.
- ✓ Half of them travel through the Earth.
- ✓ Backgrounds cannot penetrate the Earth while signals can!

Earth Shielding

BG: Cosmic muons Signal: Boosted DM

- ✓ Background and signal events are coming from everywhere.
- ✓ Half of them travel through the Earth.
- ✓ Backgrounds cannot penetrate the Earth while signals can!

 Accept only events traveling through the Earth

(i.e., coming out of the bottom
surface) at the price of half
statistics (for a cumulatively
isotropic signal);
direction inferred from recoil
track

→ Essentially, no cosmicorigin BGs except Atm neutrino BG (cf. observation of upward-muons induced by muon neutrinos created by DM annihilation [NOvA Collaboration , in progress])

Muon Flux inside the Earth

- * N_{μ} at sea level is ~100 m⁻²s⁻¹sr⁻¹ = 3 × $10^9 \text{ m}^{-2} \text{yr}^{-1} \text{sr}^{-1}$. [Particle Data Group (2015)]
- *N*_µ at 20 km.w.e. ≈ 7 km below sea level is
 ~10⁻⁹ m⁻²s⁻¹sr⁻¹, i.e., suppressed by a factor of ~10¹¹.
 - → (Potential) muon-induced BG is negligible for muons incident at $\theta > \theta_{cr}$.

[Particle Data Group (2015)]

Flattened by neutrino-genic muons

Effective 1yr Data Collection

APA #2 χ_1 $\sim D_{f_{t}}$ 40 neutrino-induced *e*-like, $\mathcal{F}_{\chi_1} \sim \tilde{D}_{f'} 3 \times (10^1 - 10^6) \mathrm{cm}^{-2} \mathrm{yr}^{-1}$ single-track events/yr/kt D_{f} : effectively a certain fraction of day when the Earth Shielding effect can be utilized, with respect to the source core. (e.g. for Sun: effectively, half year $\rightarrow D_f = 1/2$)

BDM Detection

↔ Flux of boosted χ_1 around the Earth

♦ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3 \text{s}^{-1}$ & assuming NFW DM halo profile,

 $\mathcal{F}_{\chi_1} = \underbrace{\mathcal{O}(10^{-1} \sim 10^{-6}) \text{cm}^{-2} \text{s}^{-1}}_{\checkmark} \text{ for } m_0 = \sim 30 \text{ MeV to } \sim 10 \text{ GeV}$ $\checkmark \text{ Not small enough for small-volume (~1 ton) detectors to have signal sensitivity}}_{(\text{e.g., conventional WIMP detectors: Xenon1T, LZ, ...)}}$

Big enough for sub-kton (e.g. ProtoDUNE, SBN) to observe signal events (better position/angle/vertex resolution & particle identification, lower E_{th} compared to Super-Kamiokande)

Expected Signatures

- Elastic scattering (eBDM): only e/p recoil (ER)
 - \rightarrow single track
- *** Tracks** will **pop-up** inside the fiducial volume.
- ✤ Focus on e-recoil.
- Straightforwardly applicable to p-recoil

(up to form factor, DIS, etc.)

A 1 1			
Active vol.			

 Low E particles (≤ 30 MeV) can be removed/suppressed by taking a fiducial vol. smaller than the active vol. (Fiducial vol.: e.g. ~170 t/300 t for ProtoDUNE DP/SP)

- Low E particles (≤ 30 MeV) can be removed/suppressed by taking a fiducial vol. smaller than the active vol. (Fiducial vol.: e.g. ~170 t/300 t for ProtoDUNE DP/SP)
 High E particles (e.g., muon) create tracks
 - incoming outside the fiducial vol., which can
 be rejected by a trigger and the post-analysis.
 → A large flux is expected for the detectors

placed on the ground, e.g., ProtoDUNE, SBN.

- Low E particles (≤ 30 MeV) can be removed/suppressed by taking a fiducial vol. smaller than the active vol. (Fiducial vol.: e.g. ~170 t/300 t for ProtoDUNE DP/SP)
- High E particles (e.g., muon) create tracks incoming outside the fiducial vol., which can be rejected by a trigger and the post-analysis.
 - → A large flux is expected for the detectors
 placed on the ground, e.g., ProtoDUNE, SBN.
- (Atmospheric) neutrinos are (potentially) irreducible.
 - \rightarrow ~40 single-track *e*-like events/yr/kt

- **\therefore** Low E particles (\leq 30 MeV) can be removed/suppressed by taking a fiducial vol. smaller than the active vol. (Fiducial vol.: e.g. ~170 t/300 t for ProtoDUNE DP/SP) ✤ High E particles (e.g., muon) create Can be rejected by "Earth Shielding" Kim, Kong, JCP, Shin, arXiv: 1804.07302] -analysis. the ground, e.g., ProtoDUNE, SBN.
 - (Atmospheric) neutrinos are (potentially) irreducible.
 - \rightarrow ~40 single-track *e*-like events/yr/kt

Number of Signal Events

• Number of signal events N_{sig} is

$$N_{\mathrm{sig}} = \sigma_{\epsilon} \cdot D_f \cdot \mathcal{F} \cdot t_{\mathrm{exp}} \cdot N_T$$

Controllable! (once a detector is determined)

- \checkmark *σ*_ε: scattering cross section between χ_1 (BDM) and electron (target)
- ✓ D_f : data collection fraction of day
- ✓ \mathcal{F} : flux of incoming (boosted) χ_1
- ✓ t_{exp} : exposure time
- ✓ N_e : total number of target electrons

Realistic experimental effects such as cuts, $E_{\rm th}$ are absorbed into σ_{ϵ} .

Model-Independent Reach

* More familiar parameterization is possible with the below modification.

Model-Independent Reach

- ✤ 1-year exposure: effectively half-year data collection ($D_f = 1/2$) is assumed.
- The limits from all-sky data: DM halo model-independent (up to total flux) and obtained w/o any particular model assumption to describe the interaction between SM particles & BDM.
- Angular cuts improve the experimental sensitivities at the cost of DM halo
 model-dependence (optimal θ_C values
 differ detector-by-detector & run time).

Dark X Parameter Space: Invisible X Decay

- ✤ Mass spectra: dark photon decays into DM pairs, i.e., $m_X > 2m_1$
- ✤ 1-year data collection from the
 entire sky and g₁₁ = 1 are assumed.
- A wide range of unexplored
 parameter space can be probed even
 with surface-based detectors.

 $D_f = 1/2$ is assumed.

Dark X Parameter Space: Visible X Decay

- ✤ Mass spectra: dark photon decays into SM pairs, i.e., $m_X < 2m_1$
- ✤ 1-year data collection from the entire sky and $g_{11} = 1$ are assumed.
- A wide range of unexplored
 parameter space can be probed even
 with surface-based detectors.

 $D_f = 1/2$ is assumed.

Expected Signal Rate

- ★ A 0.5 kt- V_{fid} detector and $2m_1 > m_X$ (i.e., visibly-decaying X) and $g_{11} = 1$ are assumed.
- ✤ Results with 1-year (effectively ½-year assumed) exposure.

Expected Experimental Reach

- ★ A 0.5 kt- V_{fid} detector and $2m_1 > m_X$ (i.e., visibly-decaying X) and $g_{11} = 1$ are assumed.
- ✤ Results with 1-year & 2-year (effectively ½-year & 1 year assumed) exposures.

MHP Dark Matter Post-Workout Muscle Growth Accelerator, Blue Raspberry, 3.22 Pound Maximum Human Performance

About the product

- The ultimate post workout muscle growth accelerator
- 600 % increase in protein synthesis
- Absorbs faster than whey isolate

Price: \$36.09 (\$11.21 / Pound) & FREE Shipping. Details

In Stock. Ships from and sold by Amazon.com. Gift-wrap available.

2 Flavors: Blue Raspberry

Want it tomorrow, Aug. 9? Order within 3 hrs 35 mins and choose One-Day Shipping at checkout. Details

Ship to: Select a shipping address: •

Yes, I want FREE Two-Day Shipping with Amazon Prime

Qty: 1 🔻

Turn on 1-click ordering

Conclusion

v _{DM}	non-relativistic	relativistic	
Scattering	($v_{\rm DM} \ll c$)	(v _{DM} ~c)	
elastic	Direct detection	Boosted DM (eBDM)	→ Focus of this talk!
inelastic	inelastic DM	inelastic BDM	→ See Doojin
	(<i>i</i> DM)	(<i>i</i> BDM)	Kim's talk!

- > (light) BDM search is promising & provides a new direction to study DM phenomenology.
- > Huge cosmic-ray background can be well controlled with the "**Earth Shielding**" effect.
- > **Surface detectors** possesses excellent sensitivities to a wide range of (light) BDM
 - → allows a deeper understanding in **non-minimal dark sector** physics.
- > **Surface detectors** can provide alternative avenue to probe dark photon parameter space.

Thank you

Effect of Earth's Rotation

Benchmark Model

- Vector portal (kinetic mixing) [Holdom (1986)]
- ✤ Fermionic DM

 \mathcal{L}_{int} =

- ✓ χ_2 : a heavier (unstable) dark-sector state
- ✓ Flavor-conserving → elastic scattering (eBDM: This talk)
- ✓ Flavor-changing → inelastic scattering (*i*BDM: Doojin Kim's talk)
- Various models conceiving BDM signatures
 - ✓ BDM source: GC, Sun (capture), dwarf galaxies/assisted freeze-out, semi-annihilation, decaying, etc.

SM

Based on

Assisted FO set-up [Belanger, JCP (2011)]

χ2

 χ_1

- ✓ Portal: vector portal, scalar portal, etc.
- ✓ DM spin: fermionic DM, scalar DM, etc.
- ✓ iBDM-inducing operators: two chiral fermions, two real scalars, dipole moment interactions, etc.

Detection of BDM

↔ Flux of boosted χ_1 near the earth

 $\mathcal{F}_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2} \qquad \text{from the number density of DM } \chi_0, n_0 = \rho_0/m_0$ $\texttt{Setting } \langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3 \text{s}^{-1} \text{ and assuming the NFW DM halo profile,}$ one can obtain $\mathcal{F}_{\chi_1} \sim 10^{-6 \sim 8} \text{cm}^{-2} \text{s}^{-1}$ for χ_0 of weak-scale mass, $m_0 \sim O(10\text{-}100 \text{ GeV})$.

♦ Low flux \rightarrow No sensitivity in conventional DM direct detection experiments

→ Large volume (neutrino) detectors

motivated: Super-/Hyper-K, DUNE, ...

Sources

- ✓ GC: Agashe et al. (2014); Necib et al. (2016); Alhazmi, Kong, Mohlabeng, JCP (2016); etc.
- ✓ Sun: Berger et al. (2014); Kong, Mohlabeng, JCP (2014); Alhazmi, Kong, Mohlabeng, JCP (2016); etc.
- ✓ Dwarf galaxies: Necib et al (2016)

SK Official Results for BDM Search

Search for Boosted Dark Matter Interacting With Electrons in Super-Kamiokande

(Dated: November 16, 2017)

A search for boosted dark matter using 161.9 kiloton-years of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic Center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic Center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay.

(In)direct dark matter detection?

Katarzyna Frankiewicz

DPF meeting, 2017/08/01

SK

Cosmic-origin BGs vs eBDM Signal

Potential BGs: High E Muons

♦ Expecting $\sim 10^{5-6}$ more muon flux at ProtoDUNE/SBN than that at SK/DUNE.

[Bugaev et al. (1998)]

Potential BGs: Neutrinos

Table 4.3: Atmospheric neutrino event rates including oscillations in 350 kt \cdot year with a LArTPC, fully or partially contained in the detector fiducial volume.

Sample	Event Rate
fully contained electron-like sample	14,053
fully contained muon-like sample	20,853
partially contained muon-like sample	6,871

[DUNE CDR-Vol.2 (2015)]

	SK-I		SK-II		SK-III		SK-IV	
	Data	MC	Data	MC	Data	MC	Data	MC
FC sub-GeV								
single-ring								
e-like								
0-decay	2992	2705.4	1573	1445.4	1092	945.3	2098	1934.9
1-decay	301	248.1	172	138.9	118	85.3	243	198.4
π^0 -like	176	160.0	111	96.3	58	53.8	116	96.2
μ -like								
0-decay	1025	893.7	561	501.9	336	311.8	405	366.3
1-decay	2012	1883.0	1037	1006.7	742	664.1	1833	1654.1
2-decay	147	130.4	86	71.3	61	46.6	174	132.2
2-ring π^0 -like	524	492.8	266	259.8	182	172.2	380	355.9
FC multi-GeV								
single-ring								
ν_e -like	191	152.8	79	78.4	68	54.9	156	135.9
$\overline{\nu}_e$ -like	665	656.2	317	349.5	206	231.6	423	432.8
μ -like	712	775.3	400	415.7	238	266.4	420	554.8
multi-ring								
ν_e -like	216	224.7	143	121.9	65	81.8	175	161.9
$\overline{\nu}_e$ -like	227	219.7	134	121.1	80	72.4	212	179.1
μ -like	603	640.1	337	337.0	228	231.4	479	499.0

[Super-Kamiokande (2012)]

~**40**. **2**/yr/kt: may contain multi-track events

Single-track candidates: 32.4 + 8.8 =41.2 /yr/kt, while total e-like events are 49.9 /yr/kt. (Note that SK takes e-like e vents with *E* > ~10 MeV.)

⇒ Potential BGs for elastic scattering signal (eBDM) events

Multi-track candidates: 5. 2 /yr/kt

- \Rightarrow Most extra tracks come from mesons which can be identified at LArTPC.
- ⇒ Very likely to be background-free for inelastic scattering signal (*i*BDM) events