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Implication on particle physics
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1-100 MeV mediator for 1 - 100 GeV DM realizes such situation [Tulin, Yu, Zurek, 2013]

® Efficient self-scattering at galaxy scale (v ~ 10 - 100 km/s)

® Collisionless at cluster scale (v ~ 3000km/s)



Challenges in model building

A SIDM model is severely constrained by DM direct and indirect bounds

Simplified setup: 4 model parameters: DM M ¥ €

Y

DM phenomenology

DM

DM

DM

DM



Challenges in model building

A SIDM model is severely constrained by DM direct and indirect bounds

Simplified setup: 4 model parameters: CzDM, m(p,Jy, £ DM ): DM
DM phenomenology '
DM DM
® We need mixing parameter &£ fsm
- to produce DM from the SM plasma ¢-- -)8(-}-l<
Jsm

- For the mediator decay (not to dominate the
] - Higgs portal (scalar mediator)
energy density, not to affect the BBN)

- Kinetic mixing (vector mediator)



Challenges in model building

A SIDM model is severely constrained by DM direct and indirect bounds

Simplified setup: 4 model parameters: CzDM, m(p,Jy, £ DM ): DM
DM phenomenology '
DM DM
® We need mixing parameter &£ fsm
- to produce DM from the SM plasma ¢-- -)8(-}-l<
Jsm

- For the mediator decay (not to dominate the

- Higgs portal (scalar mediator)

energy density, not to affect the BBN)

- Kinetic mixing (vector mediator)

® To evade the BBN bound, we need large mixing, which leads to very large

direct detection cross section

DM
*Much of the parameter space is excluded by XENON1T ~—
. . ¢
[Kaplinghat, Tulin, Yu, 2013] X,
/\

n, p



Challenges in model building

A SIDM model is severely constrained by DM direct and indirect bounds

Simplified setup: 4 model parameters: CzDM, m(p,Jy, £ DM ): DM
DM phenomenology '
DM DM
® We need mixing parameter &£ fsm
- to produce DM from the SM plasma ¢-- -)8(-}-l<
Jsm

- For the mediator decay (not to dominate the
] - Higgs portal (scalar mediator)
energy density, not to affect the BBN)

- Kinetic mixing (vector mediator)

® To evade the BBN bound, we need large mixing, which leads to very large
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® DM DM -> SM particles are constrained by CMB or indirect search

»If DM annihilation is s-wave, most of the parameter space is excluded
[Bringmann, et.al., 2016]
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Gauged U(1 )Lﬂ—LT solves the difficulty DM | DM
® Anomaly free extension of the SM i 7

® A new gauge boson Z' associated with U(1 )LM—LT E

® We add SM singlets N, N, ® DM DM

Vector-like fermion complex scalar
A
( ) /

N | N | & HprY, T pl;

/ : L Y ) : : :
DM (stable)

SIDM mediator

We choose m, My < m,

Under this symmetry, ¢p and Z' decay only to neutrinos, so astrophysical and

cosmological constraints are weak



SIDM in a gauged U(1), _;, model



U(1 )LM—LT Parameter space

1072

As a bonus, we can explain muon g-2!

a® —a™ = (26.1 £8.0) x 10717

. [Hagiwara, et. al, 2011]

NV
Z' 1 loop é‘s‘v "’z/

/ ' ’

BABAR |
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o> 1073

The favored parameters are

_ g ~5x%x107*
Borexino

my, = g've ~ 10 — 100 MeV

=4 ... . . . ~
0 . - =, =P vy~ 100GeV

Constraints

® White dwarf: cooling by plasmon decay through off-shell Z' [Dreiner, et. al, 2013]
® Borexino: v — e scat. from "Be solar neutrino

® CCFR: neutrino trident YN — vNuji  [Altmannshofer, et. al, 2014]
® BABAR: e¢ —» uuZ',7" — up [BABAR collaboration, 2016]
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Fate of Z' and the mediator ¢

. . . el e . . H.T
® Z'is in chemical equilibrium with neutrinos Z’
If m, ~ Tzggny ~ 1 MeV, energy injection increases N A
Evaluating entropy evolution, for Planck bound N+ < 3.5, we found
Uyr
m, 2 10 MeV for g=5x10"*
indep. of DM things Y
u,T
® The lifetime of mediator ¢ is < 1secif m, 2 m,
my, 2 my 2 10 MeV P s Uyz

Z/
Higgs portal A, |H|*| ®|” is not necessary for the decay of mediators
No bound from direct detection

DM
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¥ , «——— small (if absent at tree, arises at 2-loop)
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® Late time annihilation (T << 1 GeV) is p-wave dominant
Oy* T
647Tm]%7 Ml

N\N, = @@ ,2'Z <(7annVre1>11 =

our choice: m

»-Mz <m,, Z" and ¢ decay to neutrinos,

—} Indirect detection constraints are weak



SIDM parameter space

5 model parameters: my,,8,y, m,, M, N, N
3 for DM phenomenology / Y \ E¢
Fixed by muon g-2 T Scan N : P

determined by DM abundance

® Our model can solve the small scale issues in dwarf and MW galaxies

® Bullet cluster constraint is safely evaded; 6,/M, < 0.1cm?/g in the whole region

Colored region: desired self-scattering cross section o7/M;

102

— - o >
————— st Z O ——=@N,N, » V(r)=—y—e_m¢r

2\/5 Arr

Transfer cross section

% : do
S 1o mz = 10 MeV/| or=4n| dcosf (1l —cosl)—
- : ) 0
= W dw: 0.1-1cm?/g |] ~
B dw: 1-10cm?/g ) Vrel = 30 km/s
________ AM =15GeV_ _ |mmm MW:0.1-1cm2/gld---ccccaeaon Veel = 200 km/s
me < Mz s cl: >0.1 cm?/g ] ------------- Vrel = 3000 km/s

1072 | - i0'_1 | Bullet cluster constraint: 2
o Lifetime > 1 sec m,, [GeV] ! y nt: o/m < 1em™/g



Closer look at self-scattering cross section

Velocity averaged cross section for three benchmark points

Maxwell velocity distribution is assumed
104: T T ]

—— M, =10GeV, m, = 10MeV |

Ty - - M;=20GeV, m, =20MeV |
E M; = 40GeV, m, = 80 MeV |
x - =
X
(@)
\
Al
-
O,
=
\
>
e
100 . L . e
10’ 10?2 103

(v) [km/s]

Points are inferred self-scattering cross section to explain the small scale anomalies at
- Red: dwarf galaxies

- Blue: low surface brightness galaxies

- Green: galaxy clusters [Kaplinghat, Tulin, Yu, 2015]



Summary

® We have found a gauged U(1 symmetry resolves the difficulties of SIDM

)Lﬂ —L,
model building

® The new gauge boson Z' solves the muon g-2 problem

® The U(1 )Lu _ 1, Higgs ¢ mediates DM self-interaction with a velocity-dependent

manner

® The model can resolve the small scale issues of galaxy scale, while consistent with

the bullet cluster constraint

® We also updated the lower bound of Z' mass; m,, > 10MeV forg’=5x 10~
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DM phenomenology

DM sector: we focus on the pseudo-Dirac DM scenario

-1 1 _
DM mass terms: % D myNN — EYN(DNN_ EyNCD*NN+ h.c.
I yN\/E N
Vo
1 My  YN—=
(@) = ﬁ"«p \ V2 )

Pseudo-Dirac DM my > YAV, YiVe  SIDM and (g-2), not simultaneously realized if my < yyve, Yive

Focusonthecase yv=yy=y>0 < Co., : NoN ©o OF
Parity : N—> iN' N — iN'

Two nearly degenerate Majorana fermions

N-N W
DM N, = M, = my - =2
2i V2

N+ N .
V2 p)

N




DM annihilation

DM (co-)annihilation o, | _ L\/_qg (=NiN, + NoN,) + ig'OyZ, Ny N, .
24/ 2

Channel Cross section x=M,/T
® NN, = @@, 2’7 (i = 1,2) <0'annvrel> = <0annvrel> = 9y4 x~!
» 11 22 6471'7/}1]%,
4 9 4
(umnlet) 64mm?y  256mm}

g’ ~5x107* neglected
® For a given my ~ 1 — 100 GeV, DM relic density fixes y

M, — M, =1/2yvg ~ 1 GeV, annihilation in the early universe is s-wave dominant

® Late time annihilation (T << 1 GeV) is p-wave dominant
NN, = @@ ,2'7
our choice: m,,my <m,, Z' and ¢ decays to neutrinos,

—} Indirect detection constraints are weak



DM self-scattering

Self-scattering through Yukawa potential

We solve the non-relativistic Schrodinger equation N . N
> )
y - ye o ;
L5 ——gN\N, = V()= — e -
2¢/2 ") drr N N

N, is a Majorana fermion (indistinguishable)

The cross section is sum of the spin singlet and triplet / unpolarized

ﬁ—lx[1| ©) +f(x—0) 2+ 11(0) — £ —9>|2]
R PSS § O

Transfer cross section is used to see the effects on the DM distribution

1

do
or=4n| dcosO (1l —cos e)d_Q

0

regulate forward and backward scattering



Constraints from Z' energy injection

After neutrino decoupling 7 < 1.5MeV , three independent thermal bath

(7€) ) UMD
T T, T

v

Z' affects Neg in two ways:

1. Decay of ~MeV Z' injects energy into U U

2. Via 1-loop A - Z' mixing, Z' = ee transfers heat between (7, 6) & (VW v, Z')

7

i —_— €Az—0

We solve the evolution of entropy \ €AZ'

' =72x%x10°6

6 \ - - eAZ/=7.2><1O—6,m(p=mZ, .

1 d ; 1 /
_3_[S (Ta® + 25(T)a’] = =Ty 5 [p(T") = p(T)]
a T

1 d 3 3 3 1
EE[ZSW(T/)CI +2s, (Ta” + s(T)a’] = — ?FZ’—wé [p7(T") = pz(T)]
Planck
1 d agy L~
_3_[2S (T)a%] = 0 <dS:_Q> ]
a r -

Effects of ¢ is very small if m, 2 m,

14

16



