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Why is the inner 
structure of DM haloes  

so important?	
•  The distribution of matter within galaxies - AKA their 

density profile - is a key prediction of galaxy 
formation happening within  a cosmological 
framework! 

 
•  It must agree with observations, and it can 

potentially provide constraints about the nature of 
DM itself 
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Outline	

•  ΛCDMèGalaxy formation with simulations 

•  Inner structure of  DM halos => “cusp-core” issue 

•  Solution #1: CDM + baryonic physics 

•  Solution #2: SIDM/WDM (+ baryonic physics) 
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Cradit:NASA-WMAP science team Annecy-Le-Vieux 

 Galaxy Formation	
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 Galaxy Formation in LCDM 
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Cold Dark Matter 
(Slow moving) 
m~ GeV-TeV 
Small structures form 
first, then merge 

Warm Dark Matter 
(Fast moving) 
m~ keV 
Small structures are  
erased 
 

Self-Interacting Dark Matter 
Strongly interact with itself  
Large scale similar to CDM, 
Small galaxies are different 
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The nature of Dark Matter	
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Credit: Planck collaboration 
Credit: A.Kravtsov, A. Klypin 

       MW halo 
Credit: CLUES project 

Dark matter haloes in N-body 
(DM only)  simulations	

DM halo mass, Mvir=Mhalo, is the mass within a sphere of radius Rvir containing  
Δ times the critical density of the Universe 
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Credit: Planck collaboration        MW halo 
Credit: CLUES project 
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Density profile of DM haloes 	
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Aquarius simulations 

r -1 

r -3

•  Navarro, Frenk & White 1997 CDM haloes in 
simulations have a universal density profile 

 



Observations of dwarfs and LSB  
 show ‘CORED’ profiles 

Inner slope 0> γ > -1  

Oh+08 Oh+11 

The `cusp-core’ discrepancy	
Simulations find ‘CUSPY’ profiles 

Inner  slope γ <= -1  NFW 
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The NFW profile: cusps	
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V2= GM/r	



Cusp-core issue arising in 
galaxy rotation curves	
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Katz et al.17 

Too steeply rising RCs! 



Stinson+13, Brook +12 

Hydrodynamical simulations of  galaxies including 
dark matter, gas, stars and baryonic feedback 

 

Making Galaxies in a Cosmological Context  
MaGICC (PIs Stinson-Brook) 

                               &    
Numerical Investigation of  Hundred 
Astrophysical Objects 
NIHAO (PIs Maccio’-Dutton) 

 
(Brook+12b, Maccio’+12, Penzo+14, Herpich+14, Kannan+14, Obreja+14.Wang+15,  
Dutton+17,Di Cintio+17 etc) 

Solution #1: CDM + baryonic physics	
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Role of baryonic physics	
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baryons for astrophysicists 

Baryonic physics processes modeled 
in hydrodynamical simulations: 
 
•  Gas inflowing and cooling 
•  Star formation 
•  Feedback (mechanical, thermal, kinetic,  
radiation pressure) from  SNae, massive stars, 
AGNs 
  



Stinson+13, Brook+12 
Wang+15,Buck+17 
 
GASOLINE N-body + 
SPH code from  
Wadsley + 04 
SN feedback with 
blastwave formalism 
Stinson+06 
Early-stellar feedback 
from massive stars 
 
 
 
=> Reproducing realistic 
galaxies 
 

Credit: Dominguez-Tenreiro, Obreja+13 Credit: Sawala +10 Annecy-Le-Vieux 

 MaGICC & NIHAO  simulations	
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Role of baryons  
SNae feedback and outflows	

•  KEY ingredients:  
high initial density for star forming gas, similar 
to molecular cloud formation in our Galaxy 
n=10-100 mhcm-3  
 
•  RESULT:  
stars form efficiently in small, isolated regions, 
energy is dumped into the gas which heats to 
much higher temperatures, gas is overpressurized 
and expands rapidlly: galactic scales outflows  
are launched at speeds greater than local  
circular velocity 

•  FEATURE: the process is cumulative 
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Credit:A. Dutton, NIHAO simulations	
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From gas outflows to DM 
‘cores’	
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Core formation mechanism -> outflows driven by SNae feedback 
Core created during starburst events that launch powerful gas outflows   

Pontzen & Governatp 14 



γ

γ

Cores are created in a 	
particular M*/Mhalo range	

 
 
Peak of core formation at log(M*/Mhalo)~-2.4 à M*~108.5 Msun  
Dark matter profiles determined by two opposite effects: energy from Sne vs 
Increasing gravitational potential  (see also Governato+12,Read+16,Onorbe+15,Brooks&Zolotov12) 
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γ

γ

Sweet spot of core formation	
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Review by 
Bullock & MBK 2017 
 
Data from  
Di Cintio+14, 
Chan +15, 
Tollet+16 

 

Small dwarfs not enough energy from stellar feedback to modify NFW halo 
Intermediate dwarfs/LSBs correct amount of energy from Snae 
Large spirals can not ‘win’ the large grav potential of 1012 halo with SNae alone 



Energy balance between SNe 
energy and potential energy of NFW 
halo.  
Flattest profiles expected at 
 M*~10 8.5 M ⊙. 
 

Brook & Di Cintio2015a 
(see also Penarrubia +2012) 

see also Peñarrubia+12 
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Energetic of core formation	
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γ inner slope 
β outer slope 
α sharpness of transition 
 
constrained via X=log10(M⋆/Mhalo) 
 

A mass dependent profile	
A mass dependent density profile that takes into account the impact of  

baryons on DM haloes (Di Cintio, Brook +14a,b) 
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From cusps to cores to cusps	
α = 1.00
β = 3.10
γ = 1.00

α = 2.91
β = 2.50
γ = 0.29

α = 2.24
β = 2.64
γ = 0.69

α = 1.00
β = 3.00
γ = 1.04

M*=7.2e5Msun 

M*=6.3e9Msun 

M*=2.5e8Msun 

M*=2.4e10Msun 

Radius   (kpc)                                   Radius (kpc)   1																									10																							100	1																									10																							100	
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Di Cintio +14 

DC14	
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Take M* and V(r)  from 
observations 
 
MCMC fitting  V(r)= 
(V2

dm(r)+V2
gas(r)+V2

star(r))1/2 

 with different profiles 
for the DM – including 
or not the effects of 
baryons 
 
Derive Mhalo and c 
and compare it with 
LCDM expectations 

Testing ΛCDM with 
observed RCs of galaxies	

Katz, Lelli, McGaugh,Di Cintio, Brook, Schombert 2017 
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We want to 
reproduce both 
observational 
relations and 
theoretical 
predictions : 
 

Rotation curves 
 
c-Mhalo  
 
Mhalo-M* 
 

Testing ΛCDM with 
observed RCs of galaxies	

Katz, Lelli, McGaugh,Di Cintio, Brook, Schombert 2017 

Take home point: DC14 can produce dark matter haloes that simultaneously 

provide good fits to the rotation curves and agree with the scaling relations 

C-Mhalo a
nd Mhalo-M

* 

	



Diversity of RC shapes explained by cores 
Santos-Santos,	Di	Cintio	et	al	2017	submitted	
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For DM cores not be “real’, there must be some conspiracy for which observational errors mimic the presence of a DM 
core exactly in the range where we expect DM cores from theoretical models. 	
	



Schneider +15 

We need to create cores of  ~Kpc size to explain the 
central density of  dSphs: in WDM, this requires a 
thermal candidate with a mass below 0.1 keV, ruled 
out by all large scale structure constraints (see 
Schneider+15, Maccio’+15) 
 
 
 

TBTF in Warm Dark Matter	
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Solution #2: Alternative DM model	
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 Zavala+13 

TBTF in Self Interacting Dark Matter	

Self-interactions lower the central density 
alleviating the problem 
 
The cross section must be larger than  
0.1 cm^2/gr 
 
Vogelsberger+12, Zavala+13, Rocha+12 
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Solution #2: Alternative DM model	
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SF and resulting feedback dominates over SI and WDM physics: dm inner slope, Vcirc  
SFH, star and gas content are indistinguishable between CDM – WDM – SIDM + 
baryons in DWARF GALAXIES 

Governato +15	
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Solution #3: Alternative DM model 	
+ baryonic physics	

Bastidas-Fry, Governato +15	
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CDM	

WDM	



We have too many solutions to 
the inner DM problem!	

•  How can we disentangle between different DM 
models? 

•  We should be looking at “cores” in faint, small dwarf 
galaxies with M*<106 Msun => if central “cores” are 
found, they can not be due to baryonic physics 

•  That would set a minimum cross section on SIDM of 
σ ∼ 2 cm^2/gr 
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Conclusions and future prospect	
 
•  Baryonic physic affects dark matter profiles in galaxies:  

CDM has a peak in core formation efficiency at M* ≈ 
108.5 M¤ 

 
•   Once the effect of baryonic physics is included, it is 

hard to distinguish between WDM/SIDM/CDM 

•  Looking for  cores in small dwarfs can help disentangle   
CDM from other DM types. Future Extremely Large 
Telescopes useful for this task: they will resolve stellar 
populations which allows for a better modelization of 
the inner density in dwarfs 
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Stay tuned..	
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