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4 Reasons to look beyond GR.

4 What happened with GW170817.

4+ What happens next?
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Why are we interested in MG?

2018
Cosmic
acceleration
Tests of GR
Fifth
forces

Dark Old CC
matter problem
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What does this mean for gravity theories?

Scalar case clearest; full theory is Horndeski gravity.

S:/d4:€\/—g 2?22 »Cz + SM

Lo = G2<¢7X)

L3 = G3(9, X)Uo

£4 — G4(¢7 X>R + G4,X (¢7 X) {( ¢)2 I VMVV¢VMVV¢}

L5 = Gs(9, X)Gu V"6 — =G5 x (6, X){ (Vo)

— 3VIVYGV, V.,

where X = —V,¢V"¢p/2

¢+ 2V'V,,0VV,0VIV 00 |
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What does this mean for gravity theories?

Scalar case clearest; full theory is Horndeski gravity.

Ly=GCG4(p,X)R

Ls =G50, X)G,, VIV ¢ = 0 by Bianchi identity

Linearised theory maps to alpha parameters:
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What does this mean for gravity theories?

Scalar case clearest; full theory is Horndeski gravity.

Ly=Gy(0)R

Linearised theory maps to alpha parameters:

2X

= ar(t) = 375 [205x — 265, — ($—0H) Gox] | ~0

Barring fine-tuned cancellations, = G4 x = G54 = G5 x = 0.
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What does this mean for gravity theories?

Scalar case clearest; full theory is Horndeski gravity.

L, =G4(0)R Lo=Go(d,X) L3=Gs(d, X)

Eg. ¢ =Jr f(R) — Rfr 0

= f[R] gravity fits the template, so it survives.
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What does this mean for gravity theories?

For bimetric theories, get a bound on graviton mass (1606.08462):

m, <1072 eV

This is not competitive with
existing Solar System bounds:
m, < 107%% eV

(from Lunar Laser Ranging &
Earth-Moon precession)

Image: Yicai Global
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Survivors: DHOST

erivative Higher-Order Scalar-Tensor theories.

5
Lprost ~ LD + Z L; L3 = "1:(¢,X) () " b ¢"
1=3 + ...

GW results fix A4, A in terms of

Vainshtein screening broken inside matter:

dd GM - d*M en Achour
o . | F(G4, )G Ben Ach 2016
dr r

dr? Langlois & Noui 2016
Crisostomi et al. 2016



Survivors: frozen fields

Recall for Horndeski:

2X .
OéT(t) — M2 {2G47X — 2G5,¢ — (¢ — ¢H) GB,X}
: | R
On a cosmological background, make: X = 5

= Frozen/slowly-evolving scalar can have ar ~ 0.

potential energy

scalar field (o)
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So What’s Next?

Parameterised tests of gravity.

= Map multiple models onto a common set of parameters.

Theory
space

Parameterisation
space

Patch selected
by data

No 100% perfect solution, but can find parameter set for each
family of scalar-, vector-, and tensor-tensor theories.
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The Alpha Parameters

Five parameters describe scalar-tensor theories.

0% 7% (t) . kinetic term of scalar field.

B (t) . “braiding’ — mixing of scalar + metric kinetic terms.

1 dln M*(t)
anp(t) = fo 7t : running of effective Planck mass.

QL fg (t) . disformal symmetries of the metric.



Current Constraints

Planck CMB data + galaxy surveys:
BOSS, VIPERS, WiggleZ.

-0.81 -0.11 0.59
dMm(z=0)

Bellini et al., 2015.



Current Constraints

20 constraints:

0.24<ag<2.32
-1.36 < apy <-0.13

36 -15 -0.81 -0.11 0.59
aAM(z=0)

Bellini et al., 2015.
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4+ MG is alive and well, BUT maotivations no longer focus

solely on cosmic acceleration.

4+ GW results have pruned the model space and sparked
new growth areas.

4 Parameterised tests are emerging as the smart way to test
for new, unknown physics.

tessa.baker@physics.ox.ac.uk
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Current Constraints

SDSS (galaxy survey)
+ Planck CMB +

BOSS BAOs & RSDs
+ lensing data.

Kreisch & Komatsu,

—-1.2 —-0.8 —]?94 0.0 4 8 12 16 00 02_04 06 09 12 15 18

g 1712.02710




THE CURRENT STATE OF PLAY

Caution: stability
conditions lead to
non-trivial contours.

Kreisch & Komatsu,
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