Cosmology and neutrinos

Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia

Dark Side of the Universe, Annecy, 2018

The concordance flat ACDM model...

The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

The neutrino sector beyond $\Lambda CDM...$

There are many ways in which the neutrino sector might be more complex than is implied by the standard picture.

- **Masses** larger than 0.06 eV.
 - No reason to fix at the minimum mass.
 - Laboratory upper limit $\Sigma m_v < 7 \text{ eV}$ from β -decay endpoint.
- More than three flavours. $N_{\rm eff} \neq 3??$
 - Light sterile neutrinos and other light states, "dark radiation".
- Free-streaming or not?
 - Possible new neutrino interactions.

Neutrino dark matter

$$\Omega_{v,0}h^2 = \sum \frac{m_v}{94 \,\mathrm{eV}} = ??$$

The neutrino sector beyond $\Lambda CDM...$

1. Neutrino masses and cosmology...

Free-streaming neutrinos...

For most of the observable history of the universe neutrinos have significant speeds.

Consider a neutrino and a cold dark matter particle encountering two gravitational potential wells of different sizes in an expanding universe:

 \rightarrow Cosmological neutrino mass measurement is based on observing this freestreaming induced potential decay at $\lambda \ll \lambda_{FS}$. Large-scale matter power spectrum... $P(k) = \langle |\delta(k)|^2 \rangle$

Large-scale matter power spectrum...

Large-scale matter power spectrum...

Neutrino mass signatures in the CMB TT spectrum...

Weak lensing: lensing potential power spectrum...

Reconstructing the intervening matter distribution from higher-order correlations.

This is essentially this integrated along the line-of-sight (with some geometric factors folded in). Ade et al. [Planck] 2016

Planck TT+TE+EE+lowP+lensing

$$\sum m_{v} < 0.59 \text{ eV} (95\% \text{C.L.})$$

Current 95% C.L. constraints...

Lattanzi & Gerbino, arXiv:1712.07109

7-parameter fits

$\Sigma m_{\nu} [\text{eV}]$	
< 0.72	Ade et al. [Planck] 2016
< 0.59	Ade et al. [Planck] 2016
< 0.49	Ade et al. [Planck] 2016
< 0.59	Aghanim et al. [Planck] 2016
< 0.16	Alam et al. [BOSS] 2017
< 0.19	Vagnozzi et al. 2017
< 0.15	Vagnozzi et al. 2017
< 0.30	Vagnozzi et al. 2017
< 0.25	Abbott et al. [DES] 2017
< 0.29	Abbott et al. [DES] 2017
< 0.20	Ade et al. [Planck] 2016
< 0.13	Palanque-Delabrouille et al. 2015
	$\Sigma m_{\nu} [eV]$ < 0.72 < 0.59 < 0.49 < 0.59 < 0.16 < 0.19 < 0.15 < 0.30 < 0.25 < 0.29 < 0.20 < 0.13

L

1

Current 95% C.L. cons	straints	
Dataset	$\Sigma m_{\nu} [\text{eV}]$	7-parameter fits
Planck TT+lowP	< 0.72	Ade et al. [Planck] 2016
Planck TT+lowP+lensing	< 0.59	Ade et al. [Planck] 2016
Planck TT, TE, EE+lowP	< 0.49	Ade et al. [Planck] 2016
Planck TT+SimLow	< 0.59	Aghanim et al. [Planck] 2016
Planck TT, TE, EE+lowP+BAO+FS	< 0.16	Alam et al. [BOSS] 2017
Planck TT+lowP+BAO	< 0.19	Vagnozzi et al. 2017
Planck TT, TE, EE+lowP+BAO	< 0.15	Vagnozzi et al. 2017
Planck TT+lowP+FS	< 0.30	Vagnozzi et al. 2017
Planck TT+lowP+BAO+JLA	< 0.25	Abbott et al. [DES] 2017
Planck TT+lowP+BAO+JLA+WL	< 0.29	Abbott et al. [DES] 2017
Planck TT, TE, EE+BAO+SZ	< 0.20	Ade et al. [Planck] 2016 +nonlinear LSS
Planck TT+lowP+Ly α -FS	< 0.13	Palanque-Delabrouille et al. 2015 — +baryonic physics

1 1 1 \frown

Info from large-scale structure probes...

Info from large-scale structure probes...

Degrees of nonlinearity...

Baryonic physics affects all probes at k > O(1) Mpc⁻¹ @ > %-level

	Nonlinear DM (collisionless)	Nonlinear tracer bias	Baryonic physics @ k < O(1) Mpc ⁻¹	Empirical proxy
BAO	Mild	Mild	No	No
Cosmic shear	Yes	No	No	No
Galaxy power spectrum	Yes	Yes	No	No
Cluster abundance	Yes	No	No	Cluster mass vs X-ray temp or richness
Lyman alpha	Yes	No	Yes	No

Collisionless nonlinearities only...

Change in the total matter power spectrum relative to the massless case:

Linear perturbation theory:

$$\frac{\Delta P_m}{P_m} \sim 8 \frac{\Omega_v}{\Omega_m}$$

With nonlinear corrections:

$$\frac{\Delta P_m}{P_m} \sim \underline{9.8} \frac{\Omega_v}{\Omega_m}$$

Brandbyge, Hannestad, Haugbolle & Thomsen 2008;Viel, Haehnelt & Springel 2010; Bird, Viel & Haehnelt 2012 Brandbyge & Hannestad 2009, 2010; Brandbyge, Hannestad, Haugbolle & Y³W 2010; Ali-Haimoud & Bird 2012; and many more...

Dataset	$\Sigma m_{\nu} [\text{eV}]$	7-parameter fits
Planck TT+lowP	< 0.72	Ade et al. [Planck] 2016
Planck TT+lowP+lensing	< 0.59	Ade et al. [Planck] 2016
Planck TT, TE, EE+lowP	< 0.49	Ade et al. [Planck] 2016
Planck TT+SimLow	< 0.59	Aghanim et al. [Planck] 2016
Planck TT, TE, EE+lowP+BAO+FS	< 0.16	Alam et al. [BOSS] 2017
Planck TT+lowP+BAO	< 0.19	Vagnozzi et al. 2017
Planck TT, TE, EE+lowP+BAO	< 0.15	Vagnozzi et al. 2017
Planck TT+lowP+FS	< 0.30	Vagnozzi et al. 2017
Planck TT+lowP+BAO+JLA	< 0.25	Abbott et al. [DES] 2017
Planck TT+lowP+BAO+JLA+WL	< 0.29	Abbott et al. [DES] 2017
Planck TT, TE, EE+BAO+SZ	< 0.20	Ade et al. [Planck] 2016 +nonlinear LSS
Planck TT+lowP+Ly α -FS	< 0.13	Palanque-Delabrouille et al. 2015 - +baryonic physics

Dataset	$\Sigma m_{\nu} [\text{eV}]$	7-parameter fits
Planck TT+lowP	< 0.72	Ade et al. [Planck] 2016
Planck TT+lowP+lensing	< 0.59	Ade et al. [Planck] 2016
Planck TT, TE, EE+lowP	< 0.49	Ade et al. [Planck] 2016
Planck TT+SimLow	< 0.59	Aghanim et al. [Planck] 2016
Planck TT, TE, EE+lowP+BAO+FS	< 0.16	Alam et al. [BOSS] 2017
Planck TT+lowP+BAO	< 0.19	Vagnozzi et al. 2017
Planck TT, TE, EE+lowP+BAO	< 0.15	Vagnozzi et al. 2017
Planck TT+lowP+FS	< 0.30	Vagnozzi et al. 2017
Planck TT+lowP+BAO+JLA	< 0.25	Abbott et al. [DES] 2017
Planck TT+lowP+BAO+JLA+WL	< 0.29	Abbott et al. [DES] 2017
Planck TT, TE, EE+BAO+SZ	< 0.20	Ade et al. [Planck] 2016 +nonlinear LSS
Planck TT+lowP+Ly α -FS	< 0.13	Palanque-Delabrouille et al. 2015 - +baryonic physics

	$\Sigma m_{\nu}[\mathrm{eV}]$	7-parameter fits	
	< 0.72		
Planck TT+lowP+lensing		Ade et al. [Planck] 2016	
Planck TT,TE,EE+lowP		Ade et al. [Planck] 2016 CMIB only	
		Caution: Spectral index!	
Planck TT,TE,EE+lowP+BAO+FS	< 0.16	and Planck:	
		$n_{\rm s} = 0.939 \pm 0.010$ Lva	
Planck TT, TE, EE+lowP+BAO	< 0.15	$n_s = 0.9645 \pm 0.0049$ Planck	
	< 0.30	Vagnozzi et al. 2017	
Planck TT+lowP+BAO+JLA	< 0.25	Abbott et al. [DES] 2017	
Planck TT+lowP+BAO+JLA+WL	< 0.29		
Planck TT, TE, $EE + BAO + SZ$	< 0 0	Ade et al. [Planck] 2016 +nonlinear LSS	
Planck TT+lowP+Lya-FS	< 0.13	Palanque-Delabrouille et al. 2015 -+baryonic physics	

Which bound should I	use?	Lattanzi & Ge	erbino, arXiv:1712.07109	
	$\Sigma m_{ u} [\mathrm{eV}]$	7-parameter fits		
Planck TT+lowP	< 0.72	- Ada at al. [Planck] 2016		
Planck TT+lowP+lensing	+ Local Hubb	ble rate $H_0 = 73.02 \pm 1.7$	79	
Planck TT,TE,EE+lowP	7		AB only	
Planck TT+SimLow	2	$2m_{v} < 0.113 \text{ eV}$		
Planck TT, TE, EE+lowP+JAO+	Planck only	$H_0 = 67.5 \pm 0.64$; 3 σ dis	crepancy)	
Planck TT+lowP+BAO	< 0.19	Vagnozzi et al. 2017		
Planck TT, TE, EE+lowP+BAO	< 0.15	Vagnozzi et al. 2017		
	< 0.30	Vagnozzi et al. 2017		
Planck TT+lowP+BAO+JLA	< 0.25			
	< 0.29			
Planck TT,TE,EE+BAO+SZ	< 0.20		+nonlinear LSS	
	< 0.13			

Moral of the story here...

- Treat aggressive cosmological neutrino mass bounds from **combining multiple data sets** with **extreme caution**.
 - Significant discrepancies in the estimates of other cosmological parameters likely mean that the analysis (theory, data, etc.) is not as well understood as the proponents would like to think.

2. Effective number of neutrinos...

It doesn't even have to be a real neutrino...

Any particle species that

- decouples while ultra-relativistic and before z ~ 10⁶
- does not interact with itself or anything else after decoupling

will behave (more or less) like a neutrino as far as the CMB and LSS are concerned.

Smallest relevant

scale enters the horizon

Neutrino
Three SM neutrinos
$$\sum_{i} \rho_{v,i} + \rho_{X} = N_{eff} \left(\frac{7}{8} \frac{\pi^{2}}{15} T_{v}^{4} \right)$$
Neutrino
temperature
per definition
$$= (3.046 + \Delta N_{eff}) \rho_{v}^{(0)}$$
Corrections due to non-instantaneous
decoupling, finite temperature QED,
and flavour oscillations

```
N<sub>eff</sub> signatures in the CMB...
```


Figure courtesy of J. Hamann

What the CMB really probes: equality redshift...

Ratio of 3rd and 1st peaks sensitive to the redshift of matter-radiation equality via the early ISW and other time-dependent effects.

Exact degeneracy between the physical matter density ω_m and N_{eff} .

What the CMB really probes: angular sound horizon...

Exact degeneracy between ω_m and the Hubble parameter h. Peak positions depend on: $\omega_m h^{-2}$ Flat ACDM Sound horizon $\theta_s \propto$ at decoupling $\theta_s =$ **Fixed** $\int_{a_{\star}} \sqrt{\omega_m h^{-2} a^{-3} + (1 - \omega_m h^{-2})}$ Angular distance to the $Z_{eq}^{}, \omega_{b}^{}$ last scattering surface 6000 6000 5000 5000 cosmic variance + WMA cosmic variance + WN $\ell(\ell{+}1)/2\pi~\mathcal{C}_\ell~[\mu\mathrm{K}^2]$ cosmic variance cosmic variance Fixed: $z_{eq}^{}$, $\omega_{b}^{}$, $\theta_{s}^{}$ Fixed: z_{eq} 4000 4000 3000 3000 2000 2000 1000 1000 0 100 500 1000 1500 100 500 10 2000 10 1000 1500 2000 Figure courtesy of J. Hamann^{ℓ}

What the CMB really probes: anisotropic stress...

Apparent (i.e., not physical) partial degeneracies with inflationary parameters: primordial fluctuation amplitude A_s and spectral index n_s .

- However, free-streaming (noninteracting relativistic) particles have anisotropic stress.
- First real signature of N_{eff} in the 3rd

The damping tail...

The main signature of $N_{\mbox{\tiny eff}}$ lies in the CMB damping tail:

- Measured by ACT data since 2010;
 SPT since 2011; Planck since 2013.
- Probe angular photon diffusion scale:

$$D_d = \frac{r_d}{D_A}$$
 \checkmark Diffusion scale at decoupling

+ sound horizon measurement:

$$\frac{\theta_d}{\theta_s} = \frac{r_d}{r_s} \propto \omega_m^{1/4}$$

Fixed z_{eq} , ω_b
ks N_{eff} -h- ω_m -degeneracy

Current constraints on N_{eff} ...

Planck-inferred N_{eff} compatible with 3.046 at better than 2σ .

 $\Lambda CDM + N_{eff}$ (7 parameters)

$N_{\rm eff}$	=	3.13 ± 0.32	<i>Planck</i> TT+lowP;	
$N_{\rm eff}$	=	3.15 ± 0.23	Planck TT+lowP+BAO;	68% C.I.
$N_{\rm eff}$	=	2.99 ± 0.20	Planck TT, TE, EE+lowP;	
$N_{\rm eff}$	=	3.04 ± 0.18	Planck TT, TE, EE+lowP+BAO	

ACDM+neutrino mass+N_{eff} (8 parameters)

$$N_{\rm eff} = 3.2 \pm 0.5$$
$$\sum m_{\nu} < 0.32 \ \rm eV$$

 $\left. \begin{array}{c} 5 \\ \end{array} \right\}$ 95%, *Planck* TT+lowP+lensing+BAO.

Varying Y_p too...

The CMB damping tail is also sensitive to the Helium-4 mass fraction.

The N_{eff} -H₀ degeneracy...

A larger $N_{\rm eff}$ does bring the Planck-inferred H₀ into better agreement with local measurements.

Combined Planck+HST fit:

$$N_{\rm eff} = 3.41 \pm 0.22$$

 $H_0 = 70.4 \pm 1.2 \,\rm km \, s^{-1} \, Mpc^{-1}$

Riess et al. 2016

- **Precision cosmological data** provide strong constraints on the neutrino mass sum.
 - Quasi-linear bounds hover around 0.15-0.3 eV.
 - Use aggressive bounds (combining multiple nonlinear and possibly discrepant data sets) with extreme caution.

• A fourth neutrino??

- No evidence at all.
- But a 3.4 σ discrepancy between Planck and local measurements of H₀ remains, which when analysed in combination tends to drive up the preferred value of N_{eff}.