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The current dark matter research effort 
is often summarized like this:

The 
Standard 
“triad”
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SuperCDMS

LZ

…and many more!

With many experiments pushing forward 
different sides of the “triad” 



Of course, the actual dark matter research 
program is more something like this:
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• Or, how to probe dark sector physics through its gravitational 
impact on luminous matter. 
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Gravitational probes of dark matter: From 
local to cosmological

Image credit: Rhys Taylor, Cardiff University
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From small to large scales
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Milky Way satellites
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• Probing the local small-scale structure

Fornax Sculptor

DracoSegue I Credits: J. Bullock, M. Geha, R. Powell
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Constraints from Milky Way satellites

Vogelsberger, Zavala, Cyr-Racine +, arXiv:1512.05349

10 M. Vogelsberger et al.

Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well

MNRAS 000, 1–17 (2015)
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parameters that control the shape of the linear power spectrum are
related to more familiar scales in the initial power spectrum: the co-
moving diffusion (Silk) damping scale (rSD) and the DM comov-
ing sound horizon (rDAO). These are generic scales, which occur
in models where DM is coupled to relativistic particles in the early
Universe, i.e., they are not only a consequence of the specific parti-
cle physics scenario used here. Currently, or simulations only cover
the regime for which rDAO & rSD (“weak” DAOs); for an exam-
ple of a simulation in the strong DAOs regime, with rDAO � rSD,
see Buckley et al. (2014).

As a reference, the left panel of Fig. 1 also shows three WDM
power spectra for thermal relics, which are described by a sharp
cut-off (we follow Bode et al. 2001, with ⌫ = 1):

PWDM(k) = T 2
(k)PCDM(k), T (k) = (1 + (↵k)2)�5, (4)

where the ↵ parameter defines the cutoff scale in the initial power
spectrum and is related to the free-streaming of WDM particles.
The ↵ value can be associated with a generic thermal relic WDM
particle mass, mWDM, using the relation (Bode et al. 2001):

↵=
0.05

hMpc

�1

⇣mWDM

1 keV

⌘�1.15
✓

⌦WDM

0.4

◆0.15✓ h
0.65

◆1.3
⇣gWDM

1.5

⌘�0.29
,

(5)

where ⌦WDM is the WDM contribution to the density parameter,
and gWDM the number of degrees of freedom. It is conventional to
use 1.5 as the fiducial value for gWDM for the WDM particle. The
left panel of Fig. 1 shows also the WDM particle masses for the
three cases, which were chosen by eye to match the initial power
decline of the ETHOS models as well as the FoF halo mass function
(see Fig. 3 and discussion further down).

We note that the Lyman-↵ forest is sensitive to any sort of
small-scale cutoffs in the power spectrum; a feature that puts, for
example, tight constraints on the mass of thermal-relic-WDM parti-
cles (Viel et al. 2013). The acoustic oscillation (rDAO) and damping
(rSD) scales can therefore, in principle, be constrained via Lyman-
↵ forest data as well. Since the shape of the cutoff in our models
is very different from the exponential cutoff in WDM models, it is
thus necessary to perform detailed hydrodynamical simulations for
the models presented here in order to obtain appropriate Lyman-
↵ forest constraints. We will discuss this in a forthcoming work
(Zavala et al., in prep).

3 SIMULATIONS

We generate initial conditions at z = 127 within a 100h�1
Mpc

periodic box (our parent simulation) from which we select a MW-
size halo to be resimulated with a zoom technique. The transfer
functions for all DM models were generated with a modified ver-
sion of the CAMB code (Seljak & Zaldarriaga 1996; Lewis &
Challinor 2011), as described in Cyr-Racine et al. (2015). All ini-
tial conditions were generated with the MUSIC code (Hahn & Abel
2011). The uniform parent simulation is performed at a resolu-
tion of 10243 particles yielding a DM particle mass resolution of
7.8 ⇥ 10

7 h�1
M� and a spatial resolution (Plummer-equivalent

softening length) of ✏ = 2h�1
kpc. This is sufficient to resolve

haloes down to ⇠ 2.5 ⇥ 10

9 h�1
M� with about 32 particles. We

note that the mass and spatial resolution of this parent simulation
is slightly better than the simulations presented in Buckley et al.
(2014), which have a smaller simulation volume. The parent sim-
ulation presented here has therefore better statistics and also in-

Name mDM [M�] ✏ [pc] Nhr

level-1 2.756⇥ 104 72.4 444, 676, 320
level-2 2.205⇥ 105 144.8 55, 451, 880
level-3 1.764⇥ 106 289.6 7, 041, 720

Table 2. Simulation parameters of the selected MW-size halo. We list the
DM particle mass (mDM), the Plummer-equivalent softening length (✏),
and the number of high resolution particles (Nhr). The softening length is
kept fixed in physical units for z < 9. The number of high resolution parti-
cles refers to the CDM case and slightly varies for the other DM models.

Name M200,crit R200,crit Vmax Rmax Nsub

[1010 M�] [kpc] [km s�1] [kpc]

CDM 161.28 244.05 176.82 68.29 16108
ETHOS-1 160.47 243.64 178.12 62.58 590
ETHOS-2 164.70 245.75 181.49 63.72 971
ETHOS-3 163.36 245.09 180.60 64.37 1080
ETHOS-4 163.76 245.30 178.78 69.18 1366

Table 3. Basic characteristics of the MW-size halo formed in the different
DM models. We list the mass (M200,crit), radius (R200,crit), maximum
circular velocity (Vmax), radius where the maximum circular velocity is
reached (Rmax), and the number of resolved subhaloes within 300 kpc
(Nsub).

cludes more massive clusters. It contains 10 haloes with a virial
mass (M200,crit) above 10

14 h�1
M� at z = 0.

The galactic halo for resimulation was randomly selected from
a sample of haloes that have masses between 1.58⇥ 10

12
M� and

1.61 ⇥ 10

12
M�, which is in the upper range of current estimates

for the mass of the MW halo (see Fig. 1 of Wang et al. 2015).
This sample was created using only those MW-size haloes which do
not have another halo more massive than half their masses within
2h�1

Mpc (this is a criterion for isolation). We stress that we do
not consider a local group analog here in this first study. We have
simulated the selected halo at three different resolutions, level-3 to
level-1, which are summarised in Table 2. For these resimulations,
the softening length is fixed in comoving coordinates until z = 9,
and is then fixed in physical units until z = 0. The latter value is
quoted in Table 2. The number of high resolution particles refers to
the CDM simulation only; the other DM models produce slightly
different numbers. The most basic characteristics of the halo are
presented in Table 3 for the highest resolution simulations.

Self-scattering of DM particles was implemented into the
AREPO code (Springel 2010) following the probabilistic approach
described in Vogelsberger et al. (2012), which assumes that scat-
tering is elastic and isotropic. This implementation has previously
been used, in the context of standard SIDM (i.e. with the same
power spectrum as CDM), to constrain the self-interaction cross
section at the scale of the MW dwarf spheroidals (Zavala et al.
2013), predict direct detection signatures of self-interactions (Vo-
gelsberger & Zavala 2013), and study the impact on lensing sig-
nals (Vegetti & Vogelsberger 2014). It was also used to find
that self-interactions can leave imprints in the stellar distribution
of dwarf galaxies by performing the first SIDM simulation with
baryons presented in Vogelsberger et al. (2014a).

MNRAS 000, 1–17 (2015)
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Figure 1. Properties of the effective DM models relevant for structure formation. Left: Linear initial matter power spectra (�linear(k)2 = k3Plinear(k)/2⇡2)
for the different models (CDM and ETHOS models ETHOS-1 to ETHOS-4) as a function of comoving wavenumber k. The ETHOS models differ in the
strength of the damping and the dark acoustic oscillations at small scales. As a reference, we also include thermal-relic-WDM models, which are close to each
model in ETHOS. Right: Velocity dependence of the transfer cross-section per units mass (�T /m) for the different ETHOS models. Models ETHOS-1 to
ETHOS-3 have �T /m / v�4

rel for large relative velocities. For low velocities the cross sections can be as high as 100 cm2 g�1.

the outstanding small-scale problems of the MW satellites. Finally,
we present our summary and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are sum-
marised in Table 1. For all simulations we use the following cos-
mological parameters: ⌦m = 0.302, ⌦⇤ = 0.698, ⌦b = 0.046,
h = 0.69, �8 = 0.839 and ns = 0.967, which are consistent
with recent Planck data (Planck Collaboration et al. 2014; Spergel
et al. 2015). We study mainly five different DM models, which we
label CDM and ETHOS-1 to ETHOS-4. In the parameter space of
ETHOS, these models are represented by a specific transfer func-
tion (see left panel of Fig. 1 for the resulting linear dimensionless
power spectra), and a specific velocity-dependent transfer cross-
section for DM (see right panel of Fig. 1). Our discussion will
mostly focus on ETHOS-1 to ETHOS-3, which demonstrate the ba-
sic features of our ETHOS models. ETHOS-4 is a tuned model that
was specifically set up to address the small-scale issues of CDM
(the MS problem and the TBTF problem). We discuss this model
towards the end of the paper.

These models arise within the effective framework of ETHOS,
described in detail in ?, which we summarise in the following.
ETHOS provides a mapping between the intrinsic parameters (cou-
plings, masses, etc.) defining a given DM particle physics model,
and (i) the effective parameters controlling the shape of the linear
matter power spectrum, and (ii) the effective DM transfer cross sec-
tion (h�T i/m�); both at the relevant scales for structure formation.

Schematically:
n

m�, {gi}, {hi}, ⇠
o

!
n

{an,↵l}, {bn,�l}, {dn,m�, ⇠}
o

! Pmatter(k)

n

m�, {mi}, {gi}
o

!
(

h�T i30
m�

,
h�T i220
m�

,
h�T i1000

m�

)

,(1)

where the parameters on the left are the intrinsic parameters of the
dark matter model: m� is the mass of the dark matter particle, {gi}
represents the set of coupling constants, {hi} is a set of other inter-
nal parameters such as mediator mass {mi} and number of degrees
of freedom, and ⇠ = (TDR/TCMB)|z=0 is the present day DR to
CMB temperature ratio.

The effective parameters of the framework are on the right of
Eq. 1, which in all generality include the doublet {bn,�l} char-
acterising the evolution of dark radiation perturbations, while the
triplet {dn,m�, ⇠} determines the adiabatic sound speed of dark
matter. The latter is very small for non-relativistic dark matter,
thus, it has no impact on the evolution of dark matter perturba-
tions (except on very small scales, irrelevant for galaxy forma-
tion/evolution). On the other hand, since in this work we are only
interested on the evolution of dark matter perturbations, the param-
eters {bn,�l} can be neglected since they have very little impact
on the actual structure of the linear matter power spectrum. More
precisely, when the DR-DR interactions decouple later than the
DR-DM interactions, these terms should be taken into account but
they only affect scales at and smaller than that of the second DAO
peak in the linear power spectrum. This would introduce only mi-
nor corrections that can be neglected for the purpose of following
the non-linear evolution of structures. We are therefore left only
with the doublet {an,↵l}, which fully characterises the evolution
of the dark matter perturbations, with the set of l�dependent coeffi-
cients ↵l encompassing information about the angular dependence

MNRAS 000, 1–17 (2015)
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• Observed number of MW satellites constrains the small-
scale matter power spectrum. 

• Also, kinematical studies might also yield important clues.

Constraints from Milky Way satellites

(Schneider 2015)

Francis-Yan Cyr-Racine, Harvard

Figure 5. Upper limits on the DM-photon elastic scattering cross section as a function of the MW
mass, obtained at 95% CL. They are calculated following the method described in Sec 4.2 by setting
Nsub > 40, considering subhalos with masses above the range Mmin

sub 2 [7 ⇥ 107, 2 ⇥ 108] M� (blue
contour) and also by fixing the subhalo mass to Msub ⇠ 108 M� (dashed curve). For comparison
purposes, we also report the constraints from N-body simulations from Ref. [47] with the red solid
line.

95% CL lower limit corresponds to mWDM > 2.8 keV (for a thermal candidate). Notice that
these results imply an order of magnitude improvement on the DM-photon elastic scattering
cross section over those previously obtained in Ref. [47], while the bound on the WDM mass
we find is very similar to the results from N-body simulations from Ref. [170].

Let us now compare our results with those of previous analyses of MW satellite galaxies.
While a direct comparison of the bounds from MW number counts derived here to the ones
obtained in Ref. [47] is non-trivial, we nevertheless make a comparison to clearly state the
validity of our method. In Ref. [47], the cumulative number count of MW satellites was
studied as a function of their maximal circular velocity, Vmax, the latter being a measure
of their mass. In contrast, our method relies on the subhalo mass M . This implies that,
for a direct comparison, we would need a relationship between Vmax and M for IDM, which
is still missing in the literature. Furthermore, due to the finite resolution, Ref. [47] only
considered subhalos with a maximum peak velocity Vmax >⇠ 8 km/s, while there are known
satellites with Vmax ⇠ 5.7 km/s [176]. We know, however, from WDM simulations [28] (that
show a similar matter power suppression to that of IDM) that Vmax = 8km/s corresponds to
Msub ⇠ 108 M�. As a result, the total number of satellites with Vmax > 8 km/s is expected to
be Nsub(Vmax > 8 km/s) > 40 at 95% CL [177]. Finally, since the simulations in Ref. [47] only
considered DM, they did not include the luminosity function of subhalos discussed above.
This is the reason for using here the fraction of DM halos that host luminous galaxies flum(M)
from CDM simulations (see Section 4.2 for the derivation of the constraints in Section 5.2).

All in all, in order to make a fair comparison with previous estimates, (a) we shall

– 16 –

(Escudero et al. 2018)

See Laura Lopez-Honorez’s talk

6/27/18
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• Difficulty in obtaining halo mass from observations for 
low stellar-mass objects 

Constraints from Milky Way satellites

(Danieli, Van Dokkum & 
Conroy 2018)

Francis-Yan Cyr-Racine, Harvard 6/28/18

4 Danieli et al.

FIG. 3.— Various published stellar mass-halo mass relations (Behroozi
et al. 2013; Garrison-Kimmel et al. 2014; Brook et al. 2014; Rodriguez-
Puebla et al. 2017). Dotted lines are extrapolations of derived relations and
the pink circles are galaxies from the 40 Thieves simulation (Munshi et al.
2017). The upper x�axis has been converted to halo cumulative number
density based on our fiducial cosmology.

with a 2� scatter of 0.92 dex, and

logR
e↵

= 0.23 · logM⇤ � 1.93, (2)

with a 2� scatter of 0.29 dex.
The compiled data along with the best-fit relations are pre-

sented in Figure 2.
Another key ingredient in our calculation is the stellar

mass-halo mass relation for galaxies, M⇤ � Mh. A powerful
and widely used technique to derive this relation is by using
the abundance matching ansatz. In its simplest implemen-
tation, observed galaxies are matched in a one-to-one fash-
ion with dark matter halos from a dark matter-only simula-
tion while assuming a monotonic relation between the stellar
mass, M⇤ and the dark matter halo mass, Mh, such that the
cumulative number density of dark matter halos matches the
cumulative number density of galaxies (e.g. Frenk et al. 1988;
Yang et al. 2003; Kravtsov et al. 2004; Conroy et al. 2006;
Vale & Ostriker 2006; Vale & Ostriker 2006; Guo et al. 2010;
Behroozi et al. 2013; Moster et al. 2013; Brook et al. 2014;
Garrison-Kimmel et al. 2014; Sawala et al. 2015; Rodriguez-
Puebla et al. 2017; Munshi et al. 2017; Read et al. 2017;
Moster et al. 2017). Although abundance matching studies
are in good agreement for halos of masses & 10

11M�, at
lower masses there is a large uncertainty in the stellar mass-
halo mass relation. Different studies present various slopes
for the relation below stellar masses of a few ⇥10

7M�, pre-
sumably due to incompleteness at the low mass end and due
to the variations in the halo mass function assumed in various
simulations. The derived slopes of the low mass M⇤ � Mh

relation, ↵, where M⇤ / M↵
h , span a wide range of 1.6�3.1.

Moreover, while the scatter at the high mass end is consis-
tently measured to be relatively small, ⇠ 0.2 dex or less, low
luminosity galaxies have a more stochastic star formation, re-
sulting in a large scatter.

Recent studies have explored the significance of the scat-
ter in the M⇤ � Mh relation and quantified the scatter in this
relation for low mass galaxies (Garrison-Kimmel et al. 2017;
Munshi et al. 2017; Jethwa et al. 2018). The uncertainty in the
M⇤�Mh relation at low masses can have a large effect on our
predictions. In this calculation we adopt two relations - the
relation from Rodriguez-Puebla et al. 2017 as a lower limit
and the relation from Behroozi et al. 2013 as an upper limit.
In Figure 3 we show these two relations along with other re-
cently derived stellar mass-halo mass relations. We calculate
the cumulative halo number density as a function of halo mass
assuming a dark matter halo mass function from Tinker et al.
2010, obtained using the HMFcalc code (Murray et al. 2013).
We adopt cosmological parameters consistent with the 7 year
WMAP results (Komatsu et al. 2011): H

0

= 70.4 km s�1,
⌦m = 0.27 = 1 � ⌦

⇤

and �
8

= 0.81. The upper x-axis of
Figure 3 shows the values of the cumulative number density
as a function of halo mass.

Given the model ingredients described above, we can cal-
culate the expected number of dwarf galaxies with a particular
distance, size, and surface brightness. The number of detected

galaxies also depends on the imaging capabilities, in particu-
lar, the limiting surface brightness, µ

e↵,lim, and the spatial
resolution, ✓.

For a given limiting surface brightness, µ
e↵,lim, we use the

linear relation shown in equation 1 to get the estimated value
for the limiting stellar mass, M⇤,lim. In order to keep our
calculation conservative we consider the value of the stellar
mass after adding a 2� scatter, i.e., we use: logM⇤,lim =

�0.51 · µ
e↵,lim + 19.23 + 2�

logM⇤ , where � is the standard
deviation. We then use the relation shown in equation 2 to
estimate the effective radius of the galaxies with such stel-
lar masses, considering the smallest detectable objects to be
logR

e↵,lim = 0.23 · logM⇤ � 1.93 � 2�
logReff , i.e., within

2� range of the average effective radius.
In the next step we consider the spatial resolution in arc-

seconds, ✓, which determines the limiting physical size of de-
tectable objects and thus the visible horizon for the lowest
detectable stellar masses. Given a spatial resolution, ✓, ob-
jects with limiting effective radius R

e↵,lim can be identified
as galaxies to distances of

D
lim

(µ
e↵,lim, ✓) =

2.06 · 105 ·R
e↵,lim[pc]

✓ [arcsec]
, (3)

with effective radius calculated as described above:

log(R
e↵,lim) = 0.23 · [�0.51 · µ

e↵,lim + 19.23 + 2�
logM⇤ ]

�1.93� 2�
logReff ,

(4)
where �

logM⇤ = 0.92 and �
logReff = 0.29.

The described model ingredients are combined to calculate
the predicted cumulative number of galaxies, as a function of
stellar mass, limiting surface brightness and resolution, in the
Local Volume (D

LV

=10 Mpc), in the following way:



Mapping the Milky Way satellites
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• We are approaching the limit of visible small-scale structure!

Fornax Sculptor

DracoSegue I Credits: J. Bullock, M. Geha, R. Powell



Solution: Astrometric probes
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• Look for correlated velocity and density structure in the stellar disk, 
stellar streams, and halo stars.

Francis-Yan Cyr-Racine, Harvard

Detecting Dark Matter Substructures around the Milky Way with Gaia 3

label v

h

(x, y)

0

(v

x

, v

y

, v

z

)

0

(km/s) (kpc) (km/s)

vertical 288 (11.45, 0) (-4.6, 0, -288)
prograde 292 (10.97, -1.96) (12.4, 270, -110)
retrograde 291 (11.05, 1.68) (8.3, -270, -108)

Table 2. Properties of the substructure as it crosses the disk of the MW in
the vertical, prograde, and retrograde simulations. Columns one and two
show the simulation label and the substructure speed in the galactocentric
restframe, respectively. Columns three and four provide the x� y galacto-
centric coordinates and the velocity components of the density peak of the
substructure as it moves through the disk (z = 0). The centers of the MW
disk, bulge, and halo are at rest at the coordinate origin.

We run our numerical simulations with PKDGRAV (Stadel
2001), the gravity solver of the TreeSPH code GASOLINE (Wads-
ley, Stadel & Quinn 2004). We adopt conservative values for the
gravity opening angle (0.55) and the time stepping factor (⌘ =

0.15) in order to ensure an accurate integration of the equations
of motions of the stellar and dark matter particles in our models.

We evolve the N-body realizations of the MW and the sub-
structure in isolation for 500 Myrs to minimize non-equilibrium
transients caused by the initial conditions. The structural and kine-
matical properties of our N-body model do not show significant
evolution during this equilibration period indicating that the initial
setup is indeed close to a self-consistent steady state. We subse-
quently integrate numerically the dynamical evolution of the com-
bined MW – substructure system. Our simulations span about 380
Myr of evolution, including about 190 Myr after the substructure
passes through the MW disk.

3 THE KINEMATIC SIGNATURE OF A LOW MASS
SUBSTRUCTURE PASSING THROUGH THE MW

We focus first upon the case of the substructure passing vertically
through the disk. We show in Fig. 2 the effect of the substructure
on the vertical motion v

z

of the stellar disk. Specifically, we show
the change in v

z

after subtracting, particle by particle, the velocities
from an otherwise identical reference simulation that does not in-
clude a substructure. As the substructure descends toward the disk,
it gravitationally attracts part of the stellar disk below it, resulting
in an upward motion (Fig. 2A,B). Because the stellar disk rotates,
the substructure exerts in general a downward force on a different
part of the stellar disk after passing through the disk (Fig. 2C,D).
The result is that for a timescale of about 100 Myr the stellar disk
either shows a well localized maximum of v

z

, a minimum of v
z

, or
even both at the same time. The position of the velocity maximum
(minimum) roughly tracks the projected position of the substruc-
ture when it is above (below) the disk.

At later times (Fig. 2E) the differential rotation winds up the
localized velocity impulse resulting in an extended spiral-like pat-
tern. In addition, the imparted velocity impulse may excite bending
waves that start propagating across the disk and distorted the initial
kinematic signal. Given that the solar neighborhood is likely stable
against the buckling instability (Merritt & Sellwood 1994; Binney
& Tremaine 2008), a conservative lower limit on the bending mode

������
����	
�

����	
�

����	
�


�	
�

��	
�

Figure 1. A low mass substructure (purple) passing vertically through the
stellar disk of the MW (yellow). Tidal forces deform the substructure no-
ticeably, but do not destroy it. The simulated impact occurs 11 kpc from the
Galactic Center at t ⇠ 190 Myr.

Figure 2. Kinematic signature of a low mass substructure passing vertically
through the disk of the MW. Each panel shows a velocity map of the face-on
stellar disk of the MW model at a different time (see legend). The Galactic
Center (white cross) is at X = Y = 0. Panels A through E show the change
in vertical velocity caused by the gravitational pull of the substructure in
500⇥ 500 pc2 bins. Upward (downward) motions are shown in red (blue)
colors. The blue (white) circle in each panel indicates the projected center
of mass of the substructure when it is above (below) the MW disk plane. We
show the position of the substructure in a frame co-rotating with the mean
tangential velocity of stars at 8 kpc from the Galactic Center. The MW –
substructure interaction results in well-localized maxima and/or minima of
the vertical velocity of disk stars, visible in panels A, B, C, and D.

c� 0000 RAS, MNRAS 000, 000–000
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• Detecting dark subhalos through a coherent microlensing 
signal

Another solution: Astrometric microlensing 

Erickcek & Law (2011)
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Fig. 1.— a) Diagram showing the position of the source star (in black), its image (in gray), and the lens (gray ellipse). We will generally assume that α ≪ β so
that the ray’s impact parameter in the lens plane (ξ ≡ dLθ) may be approximated as ξ ≃ dLβ. b) The same lensing system viewed as projected on the sky. The
center of the lens is moving with velocity vT along the x-axis.

the star is shifted from its true position by an angle

α⃗ =
dLS
dS

[

4GM2D(ξ)
ξ

]

ξ̂, (1)

where dS is the distance between the observer and the star, ξ
is the distance between the center of the lens and the star’s
image in the lens plane (ξ⃗ ≡ dLθ⃗), and ξ̂ ≡ ξ⃗/ξ points from
the lens to the star. Throughout this work, we set the speed of
light c = 1. The mass M2D(ξ) in Eq. (1) is the mass enclosed
by the cylinder interior to ξ and is obtained by integrating the
projected surface mass density Σ over the area of the circle
with radius ξ.
As the subhalo moves relative to the background star, the

angle β⃗ that extends from the lens to the star will change,
and the position of the star’s image will change accordingly.
We take the star to be fixed at the origin of an xy coordi-
nate system on the sky, and we define the x-axis to be parallel
to the subhalo’s transverse velocity vT, as shown in the right
panel of Fig. 1. The vertical component of β⃗ is therefore fixed
[βy(t) = βy,0], and

βx(t) = βx,0 − 4.2′′
(

vT
200 km/s

) (

50 pc
dL

) (

t
5 yr

)

, (2)

where βx,0 is the value of βx at t = 0. We see that a nearby
subhalo will move several arcseconds during a multi-year ob-
servational period.
For the subhalos we consider, the deflection angle α will

be on the order of microarcseconds. Since β changes by sev-
eral arcseconds over the course of the observation, β ≫ α for
most of the observational period. We will further assume that
βy,0 ≫ α so that we are always considering the weak-lensing
regime with β ≫ α. We verify in Appendix A that this con-
dition is satisfied for all subhalo lensing scenarios, provided
that dL ≪ 1000 kpc. This confirms that we are firmly in the
weak lensing regime as long as we only consider subhalos in
our local group. In this case, there is only one image of the
star, and it is always located on the line connecting the lens
position to the star’s position, with the star between the image
and the lens. We will use the β ≫ α assumption to simplify
the lens equation by approximating β⃗ ≃ θ⃗. In this case, ξ⃗ may
be approximated as ξ⃗ ≃ dLβ⃗, and Eq. (1) becomes a simple
equation for the deflection angle α⃗ in terms of the impact pa-
rameter β⃗. In the following subsections, we will use Eq. (1) to
show how the path taken by the star’s image during a subhalo
transit depends on the subhalo’s density profile.

2.1. Singular isothermal sphere
The density profile for a singular isothermal sphere (SIS) is

ρ(r) =
σ2v

2πGr2
, (3)

where σv is the velocity dispersion of the halo. Although
numerical simulations indicate that large dark matter subha-
los without baryons do not have this steep a density profile
(Springel et al. 2008; Diemand et al. 2008), we consider the
SIS case in detail because it simply illustrates key features
that are shared by the astrometric lensing signatures from dark
matter halos with shallower profiles.
The two-dimensional enclosed mass for an infinite SIS is

M2D(ξ) = πσ2vξ/G. Since M2D depends linearly on ξ, Eq. (1)
reveals that α is independent of the separation between the
lens and the star. The deflection angle is always the Einstein
angle of the SIS:

θSISE =

(

1 −
dL
dS

)

4πσ2v , (4)

= 10 µas
(

σv
0.6 km/s

)2 (

1 −
dL
dS

)

. (5)

There are two images, with α⃗ = ±θSISE β̂, only if β < θ
SIS
E .

We will only consider larger impact parameters, in which case
there is only one image, with α⃗ = θSISE β̂. As the SIS moves rel-
ative to the star, the direction of the deflection angle changes.
For an infinite SIS moving from the distant left to the distant
right, the image starts θSISE to the right of the star’s true posi-
tion and then traces a half-circle with radius θSISE until it ends
θSISE to the left of the star’s true position.
For an SIS, the mass enclosed in a sphere of radius R is

proportional to R; if the SIS has infinite extent, then its mass
is infinite. It is customary to characterize an SIS by its virial
mass: the mass contained in a sphere with mean density equal
to the virial density ρ̄vir. Bryan & Norman (1998) provide a
fitting formula for the virial density in a flat ΛCDM universe,

ρ̄vir ≡
(

18π2 + 82[ΩM(z) − 1] − 39[ΩM(z) − 1]2
)

ρcrit, (6)

ΩM(z)=
ΩM0(1 + z)3

ΩM0(1 + z)3 + 1 −ΩM0
, (7)

ρcrit(z)=
(

0.0924
M⊕
pc3

)

h2
[

ΩM0(1 + z)3 + 1 −ΩM0
]

, (8)

where H0 ≡ 100h km s−1Mpc−1 and ΩM0 is the present-day
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Fig. 3.— The deflection induced over 4 years by a moving SIS lens with
the same properties as in Fig. 2. The path of the lens is depicted by a dotted
arrow. To show the image trajectories, the image motion is exaggerated a
factor of 106 relative to the star’s positions; a scale bar corresponding to 20µas
motion is shown. Twenty equally spaced measurement points over the 4-year
observational period are shown for each curve. Note that the stars closest to
the lens position undergo much more rapid position changes.

traces out a semi-circle of radius θSIS
E during the few years

surrounding the time of closest approach, just as if the lens
had infinite extent. The effect of the SIS’s truncation is more
apparent in the bottom half of Fig. 2, where βy = 50′′; the im-
age’s trajectory is closer to a circle, and it will become more
and more circular as βy increases. The image transverses this
circle very slowly, taking 10 years to move 2 µas, in contrast
to the image in the top panel, which moves nearly 30 µas in
only 5 years. Thus we see that the only detectable portion of
the image’s path in the sky is the period surrounding the mo-
ment of closest approach between the star and the lens, and a
small impact parameter is required to make the image move
significantly over the course of a few years. Figure 3 further
illustrates the necessity of a small impact parameter by show-
ing how the images of stars at different positions relative to
the lens move over the course of 4 years; only the stars along
the lens’s path with βy ∼< 2′′ have images that are significantly
moved during the observational period. For stars that are this
close to the center of the subhalo, with β ≪ θt, the truncation
of the density profile does not affect the image trajectories,
as seen in the top panel of Fig. 2. We will therefore assume
that β≪ θt for all interesting lensing scenarios and ignore the
subhalo’s truncation when considering other density profiles.

2.2. NFW density profile
The NFW profile,

ρ(r) =
ρs

(

r
rs

) (

1 + r
rs

)2 , (16)

was found to be a universally good fit to the density profiles
of galaxy and cluster halos in early numerical simulations
(Navarro et al. 1996, 1997). The two-dimensional enclosed
mass for a subhalo with virial mass Mvir and an NFW density
profile with concentration c ≡ Rvir/rs is

M2D(ξ)=
Mvir

ln(1 + c) − c
1+c
G

(

ξ

rs

)

(17)

G(x)= ln
x
2
+

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1√
1−x2 cosh−1 1

x for x < 1
1 for x = 1

1√
x2−1

cos−1 1
x for x > 1

(Bartelmann 1996; Golse & Kneib 2002).
From Eq. (1), we see that the magnitude of the deflection

angle α is proportional to M2D/ξ. For the NFW profile, α ∝ ξ
if r ≪ rs, and α ∝ ξ−1 if r ≫ rs. Therefore, as an NFW sub-
halo approaches a star, the deflection angle will increase until
the star crosses the scale radius (ξ ≃ rs), and then it will de-
crease until the star crosses the subhalo center, at which point
it will begin to increase again until the star crosses rs on the
other side of the subhalo. In this sense, the scale radius of an
NFW profile plays the same role as the truncation radius for
a truncated SIS. If the impact parameter is close to the scale
radius (βy ≃ rs/dL), then the image trajectory is roughly circu-
lar, and it resembles the bottom half of Fig. 2. Unfortunately,
the subhalos that are massive enough to deflect the star’s im-
age by several microarcseconds (Mvir ∼> 104 M⊙) have large
scale radii (rs ∼> 2 pc for c ∼< 100); βy ≃ rs/dL is a large im-
pact parameter, and the image position changes very slowly
as the subhalo moves. Moreover, just as with a truncated SIS
lens, the reversal in the image’s motion as the star crosses the
scale radius (β ≃ rs/dL) is very slow, regardless of the impact
parameter βy.

As in the SIS case, the most promising lensing scenario oc-
curs when the center of the NFW subhalo passes very close
to the source. The key difference is that α is nearly constant
for ξ ≪ Rt if the lens is an SIS, which leads to the semi-circle
image trajectory displayed in the top portion of Fig. 2. For
an NFW lens with ξ ≪ rs, the deflection angle is very small,
as shown in the bottom panel of Fig. 4. The NFW density
profile leads to a no-win situation: if you decrease the impact
parameter βy in order to enhance the change in the image’s po-
sition over a set time period, the magnitude of the deflection
decreases. We are forced to conclude that astrometric lensing
by subhalos is only detectable if the inner density profile is
steeper than ρ ∝ r−1.

2.3. Generalized density profile
We have seen that astrometric gravitational lensing by sub-

halos is only detectable if the center of the subhalo passes
close to the star’s position during the observational period,
during which the subhalo moves about 0.001 pc (for a 5-year
observational period). Therefore, only the innermost por-
tion of the subhalo is responsible for the astrometric lens-
ing signature. Unfortunately, very little is known about
the intermediate-mass (10 M⊙ ∼< Mt ∼< 106 M⊙) subhalos
that are capable of producing detectable astrometric lensing
events. High-resolution N-body simulations can probe the
density profiles of only the largest (Mt ∼> 108 M⊙) subha-
los, and even these profiles are unresolved at r ∼< 350 pc
(Springel et al. 2008; Diemand et al. 2008). For these large
subhalos, Diemand et al. (2008) find that ρ ∝ r−1.2 in the
innermost resolved regions, while Springel et al. (2008) see
ρ ∝ r−(1.2−1.7) at their resolution limit for nine large subhalos,
with no indication that the slope had reached a fixed central
value. Meanwhile, at the opposite end of the mass spectrum,
Diemand et al. (2005) find that the first Earth-mass dark mat-
ter microhalos have steeper density profiles with ρ ∝ r−(1.5−2.0)

at redshift z = 26, and higher-resolution simulations indicate
that this steep profile extends to within 20 AU of the micro-
halo center (Ishiyama et al. 2010).
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Fig. 4.— The deflection angle generated by a moving lens with dS = 5 kpc,
dL = 50 pc and vT = 200 km/s. The virial mass of the lens is 5 × 105 M⊙,
and its concentration is Rvir/r−2 = 99. The inner density profile of the lens
is given by ρ ∝ r−γ, and the different panels correspond to different values of
γ. The impact parameter is 1 arcsecond, and only the portion of the image
path corresponding to the time surrounding the moment of closest approach
between the image and lens is shown. Note that the image path becomes more
linear and the image motion slows down considerably as γ is decreased.

In light of this uncertainty, we consider a generic density
profile

ρ(r) = ρ0

(

r
r0

)−γ

(18)

with 1 < γ ≤ 2. We assume that a constant-density core,
if present, is significantly smaller than our typical impact pa-
rameters of 0.001 pc, and we assume that the subhalo does not
contain a black hole. Larger cores would decrease the lens-
ing signal while the presence of a black hole would enhance
it by adding a point mass and steepening the density profile
(Bertone et al. 2005; Ricotti & Gould 2009). If we take this
density profile as infinite when calculating the projected sur-
face density Σ, we find that

Σ(ξ)=
√
π ρ0r0

Γ
[

0.5(γ − 1)
]

Γ
[

0.5γ
]

(

ξ

r0

)1−γ

, (19)

M2D(ξ)=2π3/2
(

ρ0r3
0

) Γ
[

0.5(γ − 1)
]

(3 − γ)Γ
[

0.5γ
]

(

ξ

r0

)3−γ

, (20)

where Γ[x] is the Euler gamma function.
Of course, this density profile does not extend to infinity;

the subhalo’s density profile will be truncated by tidal strip-
ping, and it may also transition to a steeper power law, as in
the case of an NFW profile. If the density profile is truncated
at r = Rt, then the surface density diverges from Eq. (19) as ξ
approachesRt, but for ξ ≪ Rt, Eqs. (19) and (20) are still good
approximations. For instance, if γ = 1.5 (1.2), M2D(ξ) for a
subhalo truncated at Rt is greater than 80% (50%) the value
given by Eq. (20) if ξ ≤ 0.1Rt. We will show in Appendix
A that detectible astrometric signatures are only produced if
ξ < 0.03 pc, and Eq. (20) is accurate to within 20% for sub-
halos with γ ≥ 1.5, Mvir < 108 M⊙, and Rt ∼> 0.1 pc. Fur-
thermore, the lower bound on Rt is significantly smaller for
subhalos with Mvir ≪ 108 M⊙. We will therefore use Eq. (20)
and take Rt ∼> 0.1 pc as a conservative lower bound, although
we note that the resulting deflections may be slightly overes-

timated, especially if γ ∼< 1.2. As shown in Fig. 4, however,
detecting a subhalo with γ ∼< 1.2 is challenging, and we con-
clude that Eq. (20) is accurate to within ∼ 20% for subhalos
of interest.

If a dark matter subhalo with a density profile given by
Eq. (18) passes in front of a star, Eq. (1) tells us that

α⃗ = θα

(

ξ

r0

)2−γ

ξ̂, (21)

where we have defined

θα ≡ 0.88 µas
(

Γ
[

0.5(γ − 1)
]

2(3 − γ)Γ
[

0.5γ
]

) (

1 − dL
dS

) (

pc
r0

) ⎛

⎜

⎜

⎜

⎜

⎝

ρ0r3
0

M⊙

⎞

⎟

⎟

⎟

⎟

⎠

.

(22)
Like θSIS

E , θα depends on the distances to the lens and the
source only through the factor (1 − dL/dS). We also note that
θα is related to the Einstein angle θE:

θα = θ
γ−1
E

(

r0

dL

)2−γ

. (23)

We will continue to assume that α ≪ β so that ξ (see Fig. 1)
is approximately equal to dLβ.

Equation (22) gives the magnitude of the deflection angle
in terms of the parameters of the density profile r0 and ρ0, but
this is not the most useful description of the subhalo. Instead
we characterize the subhalo by either its mass after tidal strip-
ping (Mt ≡ mbdMvir) or the mass contained within a radius
of 0.1 pc from the subhalo center (M0.1pc). Although Mt is a
more standard and intuitive description of the subhalo mass,
using M0.1pc offers two advantages. First, M0.1pc completely
determines the deflection angle; without loss of generality, we
can set r0 = 0.1 pc, in which case

θα = 8.8 µas
(

Γ
[

0.5(γ − 1)
]

2(3 − γ)Γ
[

0.5γ
]

) (

1 − dL
dS

) (

3 − γ
4π

) (M0.1pc

M⊙

)

.

(24)
Second, M0.1pc is the portion of the subhalo’s mass that is ac-
tually probed by astrometric microlensing because truncating
the subhalo’s density profile at Rt = 0.1 pc does not affect
its astrometric lensing signature. Therefore, using M0.1pc to
characterize the subhalo’s mass allows us to consider subha-
los that are more compact than standard virialized subhalos
and makes it easy to apply our results to more exotic forms of
dark matter substructure.

To relate θα to the virial mass of the subhalo, we have to
specify the full density profile. If γ = 2.0, we will assume
that the subhalo is a truncated SIS so that Eq. (18) holds out
to the truncation radius of the subhalo. In this case, Eq. (23)
tells us that θα = θSIS

E , and we can use Eq. (10) to evaluate θα.
If γ ! 2, we will assume that the subhalo’s full density profile
prior to any tidal stripping was

ρ(r) = ρ0
(

r
r0

)γ (

1 + r
r0

)3−γ , (25)

which reduces to Eq. (18) for r ≪ r0. In this case, the
virial mass does not uniquely determine θα, and we also
have to specify the subhalo’s concentration. We define the
concentration as c ≡ Rvir/r−2, where r−2 is the radius at
which d ln ρ/d ln r = −2. For the profile given by Eq. (25),

Challenging 
Measurements!
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• Detecting dark subhalos through a coherent microlensing 
signal

Astrometric microlensing 

Van Tilburg, Taki & Weiner (2018)
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Gravitational probes of dark matter: From 
local to cosmological

Image credit: Rhys Taylor, Cardiff University
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• Use universality of gravity to probe smallest dark matter 
structures. 

Probing substructure through gravitational 
lensing

10 M. Vogelsberger et al.

Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well

MNRAS 000, 1–17 (2015)

Not to scale!See e.g. Dalal & Kochanek (2002); Vegetti et al. 
Nature, (2012); Hezaveh et al., (2016)
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• “Gravitational Imaging” of Perturbed Einstein Rings

Figure 1: The detection of a dark-matter dominated satellite in the gravitational lens system
B1938+666 at redshift 0.881. The data shown here are at 2.2 micron and were taken with the
W. M. Keck telescope in June 2010. Additional data sets at 1.6 micron, from the Keck tele-
scope and the Hubble Space Telescope, are presented in the Supplementary Information. Top-left
panel: the original data set with the lensing galaxy subtracted. Top-middle panel: the final re-
construction. Top-right panel: the image residuals. Bottom-left panel: the source reconstruction.
Bottom-middle panel: the potential correction from a smooth potential required by the model to
fit the data. Bottom-right panel: the resulting dimensionless projected density corrections. The
total lensing potential is defined as the sum of an analytic potential for the host galaxy plus the
local pixelized potential corrections defined on a Cartesian grid. The potential corrections are a
general correction to the analytical smooth potential and correct for the presence of substructure,
for large-scale moments in the density profile of the galaxy and shear. When the Laplace opera-
tor is applied to the potential corrections and translated into surface density corrections, the terms
related to the shear and mass sheets become zero and a constant, respectively. A strong positive
density correction is found on the top part of the lensed arc. Note that these images are set on
a arbitrary regular grid that has the origin shifted relative to the centre of the smooth lens model
by ∆x = 0.024 arcsec and ∆y = 0.089 arcsec. When this shift is taken into account the position
of the density correction is consistent with the position of the substructure found in the analytic
re-construction (see Supplementary Information).

3

Vegetti et al. Nature, (2012)
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• “Gravitational Imaging” of Perturbed Einstein Rings

Hezaveh et al., (2016)adjustable parameters: mass Msub, and 2D location xsub. We
then re-fit the joint data set, re-optimizing all the parameters
fully nonlinearly. We find that a model with a subhalo of mass

= :M M108.96 improves the marginalized log posterior fit by
�D = -47.3 in the joint fit (note that the initial linear search

was performed at Msub= 108.6Me). Based on this result, we
conclude that the ALMA Science Verification observations of
SDP.81 detect a subhalo in the projected mass distribution.
Having found the best-fit parameters for the detected subhalo,
we then sample the full parameter space (smooth lens and

Figure 5. Initial subhalo search using ALMA Science Verification observations of SDP.81. Depicted are maps of linearized �D from Equation (16) showing twice the
difference in log marginalized posterior probability density between a smooth model without substructure and a model with a subhalo of mass M=108.6Me, as a
function of location of that subhalo. The three panels correspond to analysis of Band 6 only (left), Band 7 only (middle), and joint Bands 6 and 7 (right). Based on the
significant improvement to the fit provided by substructure (as indicated by the map), we subsequently added one subhalo to our lens model and re-optimized the
model parameters (see Table 1). The contours in the insets show the 1-, 2-, and 3-σ confidence regions for the position of the subhalo from a nonlinear joint fit to
the data.

Figure 6. Top left: the sky emission model in band 6 for the best-fit smooth lens parameters for the SDP.81 data. Top middle: the same for the perturbed model. Top
right: the difference between the two models. The bottom panels show the same for band 7. The bright feature in the difference plots is mainly caused by the
astrometric anomaly of the arc. In each row, the images have been scaled to the peak flux of the smooth model.

10

The Astrophysical Journal, 823:37 (19pp), 2016 May 20 Hezaveh et al.



Direct Substructure Detection

6/28/18Francis-Yan Cyr-Racine, Harvard 20

• Constraints on the subhalo mass function

Hezaveh et al., (2016)   (see also Vegetti et al. (2014), Li et al. (2016))

we derive Poisson constraints on the underlying subhalo
abundance.

Figure 11 shows the resulting constraints on the differential
subhalo mass function, dn d M Mlog sub( ), derived from the
maps of �D shown in Figure 10. In mass bins where no
subhalos were detected, the downward arrows indicate 95%
upper limits. For the mass bin atMsub=109Me where we have
a detected subhalo, the central 95% confidence region is 0.012
arcsec−2<n<0.2 arcsec−2. If we instead define the
confidence region in terms of levels of equal posterior
encompassing 95% of the posterior, we obtain 0.003
arcsec−2<n<0.1806 arcsec−2. The reason these two ranges
are somewhat different is that the likelihood is asymmetric.

Combining the bounds from the different mass bins, we can
derive constraints on the subhalo mass function using
Equation (26). We describe the mass function using a simple
parametrization, = h-dn d M A M Mlog pivot( ) , and show in
Figure 12 the constraints on these parameters. In the next
section we compare these constraints to the amount of
substructure expected for lens galaxies like SDP.81 in ΛCDM
cosmologies.

6. COMPARISON TO ΛCDM PREDICTIONS

In this section, we compare the constraints on the subhalo
abundance in SDP.81 found above, with predictions from
ΛCDM simulations, and also discuss the neighboring environ-
ment of this system. To predict the subhalo mass function
down to the small masses probed while fully accounting for the
halo-to-halo scatter, we follow the methodology presented in
Mao et al. (2015), which captures the dominant source of the
halo-to-halo scatter by considering both mass and concentra-
tion of host halos. The model is able to reproduce the subhalo
abundance found in high-resolution zoom-in simulations(e.g.,
Xu et al. 2015) as well as larger statistical samples of halos.

We assume the cumulative subhalo mass function has the
form of

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟á > ñ = -

h h- -

n M
M
M

M
M

, 27sub
sub

0

host

0
( ) ( )

where Mhost is the host halo mass, M0 and η are the
normalization and the log–log slope, respectively, of the
subhalo mass function. We then use ΛCDM simulations to
calibrate the relation between the parameter M0 and the mass
and concentration of the host halo. To calibrate this relation, we
use the same set of high-resolution zoom-in simulations
described in Mao et al. (2015) with the addition of a very
high-resolution cosmological box, (40963 particles in a
400Mpc/h box, ds14_i) from the Dark Sky Simulations(S-
killman et al. 2014).15 This calibration is done by: (1) assuming
a constant log–log slope (η); (2) then finding the best-fit M0 for
each host halo in the simulations; and (3) finally, finding the
best-fit values of (α, β, γ) for all host halos in

a= b gM M c . 280 host host ( )
With this model we can then predict the subhalo mass function
given the host halo mass and concentration and the log–log
slope.
The subhalo abundance predicted in the procedure described

above is for all subhalos within the virial radius of the host
halo. To convert our prediction to the relevant quantity probed

Figure 11. Error bars indicate the 95% confidence limits on the projected
differential number density of subhalos around SDP.81 derived using the non-
detection regions shown in Figure 10 and the detection of the 109 Me subhalo.
For comparison, the shaded band shows the 90% confidence region from Dalal
& Kochanek (2002).

Figure 12. Limits on the normalization (A) and slope (η) of the mass function
= h-dn d M A M Mlog pivot( ) using the bounds in Figure 11. Here we use

Mpivot=109Me. The gray contours show constraints derived using Equa-
tion (26), while the red contours show how the constraints change if we neglect
the marginally detected subhalo with M≈108Me. The top panel shows the
probability at η=0.9. The red and black curves simply show a slice of the
probability of the lower panel at η=0.9. For comparison, the histograms show
the distribution of A using assumptions based on ΛCDM simulations assuming
two different values of csubs/chost, which are intended to be representative.
These values assume η=0.9 and a distribution of host halo masses and
concentrations given by abundance matching. See Section 6 for details.

15 http://darksky.slac.stanford.edu
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• Measure the power spectrum of small-scale structure

Other approach: characterizing the collective 
effect of the small-scale structure

10 M. Vogelsberger et al.

Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well

MNRAS 000, 1–17 (2015)
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• The substructure deflection field, leads to subtle surface 
brightness variations along the Einstein ring 

Effect of substructures on lensed images

Lens galaxy Einstein ring

Cyr-Racine, Keeton & Moustakas, arXiv:1806.07897
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• The substructure deflection field, leads to subtle surface 
brightness variations along the Einstein ring 

Effect of substructures on lensed images
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• We can decompose the image residuals in a Fourier-like 
basis to determine which modes are present in the data.

From image residuals to substructure power 
spectrum

11
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FIG. 3. Real and imaginary parts of the W�
l kernel for four di↵erent Fourier modes. The kernels are ordered from long wave-

length modes (top left corner) to short wavelength modes (lower right corner) with {kl
1

, kl
2

, kl
3

, kl
4

} = {1.57, 2.22, 11.0, 19.1}
arscec�1. The source and lens model used here are the same as in Fig. 2

measure a limited number of Fourier modes. Now, com-
pared to large-scale structure surveys, the window func-
tion plays a subdued role here since the gradient of the
source appearing in W�

l

kernel (Eq. (50)) already limits
the sensitivity of the data to Fourier modes with wave-
length on the order of the lens’ Einstein radius or smaller,
independently of the size of A

img

. Furthermore, for the
modes given in Eq. (48), �

ll

(k) is strongly peaked at
k = k

l

while �
ll

0(k) is oscillatory for l 6= l0, hence leading
to strong cancellation4 of the o↵-diagonal elements. We
can thus approximate the window function as

�
ll

0(k) ⇡ �(k � k
l

)

k
l

�
ll

0 , (55)

which yield a C
sub

covariance matrix of the form

(C
sub

)
ll

0 =
4

A
img

k
l

k
l

0

Z
dk k P

(0)

sub

(k)�
ll

0(k)

⇡ 4P
(0)

sub

(k
l

)

A
img

k2

l

�
ll

0 . (56)

We note that for a constant P
(0)

sub

(k) (as in the case of
a population of point masses), Eq. (56) becomes exact
for the diagonal elements of C

sub

. In general, as long
as the value of the convergence power spectrum does not
rapidly vary over the width of the window function, we
find Eq. (56) to be an excellent approximation.

4 For instance, we find that
R1
0

dk k�l,l+1

⇠ 10�3.

B. Numerical implementation

To implement and test the likelihood presented in
Secs. IV A and IV B in the Fourier basis, we have de-
veloped the software package PkLens. Written in pure
Python 3, PkLens uses just-in-time compilation and au-
tomatic parallelization from the numba package to accel-
erate key parts of the computation. The linear algebra
is optimized using a parallelized implementation of the
c�intel Math Kernel Library.

The reality condition W�

�l

= W�⇤
l

implies that the G
matrix defined in Eq. (37) can be written in the following
block structure

G =

✓
X Y
Y⇤ X⇤

◆
, (57)

where X = X† is an Hermitian block and Y = YT is a
symmetric block, both of size N

modes,ind

⇥N
modes,ind

. We
thus need to compute only half the elements of X and half
that of Y (for a total of N

modes,ind

entries, at it should!)
to fully characterize the matrix G. This structure of the
G matrix allows us to use blockwise inversion in order
to compute the matrix D�1 appearing in the likelihood
given in Eq. (40), hence significantly speeding up the
linear algebra. Similarly, only half of the g

l

vector entries
need to be computed since g�l

= g⇤
l

.

Cyr-Racine, Keeton & Moustakas, arXiv:1806.07897
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• The power spectrum has 2 main contributions:

What do we expect: Substructure power 
spectrum

Díaz Rivero, Cyr-Racine, & Dvorkin, arXiv:1707.04590

Depends on inner 
density profile of 

subhalos

Determined by 
average subhalo size

Depends on 
subhalo

clustering

13

FIG. (6): Density profile for a truncated NFW profile
(solid blue) and a truncated Burkert profile (solid green)
for ⌧ = 15, p = 0.7, and m = 106 M�. The gray dot-
ted and dashed-dotted lines represent the scale and tidal

radius, respectively.

FIG. (7): 1-subhalo power spectrum for a population of
tNFW subhalos (solid blue; same fiducial model as in Fig.
3) and tBurk subhalos (solid green). We also show k

trunc

(dotted-dashed gray) and k

scale

(solid gray), as well as
the k � k

scale

behavior of both power spectra.

the 1-subhalo term. In the forthcoming discussion we
will therefore explore the extent of this high-k di↵erence
between the two density profiles we’ve chosen to be rep-
resentative of each dark matter scenario.

We follow an identical procedure to the tNFW case
to determine the 1-subhalo term of the power spectrum,
which is shown in Fig. 7. We also show, for reference,
the fiducial tNFW case shown in blue in Fig. 3. There
is a slight increase in power with respect to the tNFW
population on intermediate scales due to the redistribu-
tion of mass as the core forms, followed by the expected
decrease in power on small scales due to the actual core.
Despite these di↵erences, we note that the changes of
the substructure convergence power spectrum on scales
k

trunc

. k . k

scale

in going from the tNFW to the tBurk
case is well within the variation allowed by varying the

statistical properties of the subhalo population, i.e. the
di↵erent e↵ects shown across Figs. 3 and 4. This implies
that measurements of the power spectrum on these scales
are unlikely to distinguish between a cored or cusped sub-
halo profile.
On even smaller scales k � k

scale

, the tBurk power
spectrum P

1sh

(k) begins to significantly deviate from its
tNFW counterpart. Indeed, since the Fourier transform
of the truncated Burkert profile behaves as

̃

tBurk

(k) ! 8(p4 � ⌧

4)

⌧

2

�
⇡(p� ⌧)2 + 4⌧2 log

⇥
p

⌧

⇤� 1

(k p r
s

)4
, (62)

for k p r

s

� 1, the 1-subhalo term for a population
of cored subhalos goes as P

1sh

(k) / 1/k8 for large k,
much steeper than the 1/k4 expected for NFW subhalos.
Therefore, if at all measurable (see discussion below), the
slope of the power spectrum on these scales could be deci-
sive in determining the inner density profile of subhalos,
which in turn could shed light on the particle nature of
dark matter.

V. DISCUSSION AND CONCLUSION

In this paper we have introduced a general formalism
to study the 2-point correlation function of the conver-
gence field due to subhalo populations in strong gravi-
tational lenses, keeping in mind that the observable for
these types of problems tend to be photon count or sur-
face brightness maps that exhibit multiple images due
to the light from a background source (e.g. a quasar or
a galaxy) having been warped by a massive foreground
object, namely the gravitational lens. We have explored
in depth how di↵erent subhalo population properties af-
fect the substructure convergence field, as well as how it
di↵ers for two alternative dark matter scenarios: CDM,
which we have represented as a population of tNFW sub-
halos, and SIDM, where we used a truncated generalized
Burkert profile to represent the subhalo population.
Using the CDM scenario as our baseline, we found that

the form of the 1-subhalo term is largely determined by
three key quantities: a low-k amplitude proportional to
̄

sub

hm2i/hmi, a turnover scale k

trunc

where the power
spectrum starts probing the density profile of the largest
subhalos, and the wavenumber k

scale

corresponding to
the smallest scale radii beyond which the slope of the
power spectrum reflects the inner density profile of the
subhalos. We have shown that the first of these is di-
rectly related to subhalo abundance and specific statisti-
cal moments of the subhalo mass function. On the other
hand, the turnover scale is determined by the average
truncation radius of the largest subhalo included in the
power spectrum calculation. On scales k & k

trunc

, there
is significant variability depending on the statistical prop-
erties of subhalos - i.e. changes to the tidal truncation,
parameters pertaining to the subhalo mass function, or to
the scale radius-mass relation can shift the distribution

Truncated
Navarro-Frenk-White

10 M. Vogelsberger et al.

Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well

MNRAS 000, 1–17 (2015)
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• These predictions closely match what we get from semi-
analytic galaxy formation models (Galacticus)

What do we expect: Substructure power 
spectrum

Brennan, Benson,  Cyr-Racine +, in prep.
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• For galaxy scale lenses, Yes!
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B. Numerical implementation

To implement and test the likelihood presented in
Secs. IV A and IV B in the Fourier basis, we have de-
veloped the software package PkLens. Written in pure
Python 3, PkLens uses just-in-time compilation and au-
tomatic parallelization from the numba package to accel-
erate key parts of the computation. The linear algebra
is optimized using a parallelized implementation of the
c�intel Math Kernel Library.

The reality condition W�

�l

= W�⇤
l

implies that the G
matrix defined in Eq. (37) can be written in the following
block structure

G =

✓
X Y
Y⇤ X⇤

◆
, (57)

where X = X† is an Hermitian block and Y = YT is a
symmetric block, both of size N

modes,ind

⇥N
modes,ind

. We
thus need to compute only half the elements of X and half
that of Y (for a total of N

modes,ind

entries, at it should!)
to fully characterize the matrix G. This structure of the
G matrix allows us to use blockwise inversion in order
to compute the matrix D�1 appearing in the likelihood
given in Eq. (40), hence significantly speeding up the
linear algebra. Similarly, only half of the g

l

vector entries
need to be computed since g�l

= g⇤
l

.

VI. FISHER ANALYSIS

To develop some intuition about the sensitivity of dif-
ferent lens configurations and observational scenarios to
the substructure convergence power spectrum, it is in-
structive to first carry out a simple Fisher analysis of the
likelihood given in Eq. (43). We adopt a binned substruc-
ture convergence power spectrum as our fitting model,
and the relevant parameters here are thus the amplitude
of P

sub

(k) within each bin, {P
sub,i

}
i=1,...,N

bins

. For the
analysis shown in this section, we divide the range of
scales probed by a given lensed image into 6 wavenumber
bins that are evenly spaced in log(k). In the following,
for each filter centered at wavelength �, we assume that
we have N�

obs

observations of the same lens.

A. Fisher matrix and sensitivity function

The Fisher matrix for the binned amplitude of the
power spectrum takes the form

F
ij

⌘
D @2 ln L

@P
sub,i

@P
sub,j

E

=
�
ij

N
i

2P 2

sub,i

 
1 � A2

img

16P 2

sub,i

N
i

X

l2i

|(D̃�1)
ll

|2k4

l

!

' �
ij

N
i

2P 2

sub,i

 
1 � 1

N
i

X

l2i

1

(1 + P
sub,i

S
l

)2

!
, (58)

where the sum runs over all Fourier modes whose mag-
nitude falls within the range of the ith bin, and N

i

is
the total number of modes within the bin. Notice the
unorthodox sign in the definition of the Fisher matrix
which stems from the fact that the likelihood (43) is
Gaussian in the g̃

l

variables, but with a variance given
by hg̃

l

g̃
l

0i = �D̃
ll

0 . In going from the second to the third
line, we have assumed that the noise for each observation
is Poissonian with C

N

�

,ij

= �
ij

�
1

O
�

(x
i

) (where O
�

(x
i

)
is given in Eq. (13) and �

1

= 1 for pure Poisson noise)
and neglected the o↵-diagonal entries of the G�

ll

0 matrix.
In Eq. (58), we have introduced the sensitivity S

l
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where the sum runs over all the pixels in the image,
and the “⇤” symbol stands for the convolution operation.
Note that we have written the source surface brightness
as S
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(u) = F
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�

(u), where F
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is the total source flux
within the bandpass of the filter and

R
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(u) = 1.
For simplicity, we have omitted the foreground contri-
bution when writing Eq. (61). Since ⇤�

l

describes the
intrinsic sensitivity of a given lens configuration to the
lth mode of the substructure density field, it is a useful
figure of merit to rapidly assess whether a given lens can
provide competitive constraints on the substructure con-
vergence power spectrum. The dimensionless prefactor
Q�

obs

simply captures how the sensitivity S
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scales with
exposure time, number of observations, source flux, noise
level, and detector sensitivity. Not surprisingly, the sen-
sitivity is improved for a longer total exposure, a brighter
source, a lower noise level, and by lowering the value of
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(which could be done by using a larger telescope
and/or a more sensitive camera).
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Use Hubble Space Telescope
mock images to assess sensitivity

• Degeneracies in lens model can bias the power spectrum low

WFC3 UVIS
F555W
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B. Numerical implementation

To implement and test the likelihood presented in
Secs. IV A and IV B in the Fourier basis, we have de-
veloped the software package PkLens. Written in pure
Python 3, PkLens uses just-in-time compilation and au-
tomatic parallelization from the numba package to accel-
erate key parts of the computation. The linear algebra
is optimized using a parallelized implementation of the
c�intel Math Kernel Library.

The reality condition W�

�l

= W�⇤
l

implies that the G
matrix defined in Eq. (37) can be written in the following
block structure

G =

✓
X Y
Y⇤ X⇤

◆
, (57)

where X = X† is an Hermitian block and Y = YT is a
symmetric block, both of size N

modes,ind

⇥N
modes,ind

. We
thus need to compute only half the elements of X and half
that of Y (for a total of N

modes,ind

entries, at it should!)
to fully characterize the matrix G. This structure of the
G matrix allows us to use blockwise inversion in order
to compute the matrix D�1 appearing in the likelihood
given in Eq. (40), hence significantly speeding up the
linear algebra. Similarly, only half of the g

l

vector entries
need to be computed since g�l

= g⇤
l

.

VI. FISHER ANALYSIS

To develop some intuition about the sensitivity of dif-
ferent lens configurations and observational scenarios to
the substructure convergence power spectrum, it is in-
structive to first carry out a simple Fisher analysis of the
likelihood given in Eq. (43). We adopt a binned substruc-
ture convergence power spectrum as our fitting model,
and the relevant parameters here are thus the amplitude
of P

sub

(k) within each bin, {P
sub,i

}
i=1,...,N

bins

. For the
analysis shown in this section, we divide the range of
scales probed by a given lensed image into 6 wavenumber
bins that are evenly spaced in log(k). In the following,
for each filter centered at wavelength �, we assume that
we have N�
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observations of the same lens.

A. Fisher matrix and sensitivity function
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where the sum runs over all Fourier modes whose mag-
nitude falls within the range of the ith bin, and N
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is
the total number of modes within the bin. Notice the
unorthodox sign in the definition of the Fisher matrix
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where the sum runs over all the pixels in the image,
and the “⇤” symbol stands for the convolution operation.
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�

(u) = 1.
For simplicity, we have omitted the foreground contri-
bution when writing Eq. (61). Since ⇤�
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Gravitational probes of dark matter: From 
local to cosmological

Image credit: Rhys Taylor, Cardiff University
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Lovell, Zavala, Vogelsberger Shen, Cyr-Racine +, arXiv:1711.10497

Dark matter physics affects the formation of 
the first stars/galaxies

• Impact on high-z UV luminosity function, reionization, and 
cosmic dawn. 

Predictions for the high-redshift Universe in ETHOS 9
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Figure 6. FUV (150 nm) and NIR (1.15 µm) rest-frame luminos-
ity functions, on the top and middle panels, respectively, plus the
luminosity function in the observer-frame (using apparent mag-
nitudes) in the JWST F150W band in the bottom panel. The
di↵erent colours are for di↵erent redshifts according to the leg-
end, and the solid and dashed lines are for the CDM and ETHOS
cases, respectively. The horizontal dotted line marks the galaxy
abundance below which low number statistics in the simulation
a↵ect the results in a relevant way (< 16 galaxies per bin). For the
upper panel a collection of observations is also shown (Bouwens
et al. 2015a; Livermore et al. 2017). The grey (top panel) and blue
(top and middle panels) bands are estimated observational limits
from HUDF and for an optimistic deep survey with JWST. In
the bottom panel we show the expected JWST magnitude limit
in the observer-frame for the F150W NIRCam filter.

(SSP) using as input the metallicity and age of the star par-
ticle, and using the initial mass function (IMF) used in our
simulation setting (Chabrier IMF; Chabrier 2003); the code
then outputs the spectra of the SSP for the particle. A mass-
weighted sum is then performed across all particles in the
galaxy to compute its spectral energy distribution and total
luminosity in the desired band. We compute the FUV and
Near Infrared (NIR) luminosity functions, at 150 nm and
1.15 µm rest frame wavelengths, top and middle panels of
Fig. 6, respectively. We choose these two wavelengths since
they are representative of the FUV, which is a good tracer of
recent star formation (young stars), and the NIR, which is a
better tracer of the older stellar population (more sensitive
to the prior star formation history). In the bottom panel of
Fig. 5 we also present the evolution of the luminosity func-
tion (in the observer frame) as it would be observed by the
Near InfraRed Camera (NIRCam) on JWST (filter F150W),
taking into account the transmittance of the NIRCam Filter
in JWST6.

The luminosity functions in Fig. 6 are shown in
monochromatic AB magnitudes, rest-frame in the upper and
middle panel, observer-frame in the bottom panel. The FUV
(150 nm) luminosity function is shown in the upper panel
of Fig. 6. The grey vertical band is roughly the current
limit from HST observations (HUDF and CANDELS, see
e.g. Bouwens et al. 2015a), while the blue band is the esti-
mated limit for JWST, which is based on the sensitivities
for the NIRCam for point source detection with a signal to
noise ratio (S/N) of 10 and 104 s exposure7. We scaled these
sensitivities for the fairly optimistic scenario of a deep field
survey with 106 s exposure (assuming a t�2 scaling), a factor
of a few better than the HUDF, and lowering the threshold
for point source detection to S/N = 5. The limit is shown
as a band, since the flux sensitivities in Jy are transformed
into redshift-dependent sensitivities in the rest-frame mag-
nitudes. We observe that it is approximately at the limit of
what JWST can observe in the FUV where the di↵erence
between CDM and ETHOS starts to be apparent. Unless
the actual final survey strategy and depth for JWST is im-
proved, it will be di�cult to distinguish the models in this
way, albeit the high-redshift range z = 10 � 12 might be
promising.

The rest-frame NIR (1.15µm) luminosity function for
our simulations is shown in the middle panel of Fig. 6. Since
this wavelength is more sensitive to the older stellar popula-
tion, and hence to the star formation history, it becomes
less sensitive, particularly at higher redshifts, to the en-
hanced starburst phenomena in ETHOS discussed earlier,
which mostly a↵ect the recent star formation in the galaxy.
The rapid build-up of the galaxy population at the fain-end
observed in the FUV is thus not as apparent in the NIR. The
di↵erence between the ETHOS and CDMmodels is however,
not apparent until z � 8 for MAB(1.15µm) = �14.5.

The sensitivity of JWST to NIR wavelengths relies
on a di↵erent instrument, the Mid InfraRed Instrument

6 https://jwst-docs.stsci.edu/display/JTI/NIRCam+Filters
7 The F115W, F150W and F200W are the NIRCam filters sen-
sitive to the rest-frame FUV (150nm) luminosity function in the
redshifts shown in the top panel of Fig. 6. Their sensitivities were
taken from https://jwst.stsci.edu/instrumentation/nircam
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Figure 12. DM density projections of the zoom MW-like halo simulations
for the tuned model ETHOS-4. The projection has a side length and depth of
500 kpc. The initial power spectrum is essentially the same as in ETHOS-3.
The amount of substructure and the general DM density distribution looks
very similar to ETHOS-3. Remaining differences are driven by the very
different self-scattering cross section between ETHOS-3 and ETHOS-4.

5 CONCLUSION

We have explored simulations of self-interacting DM (SIDM),
which come from a particle physics model with a single dark mat-
ter particle interacting with itself and with a massless neutrino-like
fermion (dark radiation) via a massive mediator. The parameters
of the particle physics model are mapped into an effective frame-
work of structure formation (ETHOS, see Cyr-Racine et al. (2015)),
where each model is described by a specific initial power spectrum
and a velocity-dependent self-interaction cross section.

In this paper we have analysed a few benchmark cases in the
large parameter space of ETHOS, which mainly have relevant con-
sequences for the formation and evolution of dwarf-scale haloes.
We have simulated these cases in (100h�1

Mpc)

3 uniform boxes
with 1024

3 DM particles. A galactic Milky-Way-size halo was then
selected from this box and simulated at higher resolution. Our main
focus is the study of this galactic halo and its subhalo population.
Our highest resolution simulation has a Plummer-equivalent soften-
ing length of 72.4 pc, and a mass resolution of 2.8⇥ 10

4
M�. We

simulate this halo in five different models: CDM and four SIDM
models (ETHOS-1 to ETHOS-4). Our main conclusion is that such
models can not only change the internal structure of subhaloes, but
also affect the subhalo abundance in a similar way to warm dark
matter (WDM) models, due to the inherit damping in the initial
power spectrum. However, unlike WDM models, the damping in
our effective models is much richer since it also contains oscilla-
tory features caused by interaction between dark matter and dark
radiation in the early Universe.

Our main findings are:

• The large scale structure is unaffected in all our non-CDM
models. At z = 0, the matter power spectra of the different models

agree with that of CDM for k . 200h�1
Mpc (Fig. 2). The halo

mass functions also agree above ⇠ 10

11 h�1
M�, but there is a

clear departure from CDM below this scale, which is mostly driven
by the primordial damping in the power spectrum (see Fig. 3). We
complement our simulations by analytical insight and provide a
mapping from the primordial damping scale in the power spectrum
to the cutoff scale in the halo mass function and the kinetic decou-
pling temperature.
• The inner (core) density (within a fixed physical radius of

8.7 kpc) is reduced mostly in the low mass haloes since the im-
pact of self-interactions and power spectrum damping is the largest
at those masses in the models we explored. Inner densities are af-
fected below 10

12 h�1
M� and can be reduced by up to 30% for

haloes around 10

10 h�1
M�, relative to CDM (Fig. 5). In the model

with the largest cross section (ETHOS-3), we also find a mild re-
duction of the central density in cluster scale haloes.
• The density profile of MW-size haloes shows a small core .

2 kpc in the SIDM models, with the core size being the largest for
the model with the largest scattering cross section (Fig. 7).
• The subhalo abundance is strongly affected by the damping

of the initial linear power spectrum. The selected models span the
whole range between the CDM prediction and the observed satel-
lite population (completeness corrected) of the Milky Way (Fig. 8).
One of our models, ETHOS-1, would most likely be ruled out by
observational data if baryonic processes were to be included, i.e.
supernovae feedback, early heating by reionisation and tidal strip-
ping.
• The internal structure of subhaloes is affected by both self-

interactions and the primordial damping of the power spectrum re-
ducing the enclosed mass in the inner regions and producing central
density cores for the most massive subhaloes. Three of our bench-
mark cases (ETHOS-1 to ETHOS-3) “over-solve” the too-big-to-
fail (TBTF) problem in the sense that they reduce the central mass
of subhaloes too strongly. The resulting circular velocity curves
then lie below the observational data points coming from the in-
ferred kinematics of the classical MW dSphs (Fig. 9). This implies
that ETHOS models can actually be constrained by comparing to
observational data. The large impact on the structure and appear-
ance of massive subhaloes can also be seen in Fig. 13, where we
show density maps of the two most massive subhaloes for the CDM
and ETHOS-4 model.
• We have searched over the parameter space of ETHOS to

construct one model (ETHOS-4), which solves the TBTF problem
and at the same time alleviates the missing satellite (MS) problem
(Fig. 11).
• We also notice that introducing a cutoff in the primordial

power spectrum (in our case caused by DM-DR interactions), is
a natural way to create a dispersion in the circular velocity profiles
of haloes with sizes around the cutoff scale. This might help to al-
leviate the problem of diversity of rotation curves present in dwarf
galaxies (Oman et al. 2015); albeit this problem has only been re-
ported at scales larger than the ones discussed here. We stress that
current hydrodynamical simulations fail to reproduce this diversity
in the inner regions of dwarf galaxies; i.e., there exists currently
no viable solution for this problem within CDM even if baryonic
processes are considered.

We have demonstrated that despite the larger accessible pa-
rameter space of our particle physics models, it is by no means
trivial to find a viable and promising DM solution to some of
the small-scale problems of galaxy formation. Instead, we found
a surprising non-linear amplification of the effects of late DM self-

MNRAS 000, 1–18 (2015)
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CMB: Dark matter provides gravitational 
potential wells for baryons to fall into
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On scales probed by the CMB, the cold dark 
matter picture is remarkably consistent

Calabrese et al. (2011)
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Still lots of interesting scenarios to play with!
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ΣDAO=10-2.5

Bringmann, Kahlhoefer, Schmidt-Hoberg, Walia (2018)
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FIG. 1. Left panel. Evolution of comoving DM density for the step-like transition described by Eq. (1), for a transition redshift
of at = 10�3, a conversion factor of 1+ ⇣ = 1.1 and, as indicated, four values of the parameter  characterising the steepness of
the transition. For comparison, we also show the case of decaying DM (dotted line), assuming that a fraction ⇣/(1 + ⇣) of the
initial DM abundance decays with a rate � = 0.15H

eq

. Right panel. Resulting evolution of the comoving DR density as given
in Eq. (5). This assumes that there is no additional (e.g. constant) source of DR and, for the translation to �Ñ

e↵

as defined
in Eq. (6), we have here chosen ⇢0� to agree with the value of ⌦0

�h
2 = 0.1198 measured by Planck.

radiation component, �Ne↵ > 0.1

This article is structured as follows: In the next section
we will discuss how we implement the DM-DR transition.
In Sec. III we will discuss the e↵ects on the CMB as well
as the resulting constraints, while Sec. IV is devoted to
the discussion of low redshift observables. In Sec. V we
will map our general constraints to the case of Sommer-
feld enhanced annihilation, before we conclude in Sec. VI.

II. CONVERTING DARK MATTER TO DARK
RADIATION

As motivated in the introduction, our aim is to quan-
tify in rather general terms i) how much DM can be con-
verted to DR, as well as how this depends on the ii)

time and iii) rate of this conversion. Phenomenologically
we are thus interested in a step-like transition in the co-
moving DM density as shown in the left panel of Fig. 1
where, at least for the moment, we choose to remain com-
pletely agnostic about the underlying mechanism that
causes such a transition (in Sec. V we will discuss one
possible realisation of such a scenario in detail).

A. Evolution of background densities

In the following, we will adopt a simple parametric
form for the DM density ⇢�(a) as shown in Fig. 1, namely

⇢�(a) =
⇢0�
a3


1 + ⇣

1� a

1 + (a/at)

�
. (1)

1 BBN constraints of a possible DM-DR conversion have recently
been studied in Ref. [29].

Here a denotes the scale factor of the Friedman-
Robertson-Walker (FRW) metric, ⇢0� ⌘ ⇢�(1) the DM
density today, and the three parameters (⇣, at, ) directly
relate to the points i) – iii) raised above. Specifically,
the comoving DM density decreases in total by a factor
of 1 + ⇣, the transition is centred at a = at, and the
parameter  determines how fast the transition occurs.
By assumption, we demand that this transition occurs

because DM is being converted to radiation. The rates of
change of the comoving DM and DR densities must thus
be of equal size, and opposite in sign:

1

a3

d

dt

�
a3⇢�

�
= � 1

a4

d

dt

�
a4⇢�

�
. (2)

Alternatively, we can write this statement in terms of
coupled Boltzmann equations for the two fluid compo-
nents:

d⇢�
dt

+ 3H⇢� ⌘ �Q (3)

d⇢�
dt

+ 4H⇢� = Q , (4)

where H = ȧ/a is the Hubble rate and Q > 0 describes
the (momentum-integrated) collision term. In this for-
mulation, being agnostic about the underlying mecha-
nism of the DM to DR transition simply means, as in-
dicated, that we start from Eq. (1) and view Eq. (3) as
a definition for Q – rather than determining ⇢� from a
given collision term.
We can now obtain the DR energy density by integrat-

ing Eq. (2), with the boundary condition ⇢�(a ! 0) = 0.
This leads to
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Executive summary

• Gravitational probes of dark matter physics are very diverse in 
their methods, just like the standard “triad” .

• There are a lot of good ideas out there. We now need to do the 
dirty work of getting actual measurements and constraints.

• We need better studies of the possible complementarity
between different gravitational probes (just like dark energy 
science). 

• In the long term, I think strong gravitational lensing offers the 
best prospects due to the large number of targets that will be 
discovered in the next decade, especially with LSST and 
Euclid. 
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The next decade of dark matter science: 
LSST

https://lsstdarkmatter.github.io/
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The next decade of dark matter science
• Unlocking the mystery of dark matter is a truly multi-

disciplinary endeavor. 

simulator

Thank you!



Backup: Galaxy-scale Gravitational Lenses
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Credits: Leonidas Moustakas


