Axions and X-ray polarimetry

Francesca Day

University of Cambridge

Dark Side of the Universe June 2018

1801.10557: FD and S Krippendorf In collaboration with S Krippendorf and F Marin

Francesca Day (University of Cambridge)

Axions and X-ray polarimetry

DSU 2018 1 / 30

- 4 同 1 - 4 回 1 - 4 回 1

- 2 Axion searches in X-rays
- 3 Axion searches in X-ray polarimetry

Conclusions

900

イロト イポト イヨト イヨト

- Axions are ultra-light particles that exist in many extensions of the Standard Model
- They are pseudo-Nambu Goldstone bosons of global U(1) symmetries.
- Explain null measurements of the neutron electric dipole moment
- String theory compactificiations typically give rise to many axions at a range of masses
- Axions can act as both dark matter and dark energy

・ 同 ト ・ ヨ ト ・ ヨ ト

- Axions are theoretically well motivated, but their cosmological abundance and phenomenology depends on many unknown parameters.
- We remain agnostic as to axion cosmology, and seek to constrain the existence of the axion in particle physics.

DSU 2018 4 / 30

Axions

Axions

$$\mathcal{L}=rac{1}{2}\partial_{\mu} extbf{a}\partial^{\mu} extbf{a}-rac{1}{2}m_{ extbf{a}}^{2} extbf{a}^{2}+rac{ extbf{a}}{M} extbf{E}\cdot extbf{B}$$

- $\mathcal{L} \supset \frac{a}{M} \mathbf{E} \cdot \mathbf{B}$ leads to axion-photon interconversion in the presence of a background magnetic field.
- $\bullet\,$ Model axion-photon conversion with classical equation of motion from $\mathcal{L}.$
- Assume that the axion wavelength is much shorter than the scale over which its environment changes, allowing us to linearise the equations of motion.

(4 回) (4 \Pi) (4 \Pi)

Axion-photon conversion

$$\begin{pmatrix} \omega + \begin{pmatrix} \Delta_{\gamma} & 0 & \Delta_{\gamma ax} \\ 0 & \Delta_{\gamma} & \Delta_{\gamma ay} \\ \Delta_{\gamma ax} & \Delta_{\gamma ay} & \Delta_{a} \end{pmatrix} - i\partial_{z} \end{pmatrix} \begin{pmatrix} |\gamma_{x}\rangle \\ |\gamma_{y}\rangle \\ |a\rangle \end{pmatrix} = 0$$

$$\Rightarrow \Delta_{\gamma} = \frac{-\omega_{pl}^{2}}{2\omega}$$

$$\Rightarrow \text{ Plasma frequency: } \omega_{pl} = \left(4\pi\alpha \frac{n_{e}}{m_{e}}\right)^{\frac{1}{2}}$$

•
$$\Delta_a = \frac{-m_a^2}{\omega}$$
.
• Here we take $m_a = 0$. This is valid for $m_a \lesssim 10^{-12} \,\mathrm{eV}$.
• Mixing: $\Delta_{\gamma a i} = \frac{B_i}{2M}$

$$P_{a \to \gamma}(L) = |\langle 1, 0, 0 | f(L) \rangle|^2 + |\langle 0, 1, 0 | f(L) \rangle|^2$$

-

Axion-photon conversion

•
$$P_{\mathsf{a}
ightarrow\gamma}\propto rac{B_{\perp}^2}{M^2}$$
 for $rac{B_{\perp}^2}{M^2}\ll 1$

- *P*_{a→γ} increases with the field coherence length and the total extent of the field.
- High electron densities increase the effective photon mass, suppressing conversion.
- Astrophysical environments lead to the highest conversion probabilities.

Axions

Limits

Reproduced from the Particle Data Group

Francesca Day (University of Cambridge)

Axions and X-ray polarimetry

э DSU 2018 8 / 30

1

э

Spectral Modulations

We search for axions by studying the X-ray spectra of point sources in or behind galaxy clusters.

- 4 同 1 - 4 三 1 - 4 三 1

Galaxy clusters

Axion searches in X-rays

Photon survival probability

Reproduced from F Marin et al, 1709.03304

Francesca Day (University of Cambridge)

Axions and X-ray polarimetry

< 口 > < 同

3 DSU 2018 11 / 30

Image: A matrix and a matrix -

Photon survival probability

Photon-Axion Conversion

- Photon to axion conversion can lead to modulations in an initially pure photon spectrum, given by the photon survival probability P_{γ→γ}(E).
- At X-ray energies in galaxy clusters, $P_{\gamma \to \gamma}(E)$ is pseudo-sinusoidal in $\frac{1}{E}$.
- Axion induced oscillations in P_{γ→γ}(E) would be imprinted on the observed spectrum.
- We seek to constrain M by searching for such oscillations.

イロト イロト イヨト イヨト 二日

Bounds

The leading bounds are from NGC1275 in Perseus, 2E3140 in A1795 and M87 in Virgo: $M\gtrsim 7\times 10^{11}$ GeV.

Axion-photon conversion

$$\begin{pmatrix} \omega + \begin{pmatrix} \Delta_{\gamma} & 0 & \Delta_{\gamma ax} \\ 0 & \Delta_{\gamma} & \Delta_{\gamma ay} \\ \Delta_{\gamma ax} & \Delta_{\gamma ay} & \Delta_{a} \end{pmatrix} - i\partial_{z} \begin{pmatrix} \mid \gamma_{x} \rangle \\ \mid \gamma_{y} \rangle \\ \mid a \rangle \end{pmatrix} = 0$$

Only the photon polarization parallel to the external magnetic field participates in axion-photon conversion.

Definitions, idea

Francesca Day (University of Cambridge) Axions and X-ray polarimetry DSU 2018 16 / 30

Э

イロト イポト イヨト イヨト

IXPE

Francesca Day (University of Cambridge)

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>

Polarimetry oscillations

Polarimetry oscillations

Assuming a featureless intrinsic AGN polarisation, we project constraints of $M\gtrsim 8\times 10^{11}$ GeV with IXPE.

DSU 2018 19 / 30

(4) E (4) E (4)

Type I AGN polarization

DSU 2018 20 / 30

Type I AGN polarization

DSU 2018 21 / 30

Type II AGN polarization

3 DSU 2018 22 / 30

Type II AGN polarization

DSU 2018 23 / 30

Convolution

<ロト <回ト < 回ト < 回ト

Ξ

Axions and AGN polarization

- Axion effects may be clearly present in AGN polarization spectra.
- Competitive bounds on axions may be obtained by studying these spectra.
- Correlation between polarisation and flux anomalies may provide a smoking gun signal for axions.
- Axion effects may effect estimation of AGN parameters

Conclusions

- Axions are a well motivated dark matter candidate.
- Axions and photons interconvert in the presence of a background magnetic field.
- Astrophysical magnetic fields offer powerful opportunities to search for axions.
- Points sources passing through galaxy clusters have the potential to place world leading bounds on the axion photon interaction.

Bounds procedure I

Francesca Day (University of Cambridge) Axions and X-ray polarimetry DSU 2018 27 / 30

< □ > < □ > < □ > < Ξ > < Ξ >

Ξ

Bounds procedure II

Francesca Day (University of Cambridge) Axions and X-ray polarimetry DSU 2018 28 / 30

< □ > < □ > < □ > < Ξ > < Ξ >

Ξ

Cosmological Axion Populations

- Vacuum realignment
- Decay of topological defects
- Thermal axions
- Decay of parent particle

∃ ⊳.

Cosmological Axion Populations

Reproduced from D Marsh, 1510.07633

Francesca Day (University of Cambridge)

Axions and X-ray polarimetry

DSU 2018 30 / 30

DQC