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Cosmic rays as dark matter messengers

modulation 
by solar wind deflection in 

magnetic field

proton > 10MeV red
electron > 10MeV green

positron > 10MeV blue
neutron > 10MeV turquoise

muon > 10MeV magenta
photon > 10keV yellow

interactions with
atmosphere

Uncertainties:Uncertainties:

• dark matter annihilation or decaydark matter annihilation or decay

• dark matter clumpingdark matter clumping

• Galactic propagationGalactic propagation

• solar modulationsolar modulation

• geomagnetic deflectiongeomagnetic deflection

• atmospheric interactionsatmospheric interactions

• interactions in detectorinteractions in detector

+ astrophysical background+ astrophysical background

DM annihilation 
or decay
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Dark matter signal in positrons?

Jin et al.,  JCAP 1509 (2015) 09, 049

● dark matter models are severely constrained: 
● large cross sections

● explained by nearby pulsars producing 
electrons and positrons?
● anisotropy should be smaller than AMS-02 

limit, but still measurable with ACTs
● HAWC excludes some local pulsars as 

source of anomalous positron fraction
● different acceleration mechanisms

Kopp 2013

Linden & Profumo 2013

propagation models

dark matter

pulsars
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Diffuse Galactic g-ray excess

• gamma-ray excess at the galactic center 
→ ~30GeV dark matter particle?

• unresolved millisecond pulsars?

• from pion production in molecular clouds

• tension with dwarf galaxies

• understanding of astrophysical background is 
a big challenge

Daylan et al., Phys.Dark Univ. 12 (2016) 1

→ Charles,
Moulin, 
    Weniger, 
    Gonthier
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Antiprotons
Kappl et al., JCAP 1510 (2015) 10, 034  Cuoco et al., JCAP 1710 (2017) 053

● latest AMS-02 antiproton results are also very actively interpreted

● discussion is inconclusive if an additional component is needed or not

● better constraints on cosmic-ray propagation and astrophysical production are 
needed
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Status of cosmic-ray antideuterons

astrophysical background:
collisions of protons and antiprotons 
with interstellar medium

Neutralino:
SUSY lightest supersymmetric 
particle, decay into bb, compatible 
with signal from Galactic Center 
measured by Fermi

late decays of unstable gravitinos

Examples for beyond-standard-model 
Physics (compatible with p):

factor 100

Antideuterons are the most important unexplored indirect detection technique!

GAPS and AMS sensitivities are based on simulations
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More antideuteron models

Blum et al., arXiv:1709.06507

Tomasetti & Oliva, arXiv:1712.03177

Lin et al., arXiv:1801.00997
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Astrophysical background only:

Dark matter annihilation:

● antideuterons and 
antiprotons have to be 
explained simultanously

● evaluate propagation 
effects

● nuclear modeling
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(Anti)deuteron formation

• d (d) can be formed by an p-n (p-n) pair if coalescence momentum p0 is small

• use an event-by-event coalescence approach with hadronic generators

dark matter conventional production 
(e.g., p+ISM) & dark matter

Schwarzschild &Zupancic, Physical Review 129, 854 (1963)
Ibarra & Wild, Physical Review D88 020314 (2013)
Aramaki et al., Physics Reports 618, 1 (2016)

 A. Ib arra, S. Wild Phys. Rev. D 88, 023014 (2013)
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Issues of the coalescence model
● coalescence uncertainties are about a 

factor of 10 on the flux

● coalescence is highly sensitive to two-
particle correlations between the 
participating (anti)nucleons (non-
pertubative regime)

● generators not really tuned for 
antiparticle production
→ tune with antiproton, deuteron, and 
antideuteron data
→ test antiproton spectra first, 
antineutron data are hard to come by

● hadronic generators do not include 
coalescence formation
→ add ”afterburner“

Gomez et al., arXiv:1806.09303

● compared simulation results to available data 
sets (p+p, p+A) → best-fit coalescence 
momentum per data set

● more high statistics data needed to 
constrain (anti)deuteron coalescence model
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NA61/SHINE experiment at SPS, CERN

● multi-purpose, fixed-target experiment at the CERN SPS
(NA61/SHINE facility paper: JINST 9 (2014) P06005)

● precise measurements of properties of produced particles: q, m, p
● cosmic-ray antideuteron production happens between 40 and 400GeV 

● SPS energies from 9 to 400GeV are ideal
● data under discussion from the NA61/SHINE strong interactions program:

● p+LH data taken at 13, 20, 31, 40, 80,158, 400GeV/c (2016)

● (anti)deuteron analysis is ongoing

SPS Heavy Ion and Neutrino Experiment
pre-decessor: NA49 



P. von Doetinchem                   Antinuclei                   Jun 18 – p.11p.

Geomagnetic efficiency

● Earth‘s magnetic field deflects charged 
particles depending on charge and 
momentum → not every position on orbit 
sees the same exposure to cosmic rays

● AMS-02 is installed on the ISS (latitude ±52°)

→ understanding of geomagnetic 
environment crucial for low rigidities

● GAPS is planned to fly from Antarctica (~-80°)
→ geomagnetic corrections are minimal

GAPS

AMS-02 TOF
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Identification challenge

Required rejections for antideuteron 
detection:

– protons: > 108 - 1010

– He-4: > 107 - 109

– electrons: > 106 - 108

– positrons: > 105 - 107

– antiprotons: > 104 - 106

Antideuteron measurement with balloon 
and space experiments require:

– strong background 
suppression

– long flight time and large 
acceptance
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AMS-02 antideuteron analysis

• antideuteron identification:

– momentum measured in the form of rigidity 

– charge from TOF, TRD, tracker

– lower velocities: Time Of Flight scintillator system

– higher velocities: Ring Image Cherenkov detector

• self-calibrated analysis:

– calibrate antideuteron analysis with deuterons and antiprotons (simulations and data)

– analysis is ongoing
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The GAPS experiment Columbia U, UCSD
UCLA, UCB, 
U Hawaii, MIT

TOF with PMT
or SiPM readout

3m

3.6m

mass: ~1,800kg
power: 1.4kW

~1400 Si(Li)
wafers

1,000 Si(Li) wafers

• the General AntiParticle Spectrometer is specifically designed for low-energy 
antideuterons and antiprotons
• Long Duration Balloon flights from Antarctica
• GAPS is funded by NASA, JAXA, JSPS, INFN since 2017 → first flight 2020
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GAPS detector production

• GAPS will use ~1,000 4” Si(Li) detectors, 2.5mm thick
• fabrication scheme developed at Columbia U, produced by private company Shimadzu, Japan
• confirmed performance with cosmic rays (MIPs) and Am-241 source (X-rays)

• TOF testing and development ongoing

Am-241 59 keV source

FWHM: 4.4 keV

Si(Li) detector

TOF paddle
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Antihelium candidates by AMS-02

● antihelium-3 and antihelium-4 candidates have been identified
● massive background simulations are carried out to evaluate significance
● more data are needed
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Antihelium models

Blum et al., arXiv:1709.06507

Tomasetti & Oliva, arXiv:1712.03177

Coogan, Profumo, Phys. 
Rev. D 96, 083020 (2017)
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Astrophysical background only:

Dark matter annihilation:

● antideuterons, 
antiprotons, antihelium 
have to be explained 
simultanously

● nuclear modeling
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Conclusion & Outlook

AMS on ISS

GAPS from
Antarctica

● antideuteron searches are 
experimentally challenging
→ multiple experiments for 
     cross-checks are important

● AMS-02 antideuteron and antihelium 
analyses are ongoing

● GAPS is under development
→ first flight in late 2020

● measurements with NA61/SHINE will 
improve understanding of 
antideuteron production and 
modeling

● measurement of antideuterons is 
a promising way for indirect dark 
matter search
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Positrons from pulsars?

● local pulsars were considered the most probable source for high energy 
positrons

● observation of local pulsars by HAWC (g-ray observatory using water 
Cherenkov method) show that these local pulsars are not bright enough to 
explain the anomalous positrons observed at Earth

● measurements do not rule out the pulsar hypothesis, they do eliminate two of 
the most probable local accelerators.

HAWC collaboration, Science 358 (6365), 911 (2017)
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GAPS low-energy antiproton
Predicted primary 
antiproton fluxes from:

● Neutralinos
● LZP
● Gravitinos
● primordial black holes

as seen by 
1 GAPS 
LDB flight
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