

#### **PAMELA experiment: cosmic rays deep inside the heliosphere**

Riccardo Munini, INFN Trieste On behalf of the PAMELA collaboration

14th International Workshop Dark Side Of the Universe 27 June 2018 – Annecy, France









# Resurs DK1 satelliteHigh quality image;

# Resurs DK1 satellite

- High quality image;
- Quasi-polar elliptical orbit 70 degree inclination 350/610 km.



# Resurs DK1 satellite High quality image;

 Quasi-polar elliptical orbit 70 degree inclination 350/610 km.

Multi-purpose cosmic ray experiment:



#### Resurs DK1 satellite

- High quality image;
- Quasi-polar elliptical orbit 70 degree inclination 350/610 km.

Multi-purpose cosmic ray experiment:

- Origin, propagation, composition;
- Antimatter component;
- Indirect dark matter detection;
- Solar physics and solar modulation.



# **The PAMELA instrument**

24 bars of plastic scintillator disposed on six plane, S11, S12, S21, S22, S31, S32: velocity, absolute charge Z<8.

Six plane of double side microstrip silicon detector inside a magnetic cavity: rigidity, absolute charge Z<6, charge sign.

44 planes of Si detector interleaved with 22 tungsten planes, 16.3 radiation length: hadron lepton separation.



GF: 21.5 cm2 sr Mass: 470 kg Size: 130x70x70 cm Power budget: 360 W

(CAS, CARD e CAT) nine plane of plastic scintillator around the apparatus: reject false trigger or multi-particle events.

36 proportional counter filled with 3He: improve hadron rejection.

### Cosmic rays inside Heliosphere

е.

٧s

decay

decay

 $\pi^{\dagger}, \pi^{\dagger}$ 

р

 $\pi_0$ 

ISM gas

p, He, C,

N, O, Li,

Be, B, ...

p, He, C

Ν, Ο

**CR** secondary

production

( pp  $\rightarrow$  X )

Bremsstrahlung, Synchrotron, Inverse Compton

Solar Modulation, lower

Bow Shock Heliopause Heliosheath Termination Shock Sun



#### 8

### Positron fraction high energy excess



#### Bremsstrahlung, Synchrotron, Inverse Compton

High energy: first evidence of positron excess above10 GeV with respect to pure secondary production;

# Positron fraction and solar modulation



#### Bremsstrahlung, Synchrotron, Inverse Compton

High energy: first evidence of positron excess above 10 GeV with respect to pure secondary production;

Low energy: time dependence introduce by the solar modulation!





Low energy signals from dark matter annihilation: Antiproton

#### Astrophysical background, of the order of the secondaries...

Bow Shock

Heliopause Heliosheath Termination Shock

Sun





#### Cosmic rays propagation inside Heliosphere Convection Below ~ 30 GV heliosphere A > 0Diffusion strongly affects CRs at Earth dec $\pi, \pi$ Perpendicular diffusion $\underbrace{\frac{\partial f}{\partial t}}_{t} = -\underbrace{\mathbf{V} \cdot \nabla f}_{t} + \underbrace{\nabla \cdot (\mathbf{K}_{s} \cdot \nabla f)}_{t} - \underbrace{\langle \mathbf{v}_{\mathbf{D}} \rangle \cdot \nabla f}_{t} + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln p} + \underbrace{Q(\mathbf{x}, p, t)}_{t}$ G,C & NS Drifts (a) f(x, p, t), omnidirectional function distribution of CRs; (b) convection with solar wind V; (c) diffusion by magnetic field irregularities; (d) drift, curvature and gradient in magnetic field; (e) adiabatic energy losses; (f) local sources (Jovian electrons) Shock-drift Heliosphere: ideal environment to test the theory for propagation of charged particles under conditions which well approximate cosmic condition. A < 0

#### credit: ESA

14

#### Propagation in the Heliosphere



#### Propagation in the Heliosphere: protons over a solar cycle



Adriani, O. et al. 2017, NUOVO CIMENTO, 40, 47

# Propagation in the Heliosphere

![](_page_16_Figure_1.jpeg)

#### Bremsstrahlung, Synchrotron, Inverse Compton

#### Somr Modulation, lower

Local Interstellar Spectrum: based on propagation model (GALPROP) or Voyager data

> Termination Shock Sun

![](_page_16_Picture_6.jpeg)

#### Propagation in the Heliosphere Bremsstrahlung, Synchrotron, **A**- $10^{0}$ Modulation factor x 10 x 5 x 100 Model 2006e Model 2007m Model 2007e $10^{-1}$ Model 2008m Model 2008e Model 2009m

![](_page_17_Figure_1.jpeg)

 $10^{1}$ 

10<sup>0 |</sup>

18

tra

# Propagation in the Heliosphere: Modeling

![](_page_18_Figure_1.jpeg)

credit: ESA

Heliosheath

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_21_Picture_0.jpeg)

### Propagation in the Heliosphere: other elements

![](_page_21_Figure_2.jpeg)

#### ahlung, Synchrotron, verse Compton

Solar Modulation, lower terstellar cosmic ray spectra

eliopause Heliosheath Termination Shock Sun

credit: ESA

22

#### Propagation in the Heliosphere: other elements ahlung, Synchrotron, **Electron LIS** $10^{2}$ $10^{2}$ s/MeV) **Spatial diffusion** (900 sr GeV)<sup>-1</sup>] (energy independent) 10 2006b Earth S $10^{1}$ 2007b Flux [(m<sup>2</sup> 2008b 2009b ra $10^{0}$ (NY) O. Adriani et al., ApJ $10^{-1}$ path $10^{-2}$ Wean free W 10<sup>-2</sup> W 10<sup>-3</sup> 0.02 0.1 0.2 Kinetic Er O. Adriani et al., ApJ 810 (2015) 142 LIS (122 AU) 50 AU $\lambda_D$ 1 AU 100 AU $10^{-4}$ - 10 AU PAMELA 2006b ۹0<sup>-2</sup> 10<sup>-1</sup> $10^{0}$ $10^{1}$ $10^{-5}$ Kinetic energy (GeV) $10^{-1}$ 10<sup>-2</sup> $10^{0}$ 10 23 Rigidity (GV) credit: ESA M. S. Potgieter et al., ApJ 810 (2015) 2, 141

![](_page_23_Figure_0.jpeg)

2007

2006

Norm to Jul-Dec

e+/e

Norm to Jul-Dec 2006

e+/e

Norm to Jul-Dec 2006

/e

1.8

1.4 1.2

1.8

1.6

1.4

.2

0.8

1.8

1.6 1.41.2 2007

2007

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

# Propagation in the Heliosphere: other elements

![](_page_27_Figure_1.jpeg)

е

tra

÷ 1.

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

Bremsstrahlung Synchrotron Low energy signals from dark matter annihilation: AntiDeuteron, antiHe

> Very low astrophysical background, 2 orders of magnitude lower...

Heliopause

..in a region strongly affected by solar modulation, needs to improve the modelling in order to reduce the associated uncertainties.

credit: ESA

- 29

![](_page_29_Picture_0.jpeg)

AMS

 $\gamma_C = -2.72 \pm 0.06$ 

 $-3.02 \pm 0.13$ 

Galprop

Energy (GeV)

![](_page_29_Picture_1.jpeg)

The PAMELA Mission: Heralding a new era in precision cosmic ray physics

O, Adriani <sup>Ab</sup>, G, C, Barbarino<sup>c,d</sup>, G, A, Bazilevskaya <sup>e</sup>, R, Bellotti <sup>f,g</sup>, M, Boezio <sup>h</sup>, EA, Bogomolov<sup>1</sup>, M, Bongi <sup>AD</sup>, V, Borwicini<sup>h</sup>, S, Bortai<sup>h</sup>, A, Bruno<sup>f,g</sup>, F, Cafagna<sup>g</sup>, D, Campana<sup>d</sup>, R, Carbone<sup>d</sup>, P, Carlson<sup>J,k</sup>, M, Casolino<sup>1</sup>, G, Castellini<sup>m</sup>, M.P, De Pascale<sup>In,1</sup>, C, De Santis<sup>In,n</sup>, N. De Simone<sup>1</sup>, V, Di Felice<sup>1</sup>, V, Formato <sup>h,p</sup>, A.M, Galper<sup>P</sup>, U, Ciaccari<sup>1</sup>, A.V, Karelin<sup>P</sup>, M.D, Kheymis<sup>P</sup>, S.V, Koldashov<sup>P</sup>, S, Koldobski<sup>p</sup>, Syu, Krurkov<sup>1</sup>, A.N, Kvashnin<sup>-</sup>, A, Leonov<sup>P</sup>, V, Malakhov<sup>P</sup>, L, Marcelli<sup>n</sup>, M, Martucci<sup>nd</sup>, A.G. Mayorov<sup>P</sup>, W, Menn<sup>T</sup>, V.V, Mikhailov<sup>P</sup>, E, Mocchiutt<sup>10</sup>, A, Monaco<sup>1,g</sup>, N, Mori<sup>1,b</sup>, R, Munin<sup>1,b,k,p</sup>, N, Nikonov<sup>1,an</sup>, G, Osteria<sup>1</sup>, P, Papini<sup>10</sup>, M, Pearce<sup>1,k</sup>, P, Picozza<sup>1,b,n</sup>, C, Pizzolto<sup>1,h,n</sup>, M, Ricci<sup>4</sup>, S,B, Ricciarini<sup>10,m</sup>, L, Rossetto<sup>1,k</sup>, R, Sarkar<sup>10</sup>, M, Simon<sup>1, R</sup>, Sparvoli<sup>1,h</sup>, P, Spillantini<sup>1,b</sup>, YJ, Stozhkov<sup>e</sup>, A, Vacch<sup>10</sup>, E, Vannuccin<sup>10</sup>, D, J, Vasilyev<sup>1</sup>, S,A, Voronov<sup>P</sup>, J, Wu<sup>1,k,v</sup>, YT, Yutki<sup>10</sup>, G, Zampa<sup>1</sup>, N, Zampa<sup>1</sup>, V, G, Zverev<sup>P</sup>

<sup>a</sup>University of Florence, Department of Physics, I-50019 Sex o Florencino, Florence, Italy INFN, Sezime di Rarence, 1-50019 Sezio Flarenchio, Florence, Irak <sup>1</sup> University of Naples "Federico II", Department of Physics, 1-80126 Naples, Italy \*INFN, Sezime di Naples, I-801,26 Naples Ivaly \*Lebedev Physical Insekuer, RIF 119991 Mascow, Russia University of Bari, Department of Rhysics, 1-701 26 Bari, Italy INRY, Sezione di Bari, 1-70126 Bari, kdy •INFN, Sezime di Triese; I-34 149 Triese; kaly Hofe Physical Technical Institute, NJ-1 94021 St. Petersburg Russia KTH Roy & Inscisure of Technology, Departmente of Physics, AlbaNova University Centre, SE-10601 Southham, Sweden <sup>b</sup> The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 55-10691 Stockholm, Sweden "INRY, Sezione di Rome "Tor Vergava", 1-001 33 Rome, Ivaly <sup>10</sup> EAC, 1-50019 Sesso Flaren ein o, Florence, Jealy University of Rome 'Tor Vergeen', Department of Physics, I-00133 Rune, lealy
 University of Trizzer, Department of Physics, I-34147 Trizzer, lealy Plitational Research Nuclear University MERHI (Moscow Physics Engineering Insekwe), RU-115400 Mescow, Russia 4INFN, Labora: ori Nazi ordi di Frascael, 1-00044 Frascael, Iealy "Universide Siegen, Deparamene of Physics, D-57068 Siegen, Germany \* NFN, Sezione di Perugia, 1-061 23 Perugia, k dy Agenzia Spaziale Ivaliana (ASI ) Science Dava Cenver, 1-00044 Frascavi, kaly \* School of Machemacks and Physics, China University of Geosciences, CN-430074 Wahan, China

#### LA RIVISTA DEL NUOVO CIMENTO

YEAR 2017 - ISSUE 10 - OCTOBER

#### Ten years of PAMELA in space

Authors: PAMELA Collaboration - O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, P. Carlson, M. Casolino, G. Castellini, C. De Santis, V. Di Felice, A. M. Galper, A. V. Karelín, S. V. Koldashov, S. Koldobskiy, S. Y. Krutkov, A. N. Kvashnin, A. Leonov, V. Malakhov, L. Marcelli, M. Martucci, A. G. Mayorov, W. Menn, M. Mergè, V. V. Mikhailov, E. Mocchiutti, A. Monaco, R. Munini, N. Mori, G. Osteria, B. Panico, P. Papini, M. Pearce, P. Picoza, M. Ricci, S. B. Ricciarni, M. Simon, R. Sparvoli, P. Spillantini, Y. I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S. A. Voronov, Y. T. Yurkin, G. Zampa, N. Zampa

DOI: 10.1393/ncr/i2017-10140-x

Published online 27 September 2017 Download fulltext

#### Ten years of PAMELA data

![](_page_29_Figure_12.jpeg)

Energy [MeV]

PAMELA 1.0 GeV - 2.5 G