

DSU 2018 25-29 June 2018 Annecy

Dark Matter searches in SUSY and other UV complete models at LHC searches

on the behalf of ATLAS and CMS
Collaborations

University of Napoli "Parthenope" and INFN

Introduction

• "Two-ways" Models for dark matter to shape expectations and experimental search strategies at LHC: (Kai Schmidt-Hoberg DM@LHC2018)

This

UV

- Tackle fundamental problems such as e.g. hierarchy problem and look for implications
 - WIMPs
 - ...
- Well-motivated dark matter candidates, but also strong theoretical bias

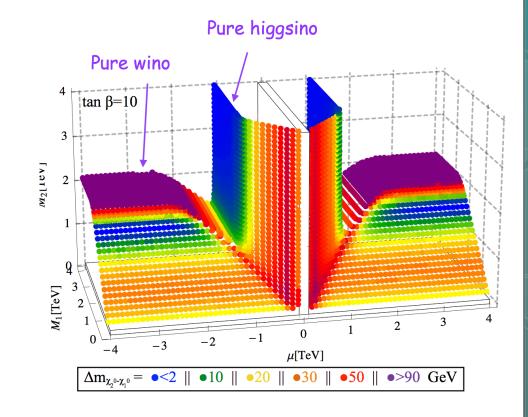
IR

- Naturalness arguments suggest new physics at the LHC
- Nothing yet → motivates broader thinking.
- As model independent as possible
- EFTs or simplified models

Searches at ATLAS and CMS are doing a great job of excluding huge amount of SUSY parameter space, but no signs of SUSY have been seen so far

Two possible hard-to-reach corners of parameter space where SUSY could have been hiding:

"Compressed spectra" - small mass differences in decay chain, soft leptons or jets might fail analysis cuts


"Long-lived particles - some analyses have quality cuts that reject jets or leptons with "non-prompt" tracks

Dark Matter searches in SUSY

- Neutralinos (mixture of Bino, Wino and Higgsino) and gravitino good dark matter candidates
- Neutralino scenarios:
 - Pure state
 - Well tempered
 - co-annihilation

Limits from the relic density:

Pure wino: $m < \sim 3 \text{TeV}$ Pure higgsino: $m < \sim 1 \text{ TeV}$

DM searches in SUSY: Theoretical Challenge

Theoretical interesting aspects:

- → Relic density of compressed models expected to be consistent with cosmological observations [C. Balázs et al, Phys. Rev. D 70 (2004)]
- → Pure bino DM plagued with overabundance → Well-tempered ones strongly constrained by LUX/XENON1T data

Higgsino LSP
$$\Rightarrow \Omega_{\tilde{\chi}_1^0} h^2 = 0.1 \left(\frac{\mu}{1 \, TeV}\right)^2$$

Pure Higgsino obtains right relic density for masses 1 TeV

Wino LSP
$$\Rightarrow \Omega_{\tilde{W}} h^2 = 0.13 \left(\frac{m_{\tilde{W}}}{2.5 \, TeV} \right)^2 = 0.021 m_{\tilde{W}}^2$$

Pure Wino obtains right relic density for masses 2.5 TeV

- → Coannihilation can make significant difference. It may increase or decrease the relic density
- → In mSUGRA, bino-stau coannihilation widely studied → reduction in relic density, but for a very small mass range because of the correlation of superpartner masses.
- → pMSSM scenario: no correlation among sparticle masses → can probe full potential of coannihilation.

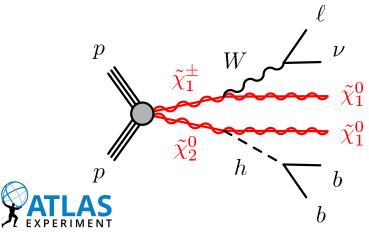
SUSY:Searches for stable lightest neutralino

If R-parity conserved (RPC) lightest SUSY particle (LSP) is a dark matter candidate

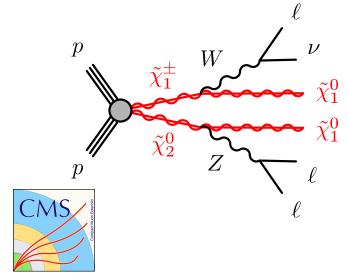
- → In principle, any bino/wino/higgsino mass hierarchy is allowed
- ightharpoonup Higgsino-like LSP motivated by naturalness (μ at weak scale) and by Higgs related measurements (mass, BRs etc.)
 - → Bino-like LSP with Wino-like NLSP motivated by DM relic constraint
 - → Wino/Higgsino like LSP → compressed search + long lived search
 - → Anomaly-mediated SUSY breaking models predict pure Wino LS

Bino-like LSP

Wino-like LSP



Higgsino-like LSP

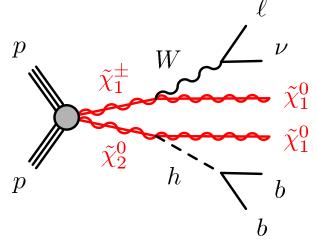


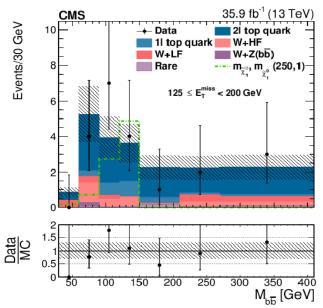
Charginos and neutralinos -> SM bosons

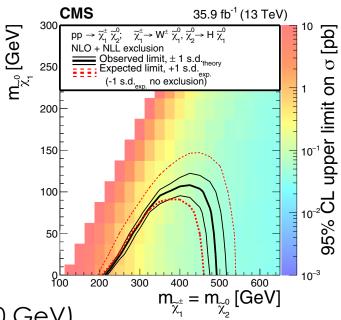
- Models where the sleptons are too heavy. Charginos and neutralinos decay to SM bosons.
- Include Gauge Mediated Supersymmetry Breaking (GMSB) scenarios with near massless gravitinos.

SUSY channel	Signature	Ref
$\chi_1^{\pm}\chi_1^{\pm}\rightarrow WW$	2Leptons+ MET (Run1)	1403.5294
$\chi_1^{\pm}\chi_2^{0} \rightarrow WZ$	2 soft leptons + MET 2L/3L + MET 2L/3L + MET RJR [New!]	1712.08119 1803.02762 SUSY-2017-03
$\chi_1^{\pm}\chi_2^0 \rightarrow Wh$	Wh (Run1)	1501.0711

 $\begin{array}{l} \underline{\text{JHEP 03 (2018) 166}} \ \, \text{Multileptons} + p_{\text{T}} \ \, \text{miss} \\ \underline{\text{JHEP 03 (2018) 076}} \ \, \text{Two leptons on-Z} + p_{\text{T}} \ \, \text{miss} \\ \underline{\text{JHEP 11 (2017) 029}} \ \, \text{Lepton} + \text{two b-jets} + p_{\text{T}} \ \, \text{miss} \\ \underline{\text{Phys. Lett. B 779 (2018) 166}} \ \, \text{Two photons} + p_{\text{T}} \ \, \text{miss} \\ \underline{\text{Phys.Rev. D 97 (2018) 032007 4 b-tagged jets}} + p_{\text{T}} \ \, \text{miss} \\ \underline{\text{Submitted to Phys. Lett. B Soft two leptons}} \end{array}$


Combined result JHEP 03 (2018) 160


Wh(bb) + MET



JHEP 11 (2017) 029

- SUSY simplified model:
 - Wino-like NLSP mass spectrum $m_{\chi 1\pm} = m_{\chi 02}$
 - BR($\chi_1^{\pm} \rightarrow W \chi_2^{0}$)=BR($\chi_2^{0} \rightarrow h \chi_2^{0}$)=100%
- Clean final state: 1lepton + bb +MET
- Main background from 2leptons ttbar directly controlled in sideband

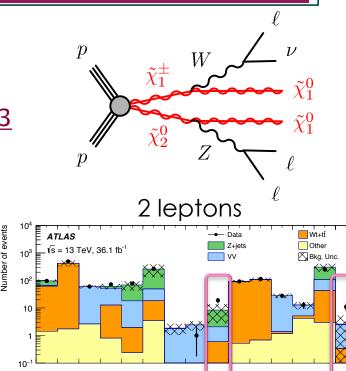
 χ_{2}^{0} excluded up to 110 GeV (for $m_{\chi_{1}}^{\pm}$ = 450 GeV)

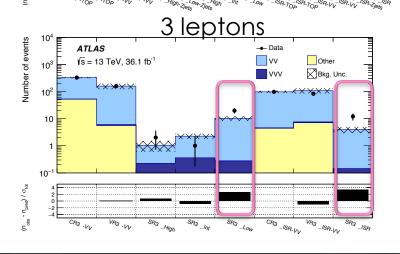
WZ + MET

Submitted to PRD <u>1806.02293</u>

o Recursive Jigsaw Reconstruction (RJR)

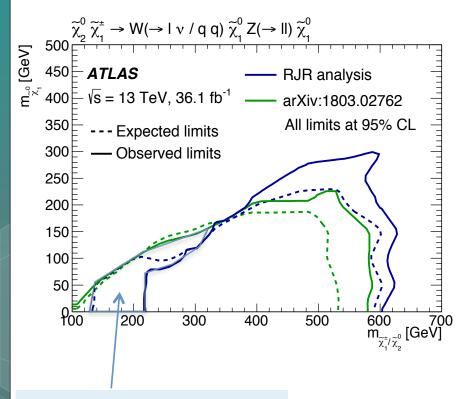
PRD 95, 035031 (2017) / 1705.10733

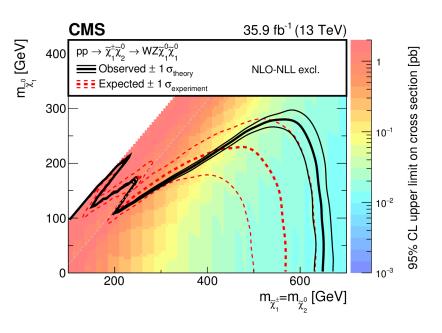

Algorithm recursively reconstructing the decay chain of pair produced heavy particles


Event selection with 8 SRs \rightarrow different Δ m(NLSP,LSP):

[2Leptons, 3Leptons] × [ISR, Low, Int, High]

Result:


o $2.0 \, \sigma/2.1 \, \sigma/3.0 \, \sigma$ excess in 2/3 leptons regions for Δ m = 100-200 GeV and didn't see in the conventional WZ+MET analysis (using the same dataset)



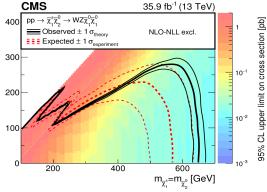
WZ + MET

Results used to set limit on wino NLSP → Bino LSP 1806.02293

Weak observed limit in low ΔM due to the excess

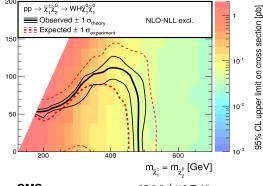
CMS Combination Paper JHEP 03 (2018) 160

Chargino/neutralino pair production combination


Statistical combination of all CMS analysis targeting direct decays of

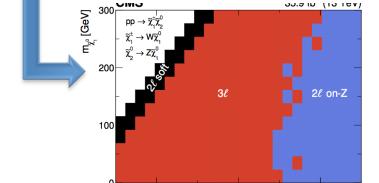
neutralino/chargino pairs to SM bosons

	WZ	WH	ZZ	ZH	НН
1l2b		✓			
4b					✓
2l on-Z	✓		✓	✓	
2I soft	✓				
≥3I	✓	✓	✓	✓	✓
$H(\gamma \gamma)$		✓		✓	✓


WZ topology

 $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$

WH topology


 $\tilde{\chi}_2^0 \rightarrow H \tilde{\chi}_1^0$

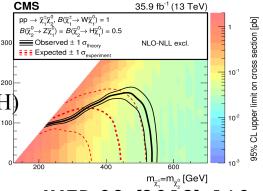
CMS

m_z [GeV]

35.9 fb⁻¹ (13 TeV)

400

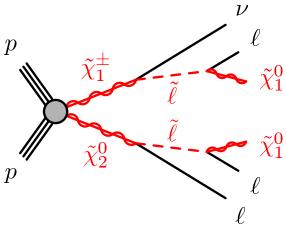
600


 $m_{v^{\pm}} = m_{v^0} \text{ [GeV]}$

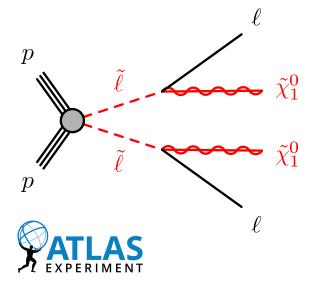
200

Combination to

cover the full space

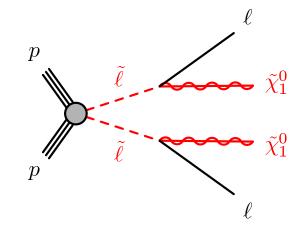

Mixed topology (50% WZ and 50% WH)

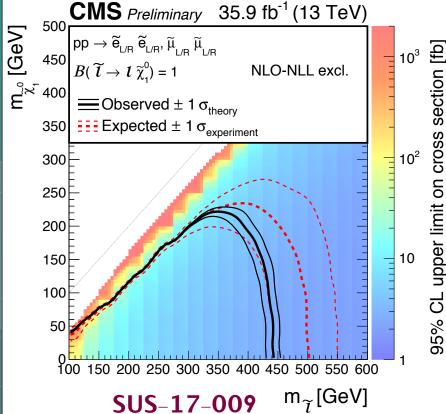
JHEP 03 (2018) 160

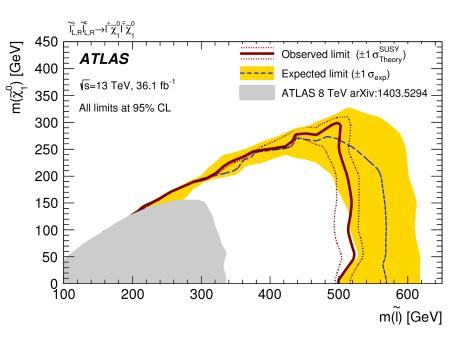

Slepton searches

Models where the sleptons are amongst the lightest SUSY partners.

- o stau pair (leptonic) + p_T miss **SUS-17-002**
- o stau pair (hadronic) + p_T miss <u>SUS-17-003</u>
- Direct light slepton <u>SUS-17-009</u>
- o $\chi_1^{\pm}\chi_1^{\pm}$ and slight leptons **SUS-17-010**
- Multileptonic final states <u>JHEP 03 (2018) 166</u>

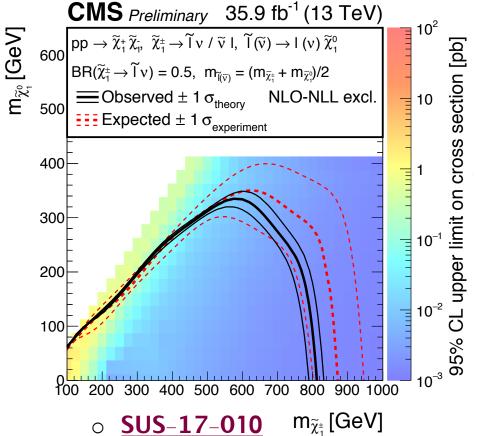


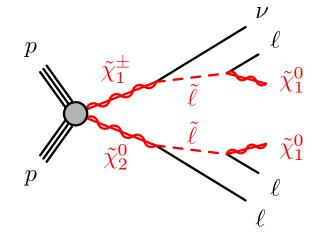

SUSY channel	Signature	Limit
Direct light slepton	<u>2Leptons (soft)</u> +MET	~500 GeV in slepton mass* ~200 GeV for Δ M~10 GeV
$X_1^{\pm}X_2^0/X_1^{\pm}X_1^{\pm}$ and slight leptons	2/3Leptons Ojets +MET	~1.1 TeV in m $(\chi^{1}_{\pm}\chi^{2}_{0})$
$X_{1}^{\pm}X_{2}^{0}/X_{1}^{\pm}X_{1}^{\pm}$ and stau	2 had tau + MET	~760 GeV in m ($\chi_{\pm}^{1}\chi_{0}^{2}$)

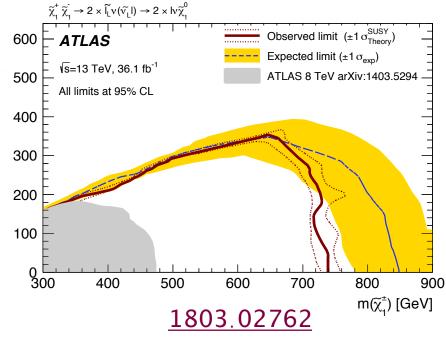

Slepton searches

Models where the sleptons are amongst the lightest SUSY partners.

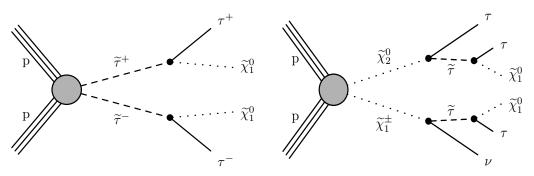
- 2 leptons final state (Jetless)
- Clean experimental signature
- Main background from WW and ttbar

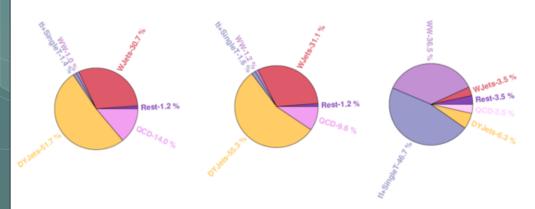


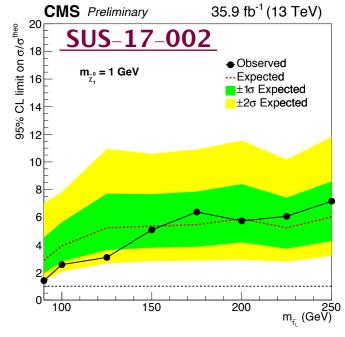

GeV] <u>1803.02762</u>

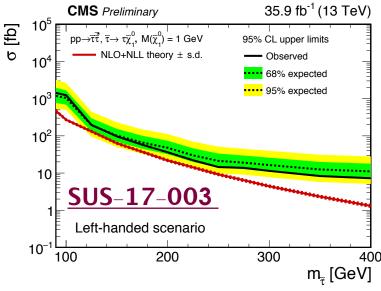

Slepton searches

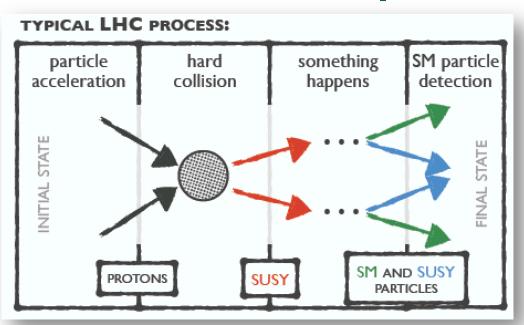
Models where the sleptons are amongst the lightest SUSY partners.


Chargino pair production with 2 leptons in final state






Stau production


- Stau pair production model. Special interest in the compressed scenarios
- Stau- χ_1^0 mechanism could explain the current observed relic density of dark matter in the universe Phys. Rev. D 84(2011) 095015
- Hadronic and (semi) leptonic final state

What Does Compressed Spectra Mean?

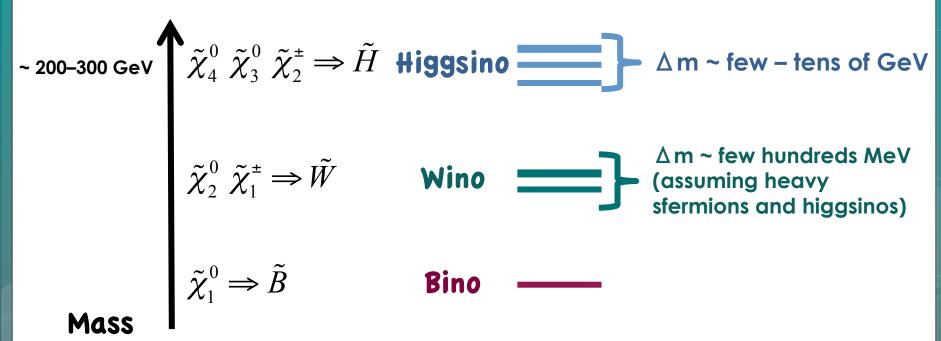
Compressed Spectra = Small ΔM

 $\Delta M = m_Y - m_X$

Y= Parent SUSY particle

X= Daughter SUSY particle

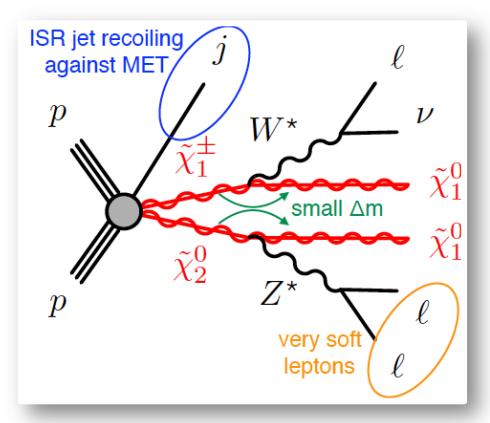
EPS-HEP talk from Constantin Heidegger


How compressed?

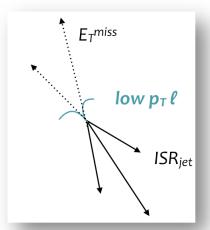
Pure Higgsino or pure Wino LSP: $\Delta M = O(100s MeV)$

- →Long lifetimes ⇒ look for disappearing track
- "Mostly" Higgsino LSP: $\Delta M = O(1-10s \text{ GeV})$
- ◆Prompt decays ⇒ rely on soft leptons with p_T as low as 4 GeV

Compressed Electroweak SUSY


In principle, any bino/wino/higgsino mass hierarchy is allowed

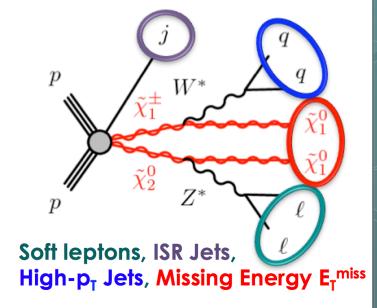
Natural SUSY, i.e. SUSY models that solve the hierarchy problem with little fine tuning, imposes mass constraints:


- → m(Ĥ)< 200-300 GeV
- → Compressed spectra: ingredient of Natural SUSY

Compressed Spectra: very challenging

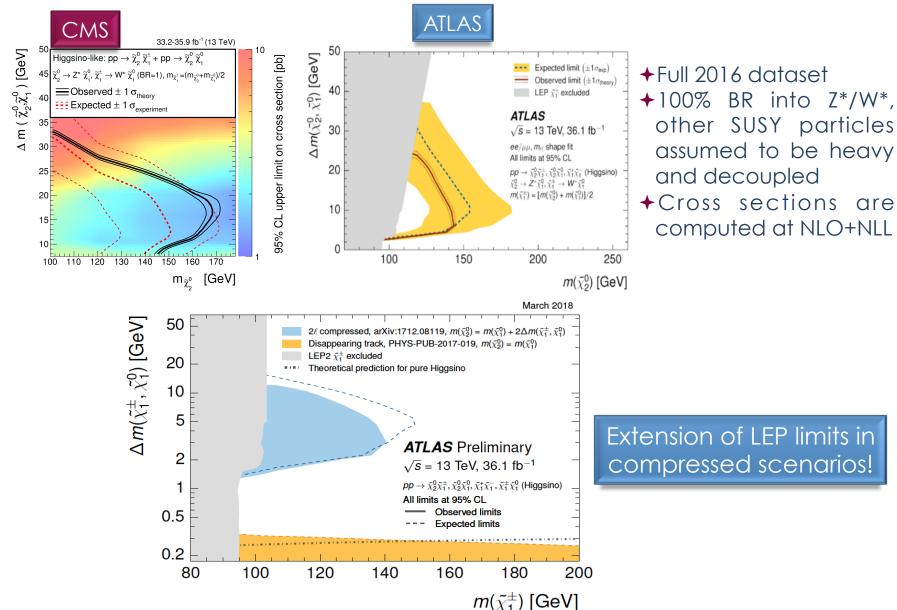
Difficult phase-space:

- → small Am → very soft leptons very small invariant masses
- moderate transverse missing energy (MET or E_T^{miss}) (enhanced with ISR object)


- ullet Generally lower cross-sections: e.g. σ_{Higgsino} = 0.23 σ_{Wino}
- → Different challenges: trigger, lepton reconstruction and ID, isolation, background modeling, background rejection, fake lepton backgrounds...

Higgsino Signatures

- → Need ISR jet to boost the sparticle pair system and induce E_T^{miss} and other decay products remain soft
- → if sleptons are too heavy decay happens through
 Z*/W* → need Z*/W* leptonic decays to reconstruct
 decay product and reduce bkg
- Signature: soft e[±]e[∓]/ μ [±] μ [∓](Opposite Sign Same Flavor) + E_T^{miss}
 - → soft muons $p_T > 4$ GeV for ATLAS and $p_T > 3.5$ GeV for CMS
 - → soft electrons $p_T > 4.5$ GeV for ATLAS and $p_T > 5$ GeV for CMS
 - → E_Tmiss > 125 GeV for CMS
 - → E_Tmiss>200 GeV for ATLAS

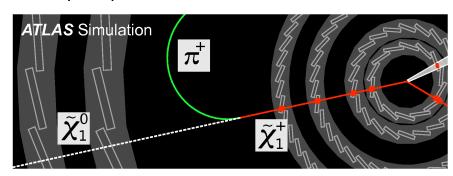

Higgsino-like LSP

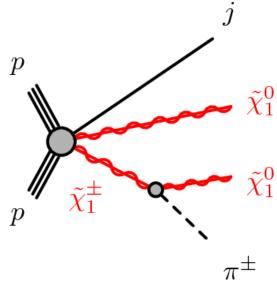
[CMS: <u>1801.01846</u> - ATLAS Phys. Rev. D 97, 052010 (2018), <u>arXiv:1803.02762</u>

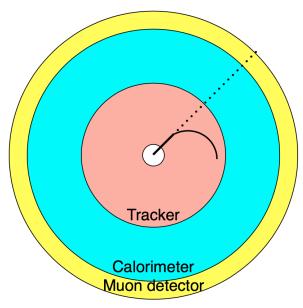
ATLAS and CMS Interpretations: Higgsino

Extremely compressed signatures

 $\Delta m(\chi^2_{0'}\chi^1_{\pm'}\chi^1_{0}) \sim 300 \text{ MeV}$

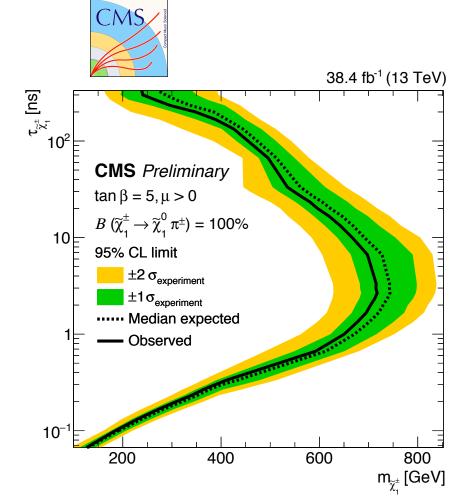

→ Extremely compressed:

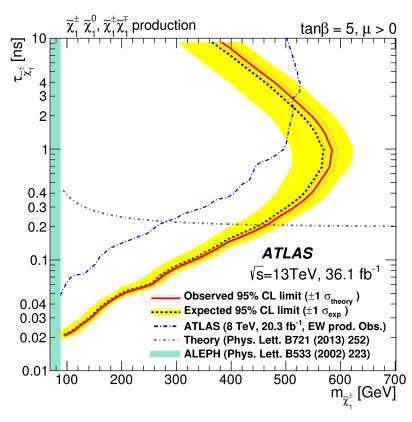

Disappearing tracks signature


(Wino and Higgsino LSP searches)

- The chargino (LLP) could decay within the tracking volume
- No SM charged particles decay like this
- Instrumental background:

 Scattered SM particles
 Reconstructed tracks from hits by multiple particles

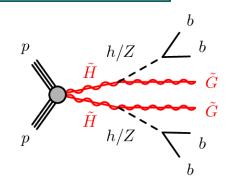


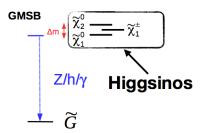

CMS: 1804.07321 - ATLAS:1712.02118

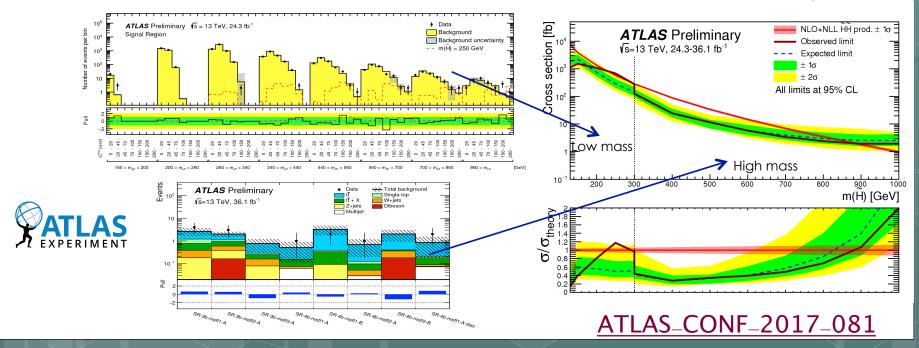
Extremely compressed signatures

AMSB Wino

ATLAS

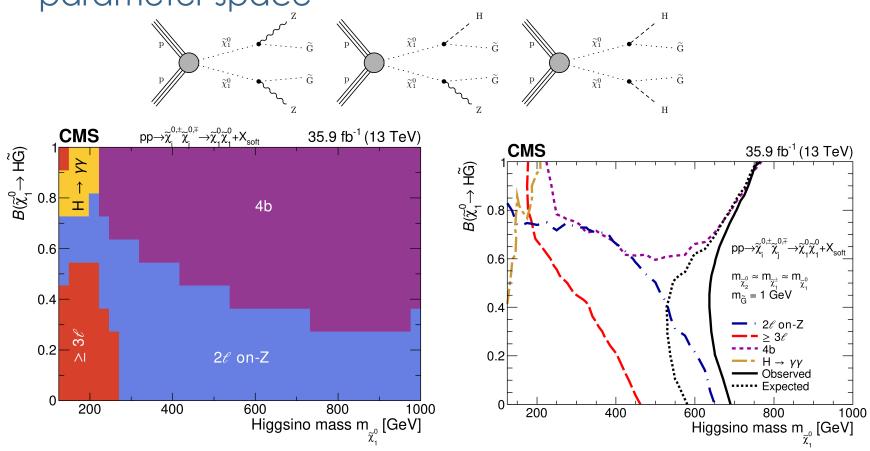

CMS: 1804.07321


ATLAS:1712.02118

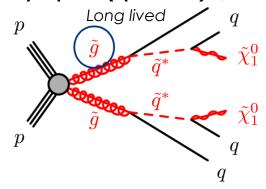

GMSB Higgsino

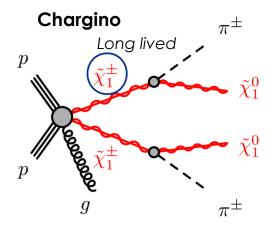
In SUSY models with low SUSY breaking scales (like GGM or GMSB) a gravitino is typically assumed to be the LSP and in natural models with light higgsinos, the χ^0_1 then becomes the NLSP particle $\rightarrow \chi^0_2 \rightarrow \chi^0_1 \rightarrow G$

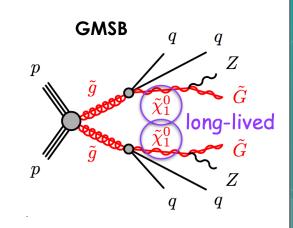
- Experimental signature:
 - Massless G allows on-shell h/Z decays
 - $h \rightarrow bb^-$ gives powerful 4b final state w/ large branching ratios
 - Missing transverse momentum (MET) from G
 - Split in Low/High Higgsino mass search strategy



GMSB Higgsino

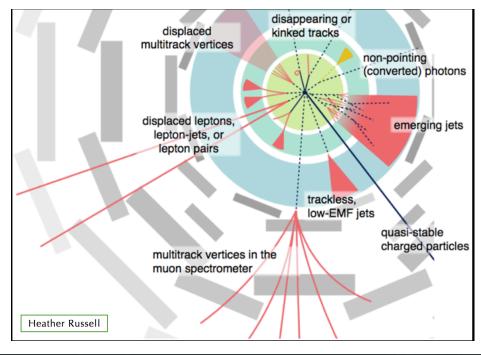

JHEP 03 (2018) 160

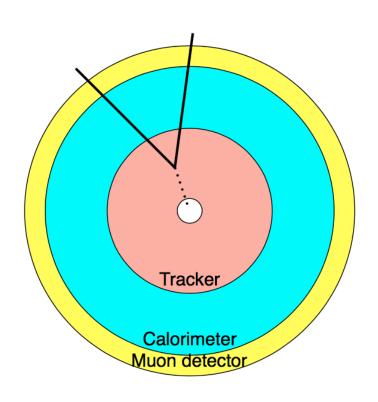

 Analyses combined to get inclusive coverage of SUSY parameter space



Long-lived particles (LLP) searches

Heavy squark (Split SUSY) q





Long-lived particles naturally arise in a variety of other BSM theories:

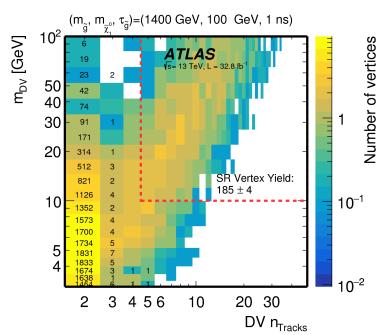
- Dark photon
- Hidden valley
- Dark QCD
- Heavy neutral lepton

LLP: Displaced signatures

When a long-lived particle decay in flight, it makes displaced vertices:

- o Split SUSY
- o RPV SUSY
- Hidden-Valley (dark photon, scalar)
- Stealth SUSY
- Heavy neutral lepton

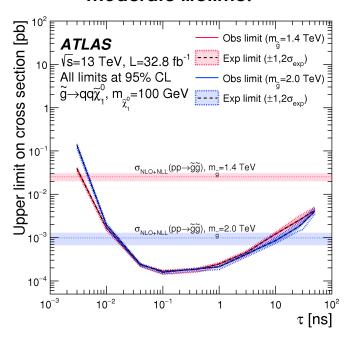
Many experimental signatures:


- Displaced lepton
- Displaced photon
- Displaced jets

some LLP results: CMS_PAS_EXO_17_018, 1801.00359, Phys. Rev. D 94 (2016) 112004

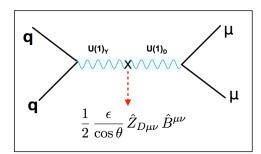
Displaced Vertices + MET

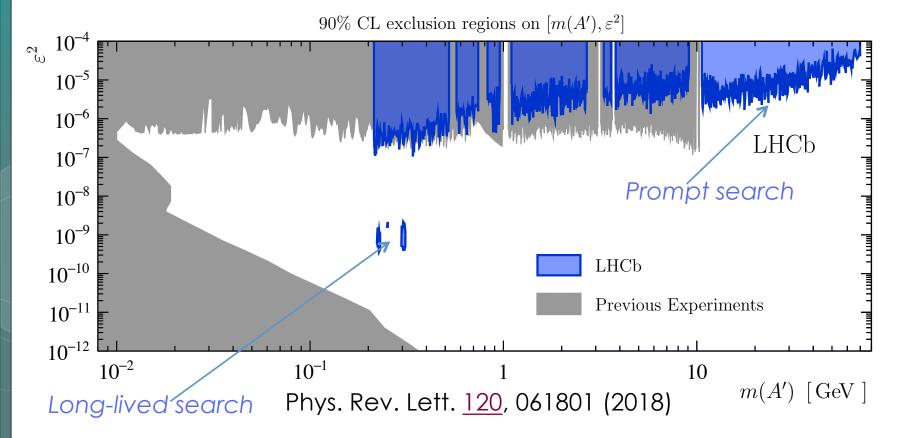
- Displaced vertices (DV) in events with large ET miss (> 200 GeV)
- Dedicated tracking algorithms studied in detail, very efficient:
 - Special secondary tracking for tracks far from the beam line.
 - Dedicated displaced vertex reconstruction.


Phys. Rev. D 97 (2018) 052012

Expected BG: 0.02+0.02-0.01

Observed events: 0


Limits set on long-lived gluino


Up to 2.4 TeV gluino excluded for 100 GeV neutralino and moderate lifetime.

LHCb: Dark photon search

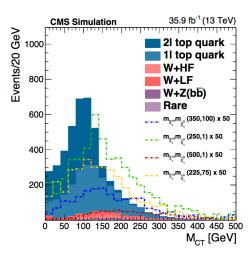
- Signal: $A' \rightarrow \mu \mu$
- Prompt and displaced di-muons from dark photon decay
- Search region in dark photon mass : $2 \times m_{\mu}$ to 70 GeV
- Plan to cover all remaining low-mass parameter space with next data

Conclusions and Plans

- ★ Excellent performance of LHC in 2016, data ready to be analyzed from 2017 and new data coming soon
- ★ Extensive search program performed at ATLAS and CMS covering a huge variety of topologies
 - + Electroweak SUSY search program performed by ATLAS and CMS
 - → No hint for new physics observed, large regions of phase space probed.

+ Compressed SUSY searches:

- → Compressed spectra require new approaches and ideas!!
- → Development and optimization of key analysis tools allows probing of compressed and very compressed regions
- + Long-lived particles may still escape from our searches:
 - ATLAS / CMS detectors have excellent potential to discover them although the detectors and standard reconstruction algorithms are not designed for the purpose.
 - There are ideas of new signature.
 - Need a lot of effort to materialise such ideas and make results. There are several interesting "gaps" which should be covered in future.


End Here

M_{CT} and M_{T2}

In order to further suppress both semileptonic and dileptonic $t\bar{t}$ backgrounds, we utilize the contransverse mass variable, M_{CT} [53, 54]:

$$M_{\rm CT} = \sqrt{2p_{\rm T}^{\rm b1}p_{\rm T}^{\rm b2}[1+\cos(\Delta\phi_{\rm bb})]},$$
 (2)

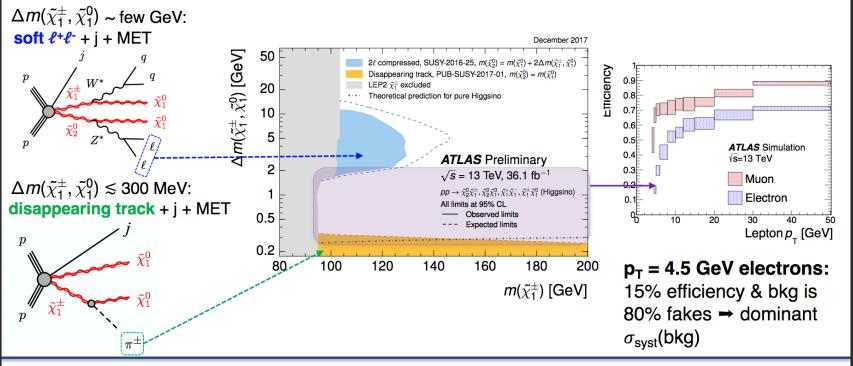
where $p_{\rm T}^{\rm b1}$ and $p_{\rm T}^{\rm b2}$ are the transverse momenta of the two jets, and $\Delta\phi_{\rm bb}$ is the azimuthal angle between the pair. As shown in Refs. [53], [54], this variable has a kinematic endpoint at $(m^2(\delta)-m^2(\alpha))/m(\delta)$, where δ is the pair-produced heavy particle and α is the invisible particle produced in the decay of δ . In the case of $t\bar{t}$ events, when both jets from b quarks are correctly identified, the kinematic endpoint corresponds to the top quark mass, while signal events tend to have higher values of $M_{\rm CT}$. This is shown in Fig. [2] (bottom right). We require $M_{\rm CT} > 170\,{\rm GeV}$.

M_{CT} and M_{T2}

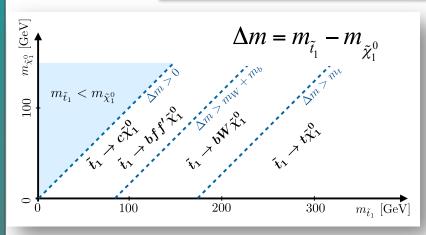
The kinematic variable M_{T2} [61, 62] is used to reduce backgrounds from $t\bar{t}$ and WW processes. This variable was first introduced to measure the mass of pair-produced particles, each decaying to the same final state, consisting of a visible and an invisible particle. It is defined using \vec{p}_{T}^{miss} and two visible objects (leptons in this search) as:

$$M_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\,\text{miss}(1)} + \vec{p}_{\text{T}}^{\,\text{miss}(2)} = \vec{p}_{\text{T}}^{\,\text{miss}}} \left[\max \left(M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)} \right) \right],$$
 (1)

where $\vec{p}_{\mathrm{T}}^{\,\mathrm{miss}(i)}$ (i=1,2) are trial vectors obtained by decomposing $\vec{p}_{\mathrm{T}}^{\,\mathrm{miss}}$. The transverse masses $M_{\mathrm{T}}^{(i)} = \sqrt{2p_{\mathrm{T}}^{\,\mathrm{vis}}p_{\mathrm{T}}^{\,\mathrm{miss}(i)}(1-\cos(\Delta\phi))}$, where $\Delta\phi$ is the angle between the transverse momentum


of the leptons and $\vec{p}_{\mathrm{T}}^{\mathrm{miss}(i)}$ and $p_{\mathrm{T}}^{\mathrm{vis}}$ is the p_{T} of the visible particle, are obtained by pairing either of these trial vectors with one of the two leptons. The minimization is performed over all trial momenta satisfying the $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ constraint. When building M_{T2} from the two selected leptons and $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$, denoted $M_{\mathrm{T2}}(\ell\ell)$, its distribution exhibits a sharp decline around the mass of the W boson for tt and WW events and is therefore well suited to suppress these backgrounds. Hence, a requirement of $M_{\mathrm{T2}}(\ell\ell) > 90\,\mathrm{GeV}$ is imposed in this search.

Physics Motivation: Higgsinos



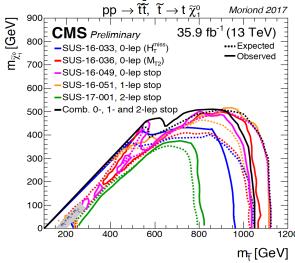
- Higgsinos are key for naturalness and experimentally challenging at LHC
- Recently surpassed 16 year old LEP limit on higgsino LSPs with 2016 data!
- Further progress requires comprehensive program of searches à la stops in Run-I
- In theoretically interesting region $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim 1-2$ GeV, soft leptons drive the sensitivity and conventional methods break down \rightarrow good candidate for ML!

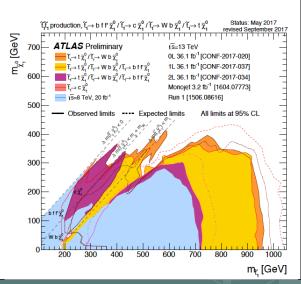
Searches with Stops in ATLAS and CMS

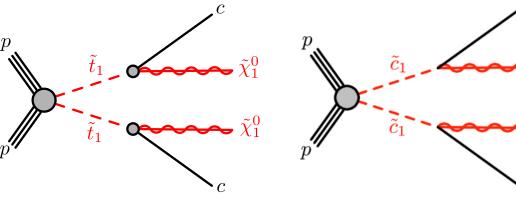
The stop decay depends on the SUSY mass spectrum

If only $\tilde{\chi}_1^0$ is lighter than \tilde{t}_1 :

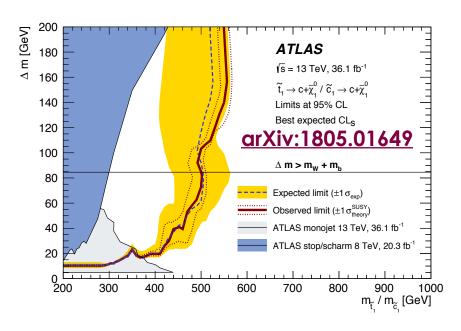
$$\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0 \quad \tilde{t}_1 \rightarrow bW\tilde{\chi}_1^0 \quad \tilde{t}_1 \rightarrow bff'\tilde{\chi}_1^0 \quad \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$$


If also $\tilde{\chi}_1^{\pm}$ or $\tilde{\chi}_2^{0}$ is lighter than \tilde{t}_1 :

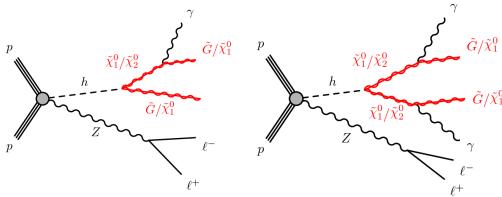

$$\tilde{t}_1 \rightarrow b\tilde{\chi}_1^{\pm} \ and \ \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0$$

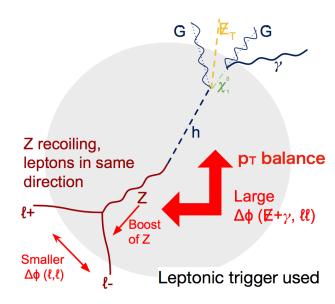


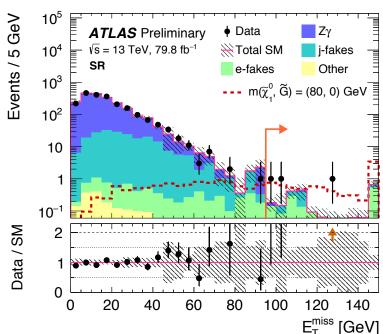
- ◆Inclusive stop searches with multiple decay modes → covering the broad range of parameter space (from compressed)
- +Compressed Spectra dedicated analyses with $\Delta M < M_W$

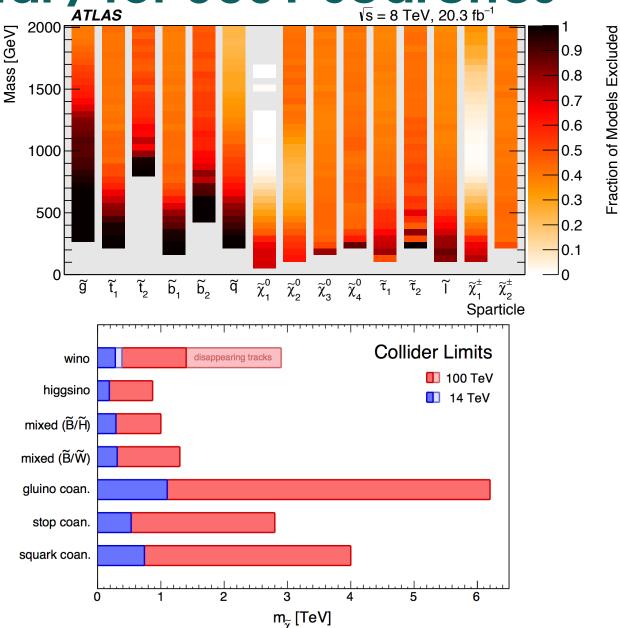


Search for SUSY with charm tagging




Zh, h→neutralino

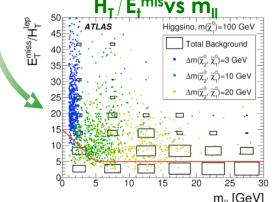

First 80 fb⁻¹ SUSY result from ATLAS!!

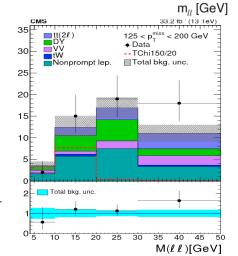

- Bino LSP has no generic collider limit when wino/higgsino are decoupled but it can be generated from higgs decay when it is lighter than 125 GeV
- GMSB signal assumed
- No significant excess observed \rightarrow setting limit on higgs BR(H \rightarrow χ $^{\circ}$ G) or BR(H \rightarrow χ $^{\circ}$ χ $^{\circ}$) to be less than 5-11% at 95% CL

ATLAS_CONF_2018_019

Summary for SUSY searches ATLAS ATLAS Searches Searches

Higgsino Signatures in ATLAS and CMS (1)

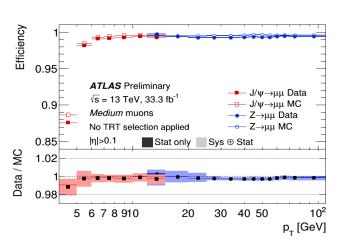

Key aspects of the search: Signature: soft $e^{\pm}e^{\mp}/\mu^{\pm}\mu^{\mp}$ + E_{T}^{miss}


- Sensitivity driven by low-pT leptons (lower than any other ATLAS/CMS search!)
- + High-pT jet(s) and MET (well separated)
- + Cut on H_T/E_t^{mis} against QCD multijet events
- + b-jet veto against ttbar
- $+ M_T(\ell_i, E_i^{mis}) < 70 \text{GeV} \rightarrow E_i^{mis} \text{ aligned with } \ell$
- + Trigger acceptance: dimuon invariant mass $m_{\mu\,\mu}$ <60GeV to limit the trigger rate \Rightarrow m_{ϱ} <50GeV and $p_{\tau\varrho\varrho}$ >3GeV
- + H_T>100 GeV: this requirement suppresses backgrounds with low hadronic activity in the event
- + Signal Regions: ATLAS binned m_{\parallel} starting from 1GeV and CMS binned m_{\parallel} and E_{t}^{mis}

Backgrounds:

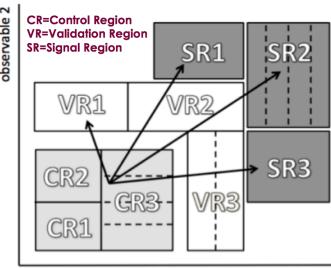
- tt (21): normalized to data in control region and shapes from MC
- \Rightarrow DY $\Rightarrow \tau$: normalized to data in control region and shapes from MC
- ♦ VV(mainly WW/WZ): from MC validated in data control region
- Non-prompt prediction from tight-to-loose method, constraint in same-sign lepton control region

	ATLAS	CMS
muons p _T	> 4 GeV	> 3.5 GeV
electrons p_T	> 4.5 GeV	> 5 GeV
E _T mis	>200 GeV	>125 GeV
Leading Jet p₁	>100 GeV	>25 GeV
H_T/E_T^{mis}	>max(5, 15-(2m /1GeV))	0.6-1.4



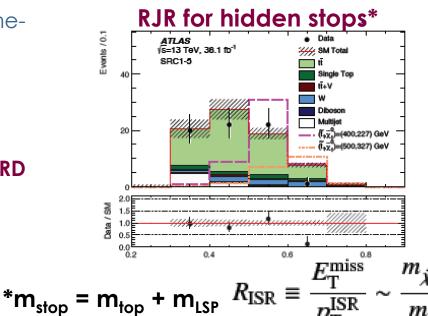
Compressed Spectra: Experimental Challenge

- → Increased acceptance by reconstructing low-p_T leptons: particles with low transverse momentum ("soft") produced in decay → soft particles are hard to detect (at the LHC)
- → Use initial state radiation (ISR) jet: it boosts the system and produces large missing transverse energy (MET) → ISR jets + MET topologies to trigger and discriminate against backgrounds
- → New "compressed" triggers: combined information from both soft leptons (p_T>5GeV) and MET (> 125 GeV)
- → New discriminating variables added → kinematic information about the lepton and the soft particles to distinguish "prompt" (signal) leptons from those that may have come from a jet and are thus "non prompt" (background)
- → Soft b-tagging: soft b-tagging algorithm in addition to "default" b-tagged jets
- → Recursive Jigsaw Reconstruction and other peculiar discriminants
- → Long lifetimes ⇒ look for disappearing tracks is very challenging, LHC detectors not designed for this!


Reconstruction & Background Estimation

Background estimation methods

- olrreducible Background (tt, DY,...): normalized in data control regions and shapes from MC
- o Data-driven estimates: for detector / instrumental effects, e.g. instrumental E_{τ}^{miss} , fake / non-prompt leptons
- o VV(mainly WW/WZ): from MC validated in data control region
- o Rare backgrounds (HZ, VVV): Raw MC
- o Non-prompt prediction: constraint in samesign lepton control region

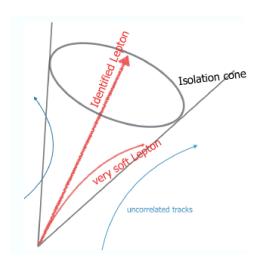

Some recent updates & improvements

- ATLAS: Exploit IBL for long-lived particles
- CMS: soft b-tagging
- Recursive Jigsaw Reconstruction (RJR) [PRD 95, 035031 (2017)]
- Reduced lepton threshold
- Multi-bin shape fits

observable 1

 $m_{\tilde{t}}$

[1] Rogan, Jackson, Santoni, PRD 95, 035031 (2017)


Isolation for compressed signals

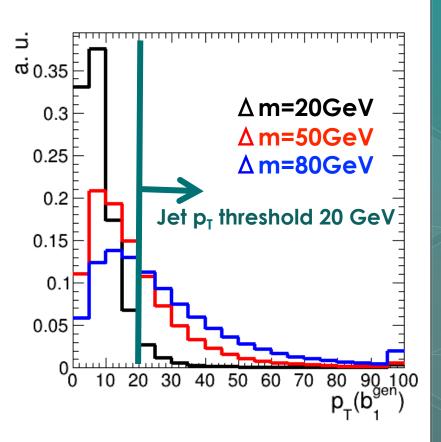
- \rightarrow Small \triangle R expected for leptons from compressed signals
- → Isolation can be corrected by nearby signal leptons entering isolation cone → Dedicated tool developed (4L EWK)
- → Important recovery of acceptance at low dilepton masses m_{||}

Electron currently supported down to 4.5GeV (ATLAS) and 5GeV (CMS) Muon currently supported down to 4GeV (ATLAS) and 3.5GeV (CMS)

Possible Upgrade: Replace lepton by isolated track supported down to ~1 GeV

→ Potential 3 times signal increase (need to carefully check the background)

Study ongoing, still preliminary but promising


CMS Soft b-tagging

The lower ΔM , the less energy is available in the compressed case to produce a jet \rightarrow jet-pT threshold at 20 GeV will miss all the soft stuff

Small ΔM produce a large fraction of b quarks below the jet p_T threshold which escape identification through our primary jet collection.

In order to recover signal selection efficiency (and improve bkg rejection), deploy soft b-tagging algorithm in addition to "default" b-tagged jets

- → collect all secondary vertices (SV) in the event
- → Inclusive Vertex Finder (IVF) algorithm based on impact paramater variables
- ◆ Secondary Vertex: select low p_T tracks (<20 GeV) and no "default" jet associated to it
- → The presence of a soft (p_T<20 GeV) non-isolated muon is used to estimate the fraction of soft b quarks in data.
- → higher MET (in case of ISR boost) will more significantly displace b hadrons
- + 20% selection efficiency at 3% mistag rate

CMS-PAS-SUS-16-049