neutrino-nucleus scattering with COHERENT experiment

R. Tayloe, Indiana U. for the COHERENT collaboration

Outline

- physics of CEvNS
- COHERENT at ORNL/SNS
- discovery of CEvNS
- Future plans

THE 14TH INTERNA ON THE DARK SIDE	TIONAL WORKSHOP	DSU 2018
25 - 29 June 2018	LAPTh, Annecy, France	LAPTh

ψ

Coherent Elastic v-Nucleus Scattering:

"CEvNS": Coherent Elastic v-Nucleus Scattering: $vA \rightarrow vA$

Neutrino scatters with low momentum transfer coherently, elastically from entire nucleus (eg Cs, I, Ar). For a large nucleus, R_N ~few fm, and:

$$E_{\nu} \lesssim \frac{hc}{R_N} \cong 50 \text{ MeV}$$

Coherent Elastic v-Nucleus Scattering:

Cross section is large... in fact largest v channel at O(10 MeV) on heavier nuclei, eg Ar

and has distinctive N² dependence

Coherent Elastic v-Nucleus Scattering:

.. but recoil energy is quite small:

$$E_r^{\rm max} \simeq \frac{2E_{\nu}^2}{M} \simeq 50 \ {\rm keV}$$

only recently

And so, the CEvNS process has ^ never been observed... 40 years after its prediction...

PHYSICAL REVIEW D VOLUME 9, NUMBER 5 1 MARCH 1974 Coherent effects of a weak neutral current Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Coherent Elastic v-Nucleus Scattering:

Physics reach of CEvNS:

- Understanding supernovae (SN):
 - Expected to be important in core-collapse SN and
 - possible SN detection channel.
- Standard Model tests, eg: NSI, $\sin^2 \theta_{\rm w}$, neutrino magnetic moments
- Nuclear Physics: nuclear form factors
- ν oscillations: Investigation of ν_{sterile} oscillations
- reactor monitoring (non-proliferation)
- Dark Matter:
 - Important background for O(10-ton) direct searches
 - detectors sensitive for accelerator produced DM...

CEvNS physics: MiniBooNE 10-7 J/w-K⁺→π⁺+invis invis. DM search ($g_{0} = \sigma_{0}$, $w_{1} = \lambda$), $(w_{1} w_{1})_{0} = \lambda$ v results, Search for accelerator-produced, low-mass, a, favored dark matter 10-8 BaBar MB Elastic **MB Electron** + Timine Via: MB Full I. Direct 10-9 Detection Nucleon XEN. 10/10 $p \to \mathrm{Hg} \to \pi^{0,\pm}$ 10-10 $\pi^0 \longrightarrow \gamma + V^{(*)} \longrightarrow \gamma + \chi^{\dagger} + \chi$ New results, 10-11 Relic follow up to: Density ISND Phys. Rev. Lett. 1 1 1 1 1 1 1 118, 221803 (2017).^{10⁻³} 10-2 10-1 m, (GeV/c²) POT=1023 Arx→Arx $m_V=3m_y$ a'=0.5 10-6 1 ton-year LAr 10-7 SNS DM sensitivity 10-8 Felic density 10 $Y = e^2 \alpha' (m_{\chi}/m_V)^4$ 10-10 10-11 ----- COHERENT - LSND arXiv:1505.07805 10-12 E137 BaBar Excluded Light new physics in coherent neutrino-nucleus scattering experiments $K^* \rightarrow \pi^* + invisible$ >1 Event - Electron/Muon g-2 10-13 Patrick deNiverville,¹ Maxim Pospelov,^{1,2} and Adam Ritz¹ >10 Events **Relic Density** >103 Events MiniBooNE ¹Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada ²Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada 10-2 10-1 (Dated: May 2015) m_x(GeV) R. Tayloe, Dark Side workshop 2018

ORNL Spallation Neutron Source (SNS) is also a world-class v source:

- intense proton beam (1.3MW, 1 GeV)
- pulsed (60 Hz, 600ns spill time)...
- ~ 5000MWhr/year
- ~ 2E23 POT/yr!

SNS v energy spectrum

SNS v time distribution

ψ

Neutron backgrounds at the 1.3 MW SNS? (much work went into this question)

Sandia scatter camera

SNS target building

ψ

neutron flux $\sim 10^5$ too high on target building, main floor

Found a quiet basement location with low beam-related and cosmic neutron rate

R. Tayloe, Dark Side workshop 2018

- SNS " ν -alley" for COHERENT
- 20-29 m from target

ψ

COHERENT experimental strategy at SNS/ORNL

1st goal: Measure N² dependence of CEvNS process

with multiple targets/detector technologies

- (event rate)/kg is high, so relatively small (10-100 kg) detectors sufficient
- radiological background requirements fairly modest, because of pulsed beam
- need low E thresholds !

COHERENT detectors

nuclear target	technology	mass (kg)	source distance (m)	recoil threshold (keVr)
Csl[Na]	Scintillating crystal	14.6	19.3	6.5
Ge	HPGe PPC	6	22	0.6
LAr	Single-phase	22	29	20
Nal[TI]	Scintillating crystal	185/2000	28	13

For more details: arXiv:1803.09183

COHERENT detectors

1 st results from CsI this past	nuclear target	technology	mass (kg)	source distance (m)	recoil threshold (keVr)	
summer (2017)!	Csl[Na]	Scintillating crystal	14.6	19.3	6.5	>
	Ge	HPGe PPC	0	22	0.6	
	LAr	Single-phase	22	29	20	
	Nal[TI]	Scintillating crystal	185/2000	28	13	
SNS "v-alley"						

COHERENT with Csl[Na]

CsI scintillating crystal:

- 14.6 kg sodium-doped Csl
- high light yield (13.35 pe/keVee)
- uniform within ~2%
- low intrinsic bg
- room temperature
- Readout with Hamamatsu R877-100 13cm dia. PMT

2 kg test crystal @U. Chicago. Amcrys-H, Ukraine

J.I. Collar et al., NIM A773 (2016) 56-67

Ū

COHERENT with Csl[Na]

Installed in v-alley at ORNL SNS in summer 2015:

Layer	HDPE*	Low backg. lead	Lead	Muon veto	Water
Thickness	3"	2"	4"	2"	4"
Colour		1/1			

ψ

COHERENT: data collection

U

COHERENT, Csl analysis:

Overall strategy:

- count beam-on low-energy events (nuclear recoils)
- subtract steady state backgrounds from beam-off data
- measure/subtract beam-related backgrounds (neutrons):
 - external
 - neutrino-induced neutrons ("NIN"s)

$$v_e + {}^{208}\text{Pb} \rightarrow {}^{208}\text{Bi}^* + e^- \text{ CC}$$

 $1n, 2n \text{ emission}$
 $v_x + {}^{208}\text{Pb} \rightarrow {}^{208}\text{Pb}^* + v_x \text{ NC}$
 $1n, 2n, \gamma \text{ emission}$

- 2 independent analyses with slightly different cut optimization yield consistent results
- "Analysis I" presented here

Steady-state-background subtracted data:

ψ

Likelihood analysis: 2D in energy (pe) and time

- best fit of data: 134 \pm 22 CEvNS events
- SM prediction: 173 ± 48 CEvNS events
- Null hypothesis (=no CEvNS) rejected at 6.7σ
- consistent w/SM within 1σ

Beam ON coincidence window	547 counts
Anticoincidence window	405 counts
Beam-on bg: prompt beam neutrons	7.0 ± 1.7
Beam-on bg: NINs (neglected)	4.0 ± 1.3
Signal counts, single-bin counting	136 ± 31
Signal counts, 2D likelihood fit	134 ± 22
Predicted SM signal counts	173 ± 48

$6 \le PE \le 30, 0 \le t \le 6000 \text{ ns}$

Uncertainties on signal and background predictions				
Event selection	5%			
Flux	10%			
Quenching factor	25%			
Form factor	5%			
Total uncertainty on signal28%				
Beam-on neutron background	25%			

ψ

Likelihood analysis: 2D in energy (pe) and time

- best fit of data: 134 \pm 22 CEvNS events
- SM prediction: 173 ± 48 CEvNS events
- Null hypothesis (=no CEvNS) rejected at 6.7σ
- consistent w/SM within 1σ

U

Likelihood analysis: 2D in energy (pe) and time

- best fit of data: 134 ± 22 CEvNS events
- SM prediction: 173 ± 48 CEvNS events
- Null hypothesis (=no CEvNS) rejected at 6.7σ
- consistent w/SM within 1σ

For more details: D. Akimov *et al.*, *Science* 10.1126/science.aao0990 (2017)

Ш

Non-Standard Interactions (NSI) specific to neutrinos

- Simple one-bin analysis
- Assume all other ε's zero

 χ^2 fit results for current CsI data set: 90% allowed region

Also:

- NSI limits rel. to v oscillations eg: arXiv:1708.02 899
- Vector portal DM eg: arXiv:1710.10889

Expecting more with more precise data to come

Ū

COHERENT detectors

	nuclear target	technology	mass (kg)	source distance (m)	recoil threshold (keVr)
In next few	Csl[Na]	Scintillating crystal	14.6	19.3	6.5
years:	Ge	HPGe PPC	6	22	0.6
	LAr	Single-phase		29	20
<	Nal[TI]	Scintillating crystal	185/2000	28	13

COHERENT detectors

Currently running	nuclear target	technology	mass (kg)	source distance (m)	recoil threshold (keVr)
Analysis in progres	_S Csl[Na]	Scintillating crystal	14.6	19.3	6.5
	Ge	HPGe PPC	6	22	0.6
	LAr	Single-phase	22	29	20
	Nal[TI]	Scintillating crystal	185/2000	28	13
Nal(II) Scintilating crystal 185/2000 28 13					

ψ

The CENNS-10 (LAr) Detector:

Specs:

- Built at FNAL, moved to ORNL Fall 16
- 22 kg LAr fiducial volume
- 2 × Hamamatsu 8"PMTs
- TPB-coated PMTs/teflon side walls
- Energy threshold ≈ 20keVnr
- Pb/Cu/H2O shield
- Running in current configuration since 7/17
- Expect ≈140 CEvNS events/SNS-year

The CENNS-10 (LAr) Detector

7/17-current data:

- light yield improved to ~3-4 PE/keV
- PSD, threshold energy look adequate for confirmation of CEvNS with ⁴⁰Ar

06/26/2018

R. Tayloe, Dark Side workshop 2018

ψ

ψ

Future for COHERENT

- 7/17 current data should provide 1st CEvNS LAr signal
- Future data from Ge, Nal
- proposal in progress for larger detectors:
 - O(1 ton) liquid noble gas detector w/underground Ar
 - D₂O for flux normalization
- .. for full physics of CEvNS.

ψ

Summary:

- First measurement of CEvNS in COHERENT Csl[Na] at the SNS!
- Potential physics output of CEvNS will drive further work on improved/larger detectors

Thanks to COHERENT collab for great work (and material for this talk!)

Backups

Ψ

COHERENT experiment at SNS/ORNL

Measured n-fluxes:

- n flux ~4.0x10⁻⁵ n m⁻² spill⁻¹
- about 10⁴ lower than Fermilab BNB with existing shielding
- and all prompt (in time with p beam)

<u>COHERENT, Csl data analysis:</u>

Neutron backgrounds:

- Evaluated using EJ-301 liquid scintillator cell deployed inside CsI shielding before CsI deployment
- Consistent with Geant4 simulation for SNS • production & shielding

Expect: 0.93 ± 0.23 beam n events/GWhr 0.54 ± 0.18 NIN events/GWhr

> <~11 neutron events => in CsI dataset

The CENNS-10 detector

timeline:

- ('12-'15) built at Fermilab for CENNS@Fermilab effort led by J. Yoo (now at KAIST) along with: A. Lathrop, R. Flores, R. Schmidt, E. Voirin, D. Markley, R. Davila, D. Butler, L. Harbacek
- (2015) moved to Indiana U. for commissioning, upgrades, neutron tests
- (2016) installed at SNS for COHERENT

The CENNS-10 (LAr) Detector:

CENNS-10 SNS timeline:

- 10-12/2016: (re)build detector at SNS
- 12/16, 3-5/17: run with TPB-acrylic parts, E_{thresh}~100keVnr
 "Spring17" data:

CEvNS measurement not possible, will constrain beam-related bckgrds

- 6/17: upgrade: TPB-Teflon reflectors, new TPB-coated PMTs, added 4" Pb shielding
- 7/17-12/17: ran in upgraded mode, E_{thresh}~20keVnr
 "Summer17" data: 2.8GWhr collected

11

³⁹Ar in Spring '17 data:

- from CENNS-10, stage 1 config: TPB-acrylic sides, no Pb shielding, beam-off (lower 511keV γ rate)
- background-collection threshold ~100 keVee
- ~0.5 PE/keV \Rightarrow E threshold ~ 80keVnr
- comparison to expected rates from environmental γ measurements + 1 Bq/kg ³⁹Ar + detector/shielding MC, very good agreement to expected
- fit with background allowed to float \Rightarrow 1 Bq/kg ³⁹Ar \pm 10%

³⁹Ar in Summer '17 data:

- from CENNS-10, upgraded config: TPB-Teflon sides, full Pb shielding, beam-off
- background-collection threshold ~20 keVee
- ~3 PE/keV ⇒
 E threshold ~ 20keVnr
- observed spectrum consistent with ~1 Bq/kg, negligible envir. γ rate
- energy calibration, MC tuning, etc in progress

³⁹Ar in Summer '17 data:

- PSD separates ³⁹Ar from CEvNS signal
- initial simulations show that separation is adequate and ³⁹Ar background can be completely suppressed.
- However, real events may prove more challenging and we are currently understanding that in the data

³⁹Ar in CEvNS data:

Some (rough) rate calculations:

- 100 CEvNS events/ SNS yr in 20kg with 20 keVnr threshold
- beam-on livetime = 200 mins (10μs window x 60 Hz)
- 1Bq/kg 39Ar ⇒
 240k events in 1 SNS-yr
 ~50k in ROI (20-200 PE)
- reduce to 500 evs backgnd (as with Csl data set)
- then PSD requirements are:
 - atmos. Ar: 1% leakage
 - underground Ar w/20x reduction, 20% leakage allowed
 - if 100x ³⁹Ar suppression, then S:B
 = 5:1 before any PSD
- A powerful improvement, esp with larger detectors!

DM sensitivities with Csl in COHERENT

Constraining Photon Portal Dark Matter with TEXONO and COHERENT Data

Shao-Feng Ge *1 and Ian M. Shoemaker $^{\dagger 2}$

¹Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan ¹Department of Physics, University of California, Berkeley, CA 94720, USA ²Department of Physics, University of South Dakota, Vermillion, SD 57069, USA

Fig. 3: The COHERENT bounds derived in this work in the context of other bounds on DM interacting with a kinetically mixed dark photon. See Sec. 5 for a description of these additional bounds. Additional bounds can be found in [29]. The left and right panels take $m_{V'} = 3 m_X$ and $m_{V'} = 10 m_X$ respectively.

R. Tayloe, Dark Side workshop 2018