Where are the WIMPs?

Felix Kahlhoefer Dark Side of the Universe 2018 Annecy-le-Vieux 25-29 June 2018

Why dark matter?

- Dark matter (DM) is an essential ingredient to describe Early Universe cosmology
 - Not affected by photon pressure
 - Acts as the early seed for structure formation
 - Creates the **potential wells** for stars and galaxies
- DM explains the amount and distribution of structure that we observe today

- A wealth of **successful predictions** from a very simple model
- Only draw-back: We understand only 5% of the Universe!

Emmy

Noether-

DEG Deutsch

Programm

Why dark matter?

• Astrophysical observations clearly confirm the **existence of DM** in the Universe...

Galactic rotation curves

Gravitational lensing of (colliding) galaxy clusters

...but they give almost no indications concerning its nature

- Is it an elementary particle?
- A complicated bound state?
- Black holes produced right after the Big Bang?

Particle dark matter

• The one thing we know about dark matter is how much there is in the Universe: $\Omega h^2 = 0.1199 \pm 0.0027$

Any model of dark matter must provide a mechanism to explain this number

- **Particle physics** is the language of the early Universe
 - Example: Cosmology depends on the number, mass and interaction strength of neutrinos
- Likewise, we would like to understand DM in terms of particle physics
- **No known particle** (within the Standard Model of particle physics) has the required properties to be DM
- Need to postulate the existence of a new stable particle!
 - What is its *mass* and *spin*?
 - What are its *interactions* with known particles?

The bottom-up approach

- Extend the SM by a particle with the required properties for a **viable DM candidate**
 - Stable (or sufficiently long-lived)
 - Electrically neutral (or sufficiently small milli-charge)
 - Collisionless (or sufficiently weak self-interactions)
- General expectation: New particles **enter into thermal equilibrium** with bath of SM particles in the Early Universe
 - No need to specify initial conditions (e.g. details of reheating) for the DM particle
 - Well-established calculations of distribution functions and reaction rates
- Many exceptions: Very small couplings, very large suppression scale, low reheating temperature...

See talks by Javier Redondo, Lawrence Hall, Andreas Goudelis

Thermal freeze-out

- We can understand the departure from thermal equilibrium in terms of **freeze-out mechanism**
 - Annihilation and production processes happened frequently in the early Universe
 - As the Universe cools down, interactions become less frequent
 - Finally, dark matter particles decouple from equilibrium

- Similar calculations are known to work well for **Big Bang Nucleosynthesis** (predicting the abundance of elements) and **recombination** (predicting the Cosmic Microwave Background)
 - Note 1: Observation of cosmic neutrino background still missing
 - Note 2: The analogous calculation for the baryon abundance fails by many orders of magnitude (due to the initial baryon asymmetry)

Relic abundance

- Boltzmann equations allows to calculate the abundance of any thermal relic (assuming standard cosmological evolution)
- Observed DM abundance implies $<\sigma v > ~ 3 \cdot 10^{-26} \text{ cm}^3/\text{s}$
 - Very **generic constraint** on DM models
 - Required cross section quite large → great discovery potential
 - Subdominant DM components would require even larger cross sections → strong experimental constraints
- Two remarkable coincidences:
 - Cross section corresponds roughly to the one expected for a new particle with weak-scale mass and interactions (so-called WIMPs)
 - WIMPs occur generically in many extensions of the Standard Model (developed for very different reasons) such as SUSY

See talks by Keith Olive and Csaba Balazs

• How do we probe these generic predictions?

Indirect detection

- Search for the products of DM annihilations in regions of high DM density (e.g. the Galactic centre)
- Indirect detection probes the same cross section as thermal freeze-out (although at a different velocity) → Clear target

- Constraints get stronger for smaller masses
- For velocity-independent annihilations into visible final states, it is impossible to have m_{DM} < 20 GeV
- Bounds for heavier DM will get a lot stronger (AMS-02, CTA, ...)
- Some hints of unclear status (e.g. the Fermi Galactic Centre Excess)

See Parallel Session II on Tuesday

See talk by Marco Regis

Direct detection and collider searches

- Comparison with thermal freeze-out **more model-dependent**
- Direct detection: Comparison possible using an effective field theory (EFT) approach
 - Detailed phenomenology depends on the effective operator under consideration
 - For example, one can have velocity-suppressed scattering but velocity-independent annihilations or vice versa
 - No general conclusion possible without more fundamental understanding
 See talk by Bradley Kavanagh

Production

- Colliders: EFT approach questionable, because suppression scales can be quite low
 - Need truncation procedure to restrict search to kinematic regions where effective field theory (EFT) is valid
 - Many interesting features are not captured by effective operators

From EFTs to simplified models

 We can address the shortcomings of effective interactions by introducing a new mediating particle connecting DM to the SM

- The move to renormalisable models comes at a high price
 - Large number of possible models → loss of generality
 - Large number of parameters for each model → increase of complexity

Simplified model results

 Simplified models make it possible to compare direct and indirect detection and collider searches for specific benchmark points
See talk by Barbara Clerbaux

- Conclusions depend very sensitively on parameter choices and cannot easily be generalised
 - Break-down of the bottom-up approach
 - Some inspiration from UV necessary

Where are the WIMDs?

Emmy

Noether-

Programm

DFG Deutsche Forschun

Consistent simplified models

- Attractive direction: Impose theoretical consistency requirements on simplified models
 - Renormalisability
 - Gauge-invariance
 - Anomaly freedom
- Examples:
 - Extended gauge groups, e.g. a new U(1)', spontaneously broken by a Higgs mechanism
 - Extended Higgs sectors, e.g. a 2HDM, that mixes with the mediator of the simplified model

No, arXiv:1509.01110 Ipek et al., arXiv:1404.3716 Goncalves et al., arXiv:1611.04593 Bauer, Haisch & FK, arXiv:1701.07427

• Underlying structure imposes correlations between different search channels See talk by Pyungwon Ko

stitute for

Novel predictions

- Replacing simplified models with models of dark sectors predicts many new signatures
- For example, SM particles can also be produced together with invisible particles...

... in the **decays of heavier states**:

...via final-state radiation:

 Very different kinematics, potentially very striking signals (e.g. mono-Higgs or monodark-Higgs)

Bauer, FK et al., arXiv:1701.07427 Duerr, FK et al., arXiv:1701.08780

Where do we stand?

LHC

- Broad range of missing-energy searches (SUSY, Mono-X, invisible Higgs, ...)
- No clear excess in any (published) search channel

Direct detection

- New result from XENON1T!
 - No significant excess
 - Strongest bound on DM interactions

- Long-standing DAMA annual modulation signal
 - Cannot be explained with spin-independent scattering
 - Model-independent tests require new experiments: SABRE, COSINE, ANAIS, COSINUS, ...

FK et la., arXiv:1802.10175

14

See talk by Ranny Budnik

What does it all mean?

SCIENTIFIC AMERICAN.

In the Dark about Dark Matter

Recent disappointments have physicists looking beyond WIMPs for dark matter particles

- Are WIMPs no longer the most attractive solution to the DM problem? Maybe!
- Or is it just more fun to cheer with the **underdogs**?

What does it all mean?

SCIENTIFIC AMERICAN.

In the Dark about Dark Matter

Recent disappointments have physicists looking beyond WIMPs for dark matter particles

- Are WIMPs no longer the most attractive solution to the DM problem? Maybe!
- Or is it just more fun to cheer with the **underdogs**?

What does it all mean?

SCIENTIFIC AMERICAN.

In the Dark about Dark Matter

Recent disappointments have physicists looking beyond WIMPs for dark matter particles

- Are WIMPs no longer the most attractive solution to the DM problem? Maybe!
- Or is it just more fun to cheer with the **underdogs**?
- Are we really ready to conclude that there are no undiscovered stable thermal relics in the Universe? **Clearly not!**
- Let's look at two specific cases
 - A very simple WIMP model
 - A rather exotic realisation of the WIMP idea

A simple WIMP: Scalar singlet DM

- Very simple idea: Consider DM particles that **couple only to the Higgs field**
- Particularly appealing: scalar singlet DM
 - Model remains valid up to very high scales (potentially up to M_{GUT} or M_{planck})
 - The contribution of the scalar singlet can **stabilise the electroweak vacuum**
 - Scalar field can act as the inflaton (via non-minimal coupling to gravity)

FK & McDonald, arXiv:1507.03600

• Simplest realisation: Real scalar stabilised by a Z₂ symmetry

$$\mathcal{L} = \frac{1}{2}\mu_{S}^{2}S^{2} + \frac{1}{2}\lambda_{hS}S^{2}|H|^{2} + \frac{1}{4}\lambda_{S}S^{4} + \frac{1}{2}\partial_{\mu}S\partial^{\mu}S.$$

- Only three relevant parameters (2 couplings, 1 mass)
- Very rich phenomenology ideal to assess the viability of the WIMP idea

Constraints on scalar singlet dark matter

- Relic density (underabundance OK)
- Direct detection (including the new XENON1T result)
- Indirect detection: Fermi-LAT (dwarfs)
- Higgs mass (obtained from RGE evolution of scalar potential using FlexibleSUSY)
- Higgs invisible width
- Lifetime of the Universe (for metastable vacua)
- Combining all this information is challenging!
 - Need to construct global likelihood functions
 - Details matter \rightarrow need to include **nuisance parameters**
 - Astrophysical uncertainties
 - Nuclear physics parameters
 - SM parameters (Higgs mass, top quark mass, gauge couplings)
- Ideal for the global fitting framework **GAMBIT** See talk by Csaba Balazs

and arXiv:1705.07908

Impact of vacuum stability, perturbativity and XENON1T on global fits of Z_2 and Z_3 scalar singlet dark matter

Peter Athron, Jonathan Cornell, FK, James McKay, Pat Scott, Sebastian Wild

arXiv:1807.????

- Two viable parameter regions:
 - $m_s \sim m_h/2$ (relic density via resonantly enhanced annihilation into quarks)
 - $-m_s \sim \text{TeV}$ (relic density via annihilation into gauge and Higgs bosons)

- $\lambda_{hs} \sim 1$ required to prevent λ_h from becoming negative at high scales
- Only high-mass solution remains

- λ_{hs} < 1 required to ensure that all couplings remain perturbative up to about M_{GUT}
- Only well-defined parameter region remains with $m_s \sim 2 \text{ TeV}$

- Slight tension (~ 1σ) with the most recent direct detection experiments
- Final verdict possible with next generation of detectors

Alternative Higgs portal models

- Also interesting to consider a complex scalar singlet with a **Z**₃ stabilising symmetry
 - Additional parameter (μ_3) allowing for **semi-annihilations**

Considerable tension (> 2σ) with direct detection experiments

• Alternative: fermionic DM

$$\mathcal{L}_{\psi} = \mathcal{L}_{\rm SM} + \overline{\psi}(i\partial \!\!\!/ - m_{\psi})\psi - \frac{\lambda_{h\psi}}{\Lambda_{\psi}} \Big[\cos\xi\,\overline{\psi}\psi + \sin\xi\,\overline{\psi}i\gamma_5\psi\Big] \left(v_0h + \frac{1}{2}h^2\right)$$

- Higgs portal coupling via dimension-5 effective operator
- Suppression of direct detection constraints via CPviolating coupling (ξ ~ π/2)
- Large allowed parameter space but significant tuning

Global analyses of Higgs portal singlet dark matter models The GAMBIT collaboration arXiv:180?.????

Belanger et al., arXiv:1211.1014

Assessing the viability of WIMP models

- In case of a non-observation, experimental data will push WIMP models into more and more **finely tuned regions** of parameter space
- How do we assess whether WIMPs remain viable in spite of these constraints?
- **Frequentist** approach: Calculate *p*-values
 - Requires knowledge of the probability distribution of the test statistic (e.g. from MC simulations)
 - Analytical approximations indicate that scalar singlets have perfectly acceptable *p*-values (> 0.1 even if we require a stable vacuum and scalar singlets to be all of DM)
- **Bayesian** approach: Calculate Bayesian evidence
 - Requires specification of the prior probabilities of underlying parameters
 - Allows for the comparison of different models (Bayes factors)

Bayesian evidence and model comparison

- Are experimental constraints pushing us towards more complicated WIMP models?
- Yes! In the case of the fermionic Higgs portal, there is **strong preference** for introducing a CP-violating phase
- This preference persists even though the additional parameter needs to be quite finely tuned

- By calculating the Bayes factor, we find that the odds against the CP-conserving case are approximately 20:1 (with only mild prior dependence)
- Well-motivated to think about more complex WIMP models!

An exotic WIMP: Secluded DM

- Assume that DM couples to a **light mediator**, which in turn couples to the SM
- Relic abundance set by annihilations into pairs of mediators (dark sector freeze-out)

- Always possible to fix coupling in dark sector such that observed relic abundance is reproduced
- Tiny couplings between the mediator and SM are sufficient to ensure that the mediator decays into SM final states
 - Direct detection and LHC constraints can be suppressed (almost) arbitrarily

FK, et al., arXiv:1704.02149, see also Parallel Session II on Thursday

An exotic WIMP: Secluded DM

- Assume that DM couples to a **light mediator**, which in turn couples to the SM
- Relic abundance set by annihilations into pairs of mediators (dark sector freeze-out)

Constraints on secluded DM

- Astrophysical constraints remain strong!
- Annihilation and self-interaction cross sections are enhanced by small mediator mass and non-perturbative effects

- Exciting possibility of observing the effects of DM self-scattering in astrophysical systems!
- Strong constraints from the CMB and indirect detection experiments

See talks by Marco Taoso, Francis-Yan Cyr-Racine and David Harvey

Hiding secluded DM

- If the light mediators decay into invisible particles (e.g. sterile neutrinos), the model is impossible to test even with indirect detection experiments
- But late-time conversion of DM into dark radiation can potentially be constrained with CMB data
- In fact, Sommerfeld-enhanced DM annihilations may even reduce H₀ tension!

CMB + HST + PC

73

71

 H_0

CMB + lensing + HST + PC

75

77

CMB

69

0.93

0.90

0.87

0.84

0.81

0.78

0.75

65

 $\sigma_8 (\Omega_m / 0.27)^{0.3}$

ΛCDM

67

Where are the WIMPs? Felix Kahlhoefer | 25 June 2018

0.93

0.90

0.87

0.84

0.81

0.78

0.75

65

 $\sigma_8(\Omega_m/0.27)^{0.3}$

What if it's not a WIMP?

Many exciting alternatives!

Modified thermal production

- Asymmetric DM
- SIMPs (and other models with $3 \rightarrow 2$ processes)
- Sub-GeV WIMPs ("WIMPs next door")
- Exciting prospects for novel direct detection experiments

See talk by Julien Billard and Parallel Session 1 today

Non-thermal production

- Sterile neutrinos
- Axions
- FIMPs

See talks by Javier Redondo, Lawrence Hall and Andreas Goudelis

• Difficult to see in direct detection and at the LHC – need alternative searches

Great overview at DSU2018!

A short advertisement

- Home
- Download
- Source Code
- Report issue
- Mailing list
- Contact

DDCalc v2

Interested in DM direct detection? Try DDCalc!

Dark matter direct detection phenomenology package

DDCalc is a software package for performing various dark matter direct detection calculations, including signal rate predictions and likelihoods for several experiments.

A full description of this package and the physics framework behind it can be found in the GAMBIT DarkBit paper:

• T Bringmann, J Conrad, JM Cornell, LA Dal, J Edsjö, B Farmer, F Kahlhoefer, A Kvellestad, A Putze, C Savage, P Scott, C Weniger, M White & S Wild 2017, EPIC 77 (2017) 831, arXiv:1705.07920

If you write a paper that uses DDCalc, please cite this paper.

Version history:

- v2.0.0 June 2018: Support for full set of non-relativistic operators with general momentum and velocity dependence, new features for the definition of complex experiments with several signal regions and/or target elements, improved user interface including several new example files, new results from XENON1T (2018).
- v1.2.0 January 2018: Added implementation of PandaX (2017).
- v1.1.0 June 2017: Added implementation of Xenon1T (2017) and PICO-60 (2017).
- v1.0.0 May 2017: Initial release in combination with GAMBIT v1.0.0.

DDCalc releases can be obtained as tarballs from Hepforge. The latest and greatest version, along with a full revision history, can always be found in the git repository. Compilation and usage instructions, as well as a number of example programs, can be found in the code release.

Maintainers: The GAMBIT Dark Matter Workgroup (ddcalc@projects.hepforge.org) Many of the routines in DDCalc were originally contributed by Chris Savage (chris@savage.name)

Brand-new! DDCalc v2.0.0 including the full set

of non-relativistic effective operators

32

DFG Deutsche Forschungs

Where are the WIMPs? Felix Kahlhoefer | 25 June 2018

Conclusion: The status of WIMPs

- There are **many strong constraints** on WIMP models
- Still, even some of the simplest WIMP models **remain viable**
- Example: (Scalar) Higgs portal
 - Theoretically preferred parameter region (where the model remains perturbative and stabilises the electroweak vacuum) is only **beginning to be probed** by direct detection
- Constraints on WIMP models can be relaxed by introducing additional parameters (e.g. CP-violating phases) or mechanisms to hide signals (e.g. secluded DM)
- Essential to quantify the complexity and fine-tuning of WIMP models to assess their viability (e.g. using Bayesian evidence and model comparison)

