HUH????

Is "low energy" susy DM still viable?

Is "low energy" susy DM still viable?

Is "low energy" susy DM still viable? yes

What about high scale susy?

Is "low energy" susy DM still viable? yes

What about high scale susy?

No susy?

Elastic scaterring cross-section

Stop strip

Ellis, Evans, Luo, Olive, Zheng Bagnaschi et al.

Focus Point

100 TeV 3000 fb⁻¹ 33 TeV 3000 fb⁻¹ 14 TeV 3000 fb⁻¹ 14 TeV 300 fb⁻¹ 8 TeV 20 fb⁻¹

Ellis, Evans, Mustafayev, Nagata, Olive

Other Possibilities

Less Constrained (more parameters)

- NUHM1,2: $m_1^2 = m_2^2 \neq m_0^2$, $m_1^2 \neq m_2^2 \neq m_0^2$
 - µ and/or m_A free
- NUGM
 - gluino coannihilation
- subGUT models: Min < MGUT</p>
 - new parameter M_{in}
- SuperGUT models: Min > MGUT
 - requires SU(5) input couplings

SubGUT Stop strip

Other Possibilities

More Constrained (fewer parameters)

- Pure Gravity Mediation
 - 2 parameter model with very large scalar masses
 - $m_0 = m_{3/2}$, tan β
- mAMSB
 - similar to PGM, but allow $m_0 \neq m_{3/2}$
- mSUGRA
 - $B_0 = A_0 m_0 \Rightarrow \tan \beta$ no longer free

mAMSB

What if the entire SUSY matter spectrum were very large

with only the gravitino remaining "light"

Benakli, Chen, Dudas, Mambrini Dudas, Mambrini, Olive

Supersplit Supersymmetry

1 parameter model: m_{3/2}

Gravitino Mass Limits

For $m_{3/2} \sim 10-1000 \text{ GeV}$

Gravitino decays to the LSP/NLSP decays to the gravitino:

Lifetimes 100-10⁸ s \Rightarrow BBN limits

$$\Gamma_{\text{decay}} \simeq \frac{C^2}{16\pi} \frac{m_{\chi}^5}{m_{3/2}^2 M_P^2}$$

NLSP \rightarrow gravitino + γ

 $\tau_\chi \lesssim 100 \text{ s} \Rightarrow m_\chi > 300 \text{ GeV} (m_{3/2}/\text{GeV})^{2/5}$

Gravitino Mass Limits $\tau_{\chi} \leq 100 \text{ s} \Rightarrow m_{\chi} > 300 \text{ GeV} (m_{3/2}/\text{GeV})^{2/5}$

Relic Density:
$$\Omega_{3/2}h^2 = \frac{m_{3/2}}{m_{\chi}}\Omega_{\chi}h^2$$
 or $\Omega_{\chi}h^2 \lesssim 0.12\frac{m_{\chi}}{m_{3/2}}$

Gluino coannihilation

$m_{\chi} < 8 \text{ TeV} \Rightarrow m_{3/2} < 4 \text{ TeV}$

heavier gravitino \rightarrow heavier neutralino $\rightarrow \Omega_{\chi}h^2$ too large $\rightarrow \Omega_{3/2}h^2$ too large

Gravitino Mass Limits

 $m_{3/2}$ < 4 TeV unless(!) the susy spectrum lies above the inflationary scale.

For $M_{susy} \sim F^{1/2} > m_{infl} \sim 3 \times 10^{13} \text{ GeV}$

Toy Model Duday, Cherghetta, Mambrini, Olive $K = -3 \ln \left(T + \overline{T} - \frac{1}{3} \sum_{i} |\phi_{i}|^{2} \right) + |z|^{2} - \frac{|z|^{4}}{\Lambda_{z}^{2}}$

Matter

Polonyi

 $W = \sqrt{3}m\phi(T - 1/2),$ $\overline{x} + \tilde{m}^2(z + b)$ **Starobinsky Inflation**

Polonyi Model

Inflaton

No Scale Model:

Toy Model

for small
$$\Lambda_z$$

 $m_{3/2} = m \frac{4\tilde{m}^6 + 2\tilde{m}^2 m^3 M_P}{2\sqrt{3}(m^2 M_P^2 + \tilde{m}^4)^{3/2}} \rightarrow \tilde{m}^2/\sqrt{3} M_P$ for small \tilde{m}^2/mM_P
For $\tilde{m} = m$ $m_{3/2} = \frac{m^2}{\sqrt{3}M_P} \approx 0.2$ EeV.
 $m_{1/2} \sim m_{3/2} \frac{M_P^2}{\Lambda_z^2}$ $m_z^2 = \frac{12m_{3/2}^2 M_P^2}{\Lambda_z^2}$
 $m_0 \sim m_{1/2} \frac{g^2}{16\pi^2}$ $m_z^2 = \frac{12m_{3/2}^2 M_P^2}{\Lambda_z^2}$
 $\Rightarrow \frac{\Lambda_z}{M_P} < \frac{g}{4\pi} \left(\frac{m}{M_P}\right)^{1/2} \sim \text{few} \times 10^{-3}$

Toy Model

Gravitino Production

Standard Picture:

Y

gluon + gluon \rightarrow gluino + gravitino

$$\begin{aligned} \langle \sigma v \rangle \sim \frac{1}{M_P^2} \left(1 + \frac{m_{\tilde{g}}^2}{3m_{3/2}^2} \right) \\ \Gamma \sim T^3 \frac{m_{\tilde{g}}^2}{M_P^2 m_{3/2}^2} & \frac{n_{3/2}}{n_{\gamma}} \sim \frac{\Gamma}{H} \sim T \frac{m_{\tilde{g}}^2}{M_P m_{3/2}^2} \end{aligned}$$

Gravitino Production

Standard Picture:

gluon + gluon \rightarrow gluino + gravitino

$$\begin{split} \langle \sigma v \rangle \sim \frac{1}{M_P^2} \left(1 + \frac{m_{\tilde{g}}^2}{3m_{3/2}^2} \right) \\ \Gamma \sim T^3 \frac{m_{\tilde{g}}^2}{M_P^2 m_{3/2}^2} \quad \frac{n_{3/2}}{n_{\gamma}} \sim \frac{\Gamma}{H} \sim T \frac{m_{\tilde{g}}^2}{M_P m_{3/2}^2} \end{split}$$

Not possible if $m_{\tilde{g}} > m_{\phi}$

Gravitino Production

 $m_{\tilde{g}} > m_{\phi}$

gluon + gluon \rightarrow gravitino + gravitino

$$\begin{split} \langle \sigma v \rangle \sim \frac{T^6}{M_P^4 m_{3/2}^4} \\ \Gamma \sim \frac{T^9}{M_P^4 m_{3/2}^4} & \frac{n_{3/2}}{n_{\gamma}} \sim \frac{\Gamma}{H} \sim \frac{T^7}{M_P^3 m_{3/2}^4} \end{split}$$

$$\Omega_{3/2}h^2 \simeq 0.11 \left(\frac{0.1 \text{ EeV}}{m_{3/2}}\right)^3 \left(\frac{T_{RH}}{2.0 \times 10^{10} \text{ GeV}}\right)^7$$

Reheating

Inflaton decays (dominant channel): Ellis, Garcia, Nanopoulos, Olive

$$\mathcal{L}_{\text{eff}} \ni \frac{\text{Re}T}{\sqrt{3}} (n_I + n_L - 3) W^{IL} \bar{W}_{LJ} \Phi_I \bar{\Phi}^J ,$$

 $\sim \mu^2 e^{\sqrt{\frac{2}{3}t}} (|h_u|^2 + |h_d|^2) ,$

$$\Gamma_{2h} = \frac{\mu^4}{384\pi m M_P^2} \sin^2 2\beta$$

$$T_{RH} = \left(\frac{10}{g_s}\right)^{1/4} \left(\frac{2\Gamma_{2h} M_P}{\pi c}\right)^{1/2} = 0.5 \frac{y_I}{2\pi} (m M_P)^{1/2}$$

$$y_I = \mu^2 / (4\sqrt{3}mM_P)$$
 $g_s = 427/4$ $c \simeq 1.2$

$2.7 \times 10^{10} \text{ GeV} \lesssim T_{RH} \lesssim 1.1 \times 10^{12} \text{ GeV}$

 $m_{3/2} > .2 \text{EeV}$ $m_{3/2} < T_R$

Reheating

UV Completion -SO(10)

Ellis, Gherghetta, Kaneta, Olive

$$W \supset \frac{\mu_{\Phi}}{4!} \Phi^{2} + \frac{\mu_{\Sigma}}{5!} \Sigma \overline{\Sigma} + \frac{\lambda}{4!} \Phi^{3} + \frac{\eta}{4!} \Phi \Sigma \overline{\Sigma} + \mu_{H} H^{2} + \frac{1}{4!} \Phi H(\alpha \Sigma + \overline{\alpha} \overline{\Sigma})$$

$$\Phi(\mathbf{210}); \quad \Sigma(\mathbf{126}); \quad \overline{\Sigma}(\mathbf{126}); \quad H(\mathbf{10})$$

Vanishing F- and D- terms fixes the vevs

$$v_{1,1,1} = -\frac{\mu_{\Phi}}{\lambda} \frac{x(1-5x^2)}{(1-x)^2}; \quad v_{1,1,15} = -\frac{\mu_{\Phi}}{\lambda} \frac{(1-2x-x^2)}{(1-x)}; \quad v_{1,3,15} = -\frac{\mu_{\Phi}}{\lambda}x;$$

$$\sigma_{1,3,\overline{10}}\sigma_{1,3,10} = \frac{2\mu_{\Phi}^2}{\eta\lambda} \frac{x(1-3x)(1+x^2)}{(1-x)^2}; \quad -8x^3 + 15x^2 - 14x + 3 = (x-1)^2 \frac{\lambda\mu_{\Sigma}}{\eta\mu_{\Phi}}$$

choice of $x \sim 0.63$ leaves one state (in addition to the Higgs) light

$$S = (1, 3, 0) \subset (1, 3, 15) \subset 210$$

Threshold corrections:

$$\left(\frac{1}{g_i^2(\mu_*)}\right) = \left(\frac{1}{g_U^2(\mu_*)}\right) - \left(\frac{\lambda_i}{48\pi^2}\right)$$

 λ_i computable because spectrum is determined

$$\left(\frac{\Delta\lambda_{ij}(\mu)}{48\pi^2}\right) \equiv \left(\frac{1}{g_i^2(\mu)} - \frac{1}{g_j^2(\mu)}\right) = \left(\frac{\lambda_j(\mu) - \lambda_i(\mu)}{48\pi^2}\right)$$

for each
$$\lambda,\eta$$

 $\chi^2(g_U,\mu_{\Phi},\tilde{m},m_{\chi}) \equiv \sum_{i=1}^3 \left[g_i^{-2}(\mu_{\Phi}) - (g_U^{-2} - \frac{\lambda_i(g_U,\mu_{\Phi},\tilde{m},m_{\chi})}{48\pi^2}) \right]^2 / \sigma_i^2,$

Higgs vacuum stability achieved through coupling of S (weak triplet) to H

Radiative EW symmetry breaking

Higgs vacuum stability

Radiative Electroweak Symmetry Breaking

Detection?

Dudas, Gherghetta, Kaneta, Mambrini, Olive

Signatures of decay with R-parity violation

$$W_{\rm RPV} = \mu' L H_u.$$

Normally, $\mu' < 2 \times 10^{-5} \text{GeV}$ from L-violating interactions

Detection? Dudas, Gherghetta, I Mambrini, Olive

$$\tau_{3/2} \simeq 10^{28} \left(\frac{\widetilde{m}}{10^{14} \text{ GeV}}\right)^2 \left(\frac{0.44 \text{ keV}}{\mu' c_\beta}\right)^2 \left(\frac{1 \text{ EeV}}{m_{3/2}}\right)^3 \text{ s} \qquad \mu \sim \widetilde{m} \gg \mu'$$

$$\mu' c_{\beta} = 14 \text{ keV} \left(\frac{\Omega_{3/2} h^2}{0.11}\right)^{1/2} \left(\frac{10^{28} \text{ s}}{\tau_{3/2}}\right)^{1/2} \left(\frac{\widetilde{m}}{10^{14} \text{ GeV}}\right) \left(\frac{2.0 \times 10^{10} \text{ GeV}}{T_{\text{RH}}}\right)^{7/2}$$

Expect about 1 event at ANITA every 137 years.

ANITA has seen 2 O(EeV) events in 3 years

Planck Scale SUSY \equiv no susy at low energy

Planck Scale SUSY \equiv no susy at low energy

SO(10) GUT?

Planck Scale SUSY = no susy at low energy

SO(10) GUT?

Gauge Coupling Unification

- Stabilization of the Electroweak Vacuum
- Radiative Electroweak Symmetry Breaking
- Dark Matter
- Neutrino masses…

SO(10) DM models Mambrini, Nagata, Olive, Zheng

1. Pick an Intermediate Scale Gauge Group

 $R_1 \qquad SO(10) \longrightarrow G_{int}$

2. Use 126 to break Gint to SM

$$SO(10) \xrightarrow{\mathsf{R}_1} G_{int} \xrightarrow{\mathsf{R}_2} G_{SM} \otimes \mathbb{Z}_2 \qquad \mathsf{R}_2 = \mathbf{126} + \dots$$

3. Pick DM representation and insure proper splitting within the multiplet, and pick low energy field content

4. Use RGEs to obtain Gauge Coupling Unification

Examples:

Nagata, Olive, Zheng

Scalars

Higgs portal models Inert Higgs doublet models

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c} G_{\rm int} = {\rm SU}(4)_C \otimes {\rm SU}(2)_L \otimes {\rm SU}(2)_R \\ \\ {\rm SA}_{422} & 16.33 & 11.08 & 0.0218 & 36.8 \pm 1.2 \\ \\ {\rm SB}_{422} & 15.62 & 12.38 & 0.0228 & 34.0 \pm 1.2 \\ \hline G_{\rm int} = {\rm SU}(3)_C \otimes {\rm SU}(2)_L \otimes {\rm SU}(2)_R \otimes {\rm U}(1)_{B-L} \\ \\ \\ {\rm SA}_{3221} & 16.66 & 8.54 & 0.0217 & 38.1 \pm 1.2 \\ \\ {\rm SB}_{3221} & 16.17 & 9.80 & 0.0223 & 36.2 \pm 1.2 \\ \\ {\rm SC}_{3221} & 15.62 & 9.14 & 0.0230 & 34.0 \pm 1.2 \\ \end{array}$	Model	$\log_{10} M_{\rm GUT}$	$\log_{10} M_{\rm int}$	$lpha_{ m GUT}$	$\log_{10} \tau_p(p \to e^+ \pi^0)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{\rm int} = { m SU}(4)_C \otimes { m SU}(2)_L \otimes { m SU}(2)_R$					
SB42215.6212.38 0.0228 34.0 ± 1.2 $G_{int} = SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$ SA322116.66 8.54 0.0217 38.1 ± 1.2 SB322116.17 9.80 0.0223 36.2 ± 1.2 SC322115.62 9.14 0.0230 34.0 ± 1.2	SA_{422}	16.33	11.08	0.0218	36.8 ± 1.2	
$G_{int} = SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$ SA322116.668.540.0217 38.1 ± 1.2 SB322116.179.800.0223 36.2 ± 1.2 SC322115.629.140.0230 34.0 ± 1.2	SB_{422}	15.62	12.38	0.0228	34.0 ± 1.2	
SA_{3221} 16.668.540.0217 38.1 ± 1.2 SB_{3221} 16.179.800.0223 36.2 ± 1.2 SC_{3221} 15.629.140.0230 34.0 ± 1.2	$G_{\rm int} = { m SU}(3)_C \otimes { m SU}(2)_L \otimes { m SU}(2)_R \otimes { m U}(1)_{B-L}$					
SB322116.179.800.0223 36.2 ± 1.2 SC322115.629.140.0230 34.0 ± 1.2	SA ₃₂₂₁	16.66	8.54	0.0217	38.1 ± 1.2	
SC ₃₂₂₁ 15.62 9.14 0.0230 34.0 ± 1.2	SB ₃₂₂₁	16.17	9.80	0.0223	36.2 ± 1.2	
	SC ₃₂₂₁	15.62	9.14	0.0230	34.0 ± 1.2	
$G_{\rm int} = {\rm SU}(3)_C \otimes {\rm SU}(2)_L \otimes {\rm SU}(2)_R \otimes {\rm U}(1)_{B-L} \otimes D$						
SA_{3221D} 15.58 10.08 0.0231 33.8 ± 1.2	SA _{3221D}	15.58	10.08	0.0231	33.8 ± 1.2	
SB_{3221D} 15.40 10.44 0.0233 33.1 ± 1.2	SB _{3221D}	15.40	10.44	0.0233	33.1 ± 1.2	

Example based on scalar singlet DM (SA₃₂₂₁) with $G_{int} = SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

Kadastik, Kannike, Raidal; Mambrini, Nagata, Olive, Zheng

Summary

- LHC susy and Higgs searches have pushed CMSSM-like models to "corners" or strips
- However, still viable and more so beyond the CMSSM
- But maybe the susy spectrum is very heavy, and was never part of the thermal background, yet the gravitino may still be the dark matter!
- Can we learn more from a UV completion?
- Signatures at the EeV scale?