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Focus Point
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Other Possibilities

NUHM1,2:  m12 = m22 ≠ m02, m12 ≠ m22 ≠ m02 

μ and/or mA free 

NUGM 

gluino coannihilation 

subGUT models: Min < MGUT 

new parameter Min 

SuperGUT models: Min > MGUT  

requires SU(5) input couplings

Less Constrained (more parameters)
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Other Possibilities

Pure Gravity Mediation 

2 parameter model with very large scalar masses 

m0 = m3/2, tan β 

mAMSB 

similar to PGM, but allow m0 ≠ m3/2 

mSUGRA 

B0 = A0 - m0 ⇒ tan β no longer free 

!

More Constrained (fewer parameters)
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Even Larger Mass Scales

What if the entire SUSY matter spectrum were very 
large 
!
with only the gravitino remaining “light”

Supersplit Supersymmetry

1 parameter model: m3/2

Benakli, Chen, Dudas, Mambrini	
Dudas, Mambrini, Olive



Gravitino Mass Limits

For m3/2 ~ 10-1000 GeV 

Gravitino decays to the LSP/NLSP decays to the gravitino:

Lifetimes 100-108 s ⇒ BBN limits

2

given by [14, 15, 31]

�decay ' C2

16⇡

m5
�

m2
3/2M

2
P

(1)

where C depends on the neutralino diagonalization ma-
trix and we have ignored phase space factors (and other
factors of O(1)). In the case of a gravitino LSP, there
are typically strong constraints on the SUSY parameter
space forcing one into regions where the NLSP is the tau
slepton [28, 29].

The BBN constraints begin to be relaxed when the
lifetime of the NLSP becomes less than O(100) s [26, 27],
and for a neutralino NLSP, we can use Eq.(1) to obtain
a relation between the neutralino and gravitino masses,

⌧� . 100 s. ) m� > 300 GeV
⇣m3/2

GeV

⌘2/5
(2)

for C ⇠ 1. Thus avoiding the limits from BBN will re-
quire a rather heavy SUSY spectrum for TeV scale (and
above) gravitino masses. We note that the relaxation
of the BBN bound at 100 s requires satisfying the upper
bound on the density of decaying particles of roughly [26],
m�n�/n� . 7⇥ 10�9 GeV. If we exceed this density, we
must use the more strict BBN bound of ⌧� . 0.1s. In
this case, the lower limit on m� in Eq.(2) is increased by
a factor of ⇠ 4.

In addition to the BBN constraints, there is an ad-
ditional constraint coming from the relic density of the
NLSP whose decay contributes to the relic density of
gravitinos [21–23]. The gravitino relic density from NLSP
decays can be written simply as

⌦3/2h
2 =

m3/2

m�
⌦�h

2 (3)

and thus the NLSP relic density is limited by

⌦�h
2 . 0.12

m�

m3/2
(4)

where 0.12 is the approximate upper limit on the cold
dark matter density from PLANCK experiment [32]. As
long as m� is not much greater than m3/2, the NLSP
density is constrained to be near the cold dark matter
density. Even in the event that m� � m3/2, the relic
density of the NSLP is still constrained by the BBN un-
less its lifetime is very short (< 0.1 s) as noted above.

Thus as we attempt to increase the mass of a gravitino
LSP, we are forced to higher NLSP masses to insure both
a relatively short lifetime and low relic density. For ex-
ample, for m3/2 = 2 TeV, we must require m� & 6 TeV
(20 TeV) to obtain ⌧� < 100 s (< 0.1s). Generally, it
is very di�cult to obtain an acceptable neutralino relic
density when the neutralino masses surpass the TeV scale
[6, 7]. In particular, the neutralino relic density in the
TeV regime must be regulated by either some strong res-
onant process or co-annihilation. Indeed, the strongest

such process involves the co-annihilation with the gluino
[33–36]. Pushing the mass scales to their limit (when the
neutralino and gluino masses are degenerate), an upper
limit to the neutralino mass of roughly 8 TeV was found
[34–36]. This translates (using Eq. 2) to an upper bound
on the gravitino mass of roughly m3/2 < 4 TeV.

III. HIGH SCALE SUSY BREAKING AND
INFLATION - EEV SCALE GRAVITINOS

A. High scale SUSY

In order to go beyond the derived upper limit on the
gravitino mass of 4 TeV, we must make a more substan-
tial departure from the common paradigm of weak scale
supersymmetry. In this section, we consider the possibil-
ity for a higher gravitino masses along with a very high
SUSY breaking scale, leaving only the gravitino surviving
at low energies as a dark matter candidate.

As we demonstrated in the previous section, a grav-
itino mass in excess of 4 TeV, would require a SUSY
spectrum in excess of 8 TeV in order to obtain NLSP
lifetimes short enough to be compatible with constraints
from BBN. However, even in the limit of degenerate neu-
tralinos and gluinos, strong co-annihilations are insu�-
cient to lower the NLSP relic density to acceptable lev-
els. Further increasing the SUSY mass scale, weakens
the interaction strengths, lowering the annihilation (and
co-annihilation) cross sections, leading to an overabun-
dance. Without resorting to some unknown form of dilu-
tion, one possibility for larger gravitino masses is to move
the SUSY matter spectrum to such high scales, so that
SUSY particles were never part of the thermal bath after
inflation.

To completely remove the supersymmetric particle
spectrum from the thermal history, we must assume that
the SUSY mass spectrum is larger than both the in-
flationary reheating temperature, TR, and the inflaton
mass, m�, so as to prevent SUSY particles from being
produced by either thermal processes during reheating
or by the decay of the inflaton. Here, we will not tie our-
selves to a particular inflationary model, but note that
in many models considered, the inflaton mass is set by
amplitude of density perturbations seen in the microwave
background, and yields a value of roughly 3⇥ 1013 GeV.
When we need to refer to a specific example, we consider
a no-scale supergravity model of inflation [37] which leads
to Starobinsky-like inflation [38].

If we denote as F the order parameter for supersym-
metry breaking, then typical soft SUSY masses will be
proportional to F ,

MSUSY =
F

⇤mess
(5)

where ⇤mess is the mass scale associated with the medi-

NLSP → gravitino + γ

τχ ≾ 100 s ⇒ mχ > 300 GeV (m3/2/GeV)2/5



Gravitino Mass Limits

Relic Density:
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given by [14, 15, 31]
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for C ⇠ 1. Thus avoiding the limits from BBN will re-
quire a rather heavy SUSY spectrum for TeV scale (and
above) gravitino masses. We note that the relaxation
of the BBN bound at 100 s requires satisfying the upper
bound on the density of decaying particles of roughly [26],
m�n�/n� . 7⇥ 10�9 GeV. If we exceed this density, we
must use the more strict BBN bound of ⌧� . 0.1s. In
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a factor of ⇠ 4.

In addition to the BBN constraints, there is an ad-
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NLSP whose decay contributes to the relic density of
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where 0.12 is the approximate upper limit on the cold
dark matter density from PLANCK experiment [32]. As
long as m� is not much greater than m3/2, the NLSP
density is constrained to be near the cold dark matter
density. Even in the event that m� � m3/2, the relic
density of the NSLP is still constrained by the BBN un-
less its lifetime is very short (< 0.1 s) as noted above.

Thus as we attempt to increase the mass of a gravitino
LSP, we are forced to higher NLSP masses to insure both
a relatively short lifetime and low relic density. For ex-
ample, for m3/2 = 2 TeV, we must require m� & 6 TeV
(20 TeV) to obtain ⌧� < 100 s (< 0.1s). Generally, it
is very di�cult to obtain an acceptable neutralino relic
density when the neutralino masses surpass the TeV scale
[6, 7]. In particular, the neutralino relic density in the
TeV regime must be regulated by either some strong res-
onant process or co-annihilation. Indeed, the strongest

such process involves the co-annihilation with the gluino
[33–36]. Pushing the mass scales to their limit (when the
neutralino and gluino masses are degenerate), an upper
limit to the neutralino mass of roughly 8 TeV was found
[34–36]. This translates (using Eq. 2) to an upper bound
on the gravitino mass of roughly m3/2 < 4 TeV.
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A. High scale SUSY

In order to go beyond the derived upper limit on the
gravitino mass of 4 TeV, we must make a more substan-
tial departure from the common paradigm of weak scale
supersymmetry. In this section, we consider the possibil-
ity for a higher gravitino masses along with a very high
SUSY breaking scale, leaving only the gravitino surviving
at low energies as a dark matter candidate.
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or by the decay of the inflaton. Here, we will not tie our-
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in many models considered, the inflaton mass is set by
amplitude of density perturbations seen in the microwave
background, and yields a value of roughly 3⇥ 1013 GeV.
When we need to refer to a specific example, we consider
a no-scale supergravity model of inflation [37] which leads
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above) gravitino masses. We note that the relaxation
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density is constrained to be near the cold dark matter
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ity for a higher gravitino masses along with a very high
SUSY breaking scale, leaving only the gravitino surviving
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Figure 4. The (mχ,∆m ≡ mg̃ − mχ) planes for a Bino LSP, exhibiting bands where 0.1151 <
Ωχh2 < 0.1235 (3 σ below and above the current central value), for different values of mq̃/mg̃ = 1.1
(upper left), 10 (upper right), 50 (lower left) and 120 (lower right). These results are calculated
without the Sommerfeld enhancement factor and gluino bound-state formation (red bands), with
the Sommerfeld enhancement factor but without gluino bound-state formation (orange bands),
with both the Sommerfeld enhancement factor and gluino bound-state formation (black bands),
and allowing for the possibility that the bound-state formation rate is a factor 2 larger than our
calculations (purple bands).
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Gluino coannihilation

Ellis, Luo, Olive

mχ < 8 TeV ⇒ m3/2 < 4 TeV

heavier gravitino → heavier neutralino	
  → Ωχh2 too large → Ω3/2h2 too large

τχ ≾ 100 s ⇒ mχ > 300 GeV (m3/2/GeV)2/5



Gravitino Mass Limits

m3/2 < 4 TeV unless(!) the susy spectrum lies 	
above the inflationary scale.

For Msusy ~ F1/2 > minfl ~ 3 × 1013 GeV

3

ators of supersymmetry breaking2. We expect ⇤mess �
MSUSY . Thus MSUSY > m� translates to F > m2

�. The
gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m2

�p
3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �scat

N [45, 46]. Fur-
thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt = n2
�h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T 3M2

SUSY /M
2
Pm

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM2

SUSY /MPm
2
3/2,

where we have simply taken the Hubble parameter as
T 2/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2
These messengers could in principle also play a role in restoring

unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n2h�vi ' 21.65⇥ T 12

F 4
(8)

where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T 8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T 3, and for gravitino production, we expect h�vi /
T 6/F 4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T 9/M4

Pm
4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T 7/M3

Pm
4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
TRH

2.0⇥ 1010 GeV

◆7

(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]
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m� MP
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where we have defined a standard ”yukawa”-like coupling

y� of the inflaton field to the thermal bath, �� =
y2
�

8⇡m�

and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
of y�:
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ators of supersymmetry breaking2. We expect ⇤mess �
MSUSY . Thus MSUSY > m� translates to F > m2

�. The
gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m2

�p
3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �scat

N [45, 46]. Fur-
thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt = n2
�h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T 3M2

SUSY /M
2
Pm

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM2

SUSY /MPm
2
3/2,

where we have simply taken the Hubble parameter as
T 2/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2
These messengers could in principle also play a role in restoring

unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n2h�vi ' 21.65⇥ T 12

F 4
(8)

where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T 8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T 3, and for gravitino production, we expect h�vi /
T 6/F 4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T 9/M4

Pm
4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T 7/M3

Pm
4
3/2. More precisely, we find,
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In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]
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y� of the inflaton field to the thermal bath, �� =
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and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
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The second family of models can be written as [61, 62]

W =
p
3m�(T � 1/2), C , (9)

or

W = my1y2(1 + y2/
p
3) C , (10)

In this case, the inflaton is associated with T (y2) and it
must be assumed that � (y1) is stabilized at the origin.
Again, when T (y2) is normalized to give a proper kinetic
term, we get the Starobinsky potential shown in Eq. (1).

In either case (WZ or C), the mass parameter m is
related to the inflaton mass, and is set by the amplitude
of density fluctuations measured in the CMB through Eq.
(2)

B. E↵ects of supersymmetry breaking on Inflation

Supersymmetry breaking can be accomplished in var-
ious ways, but in many of these, there are constraints
on the susy breaking scale due to its e↵ect on the in-
flationary potential. In general, susy breaking perturbs
the potential, but these e↵ects may be small, if the susy
breaking scale µ ⌧ m.

The simplest possibility we can consider is adding a
constant, µ to the superpotential. In most low energy
models of susy phenomenology, we would relate µ to the
weak scale through m̃, as µ = m̃M2

P and the gravitino
mass is just

m3/2 =
µ

(T + T̄ )3/2
= m̃ (11)

in Planck units with T + T ⇤ = 1. However, in this case
low energy susy breaking parameters such as soft scalar
masses, m0, trilinear A-terms and the bi-linear B0 are
all proportional to m3/2 (m0 = 0 for untwisted matter
fields) [43, 63]. The gaugino mass in this case is

m1/2 =

����
1

2
eG/2 f̄↵�,T

Re f↵�
(G�1)TTG

T

���� =
����
1

2
µ
f̄↵�,T
Re f↵�

���� (12)

where f↵� is the gauge kinetic function. For (T + T̄ ) = 1,
it is unlikely that we get a hierarchy m3/2 ⌧ m1/2.
Moreover, trying to relate supersymmetry breaking to
inflation this case is rather arbitrary, as we can set µ
to be either mM2

P , or m2MP , or m3, giving m3/2 =
m,m2/MP ⇡ 0.4EeV, or m3/M2

P ⇡ 5 TeV (though the
latter may be of phenomenological interest).

In [48], a linear term µ2� for the inflaton in (7) was pro-
posed making the association between the inflaton and
Polonyi field. For small µ, the theory works quite well,
and thus predicts a small (weak scale) gravitino mass.
The inflationary capability of the theory breaks down
when µ & 5 ⇥ 10�5 corresponding to an upper limit on
the gravitino mass of m3/2 = µ4/2m . 106 GeV.

Next we can consider adding a strongly stabilized
(twisted) Polony field to the model,

µ ! µ(z + ⌫)(T + c)p . (13)

with

K � zz̄ � (zz̄)2

⇤2
z

(14)

(the modular weight, (T + 1/2)p is needed to avoid a
DeSitter vacuum with weak scale energy density), we
will take p = 3 as an example here) [43]. Choosing
b ' 1/

p
3 gives a minimum with zero vacuum energy

at z ' ⇤2
z/
p
12. The mass of the Polonyi field is now

hierarchically larger than the gravitino mass

m2
z =

12m2
3/2

⇤2
(15)

Once again, for µ ⌧ m, this works quite well so long
as ⇤z is not too small (⇤z & 2(µ/m).3). Increasing
µ, leads to the formation of a new minimum at large
x which quickly becomes the global minimum. In Fig.
1. we show the potential for fixed p = 3. ⇤z = 10�2,
and several values of µ. For µ/m < 10�8, the poten-
tial is indistinguishable from that shown as 10�8. For
m ⇡ 10�5MP , we see that this model works fine for weak
scale supersymmetry breaking, and for scales as large as
µ . 10�12MP ⇠ 3 PeV, corresponding to gravitino mass
of m3/2 ' µ/

p
3 . 1.7 PeV. In particular, m3/2 = 0.2

EeV would correspond to µ/m ⇡ 10�5 which would spoil
badly the inflationary potential.
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FIG. 1: Projections of the e↵ective inflationary
potential for the model (7) with the Polonyi sector (14)
with superpotential �W = µ(z + b)(T + 1/2)p (13), for
p = 3 and c = 1/2. Here T = 1/2, z and b are given by
(??), and we use the nominal values m = 10�5. Shown

are the potential for di↵erent choices of
µ/m = 10�8, 10�7, 2⇥ 10�7, 5⇥ 10�7 in black, blue,

green, and red.

While the WZ models are perfectly acceptable for low
scale supersymmtry breaking, our objective here is high
scale breaking and this we turn our attention to the case
C, for the superpotential given by (9). To achieve super-
symmetry breaking and generate a finite gravitino mass,

Starobinsky Inflation

+ Polonyi Model

Dudas, Gherghetta, Mambrini, Olive
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FIG. 1: Projections of the e↵ective inflationary
potential for the model (7) with the Polonyi sector ((13)

and (14)), for p = 3. Here hT i = 1/2, hzi ' ⇤2

z/
p
12

and b ' 1/
p
3, and we use the nominal value

⇤z = 10�2. Shown is the potential for di↵erent choices
of m̃2/m = 10�8, 10�7, 2⇥ 10�7, 5⇥ 10�7 (in Planck

units) in black, blue, green, and red.

to m̃2/m ⇡ 10�5MP which would badly spoil the infla-
tionary potential.

While the WZ models are perfectly acceptable for low
scale supersymmetry breaking, our objective here is high
scale breaking and thus we turn our attention to the case
C, for the superpotential given by (9). To achieve super-
symmetry breaking and generate a finite gravitino mass,
we can again add a constant, w

0

to the superpotential.
In this case, if w

0

⌧ m, the minimum is shifted slightly
to [45]

hT i = 1

2
� w2

0

m2

, h�i =
p
3
w

0

m
, (16)

but the vacuum energy density is necessarily negative,
V
0

= �3heGi = �3m2w2

0

/(m2 � 3w2

0

) < 0.

However, adding an untwisted Polonyi field, so that
the Kähler potential becomes

K = �3 ln

 
T + T̄ � 1

3

X

i

|�i|2 �
1

3
|z|2 + |z|4

⇤2

z

!
,

(17)
with the superpotential given in (13) with p = 0 leaves
the Starobinsky potential (now a function of T ) un-
changed, save for a shift in the minimum to

hT i ' 1

2
+

1

3

✓
m̃2

mMP

◆
2

, h�i ' m̃2

m
,

hzi ' ⇤2

z

6
p
3
, b ' 1p

3

 
1� 1

6

✓
m̃2

mMP

◆
2

!
, (18)

when m̃2/(mMP ),⇤z/MP ⌧ 1. The mass of z is
p
3

times larger than the twisted Polonyi mass given in Eq.
(15).

Alternatively, one can add a twisted Polonyi field with

Kähler potential

K = �3 ln

 
T + T̄ � 1

3

X

i

|�i|2
!

+ |z|2 � |z|4

⇤2

z

, (19)

and the same superpotential (9). This also leaves the
Starobinsky potential unchanged, with a similar shift in
the minimum to [45]

hT i ' 1

2
+

2

3

✓
m̃2

mMP

◆
2

, h�i ' m̃2

m
,

hzi ' ⇤2

z

2
p
3
, b ' 1p

3

 
1� 1

2

✓
m̃2

mMP

◆
2

!
, (20)

Unlike the WZ case discussed above, the inflationary
potential maintains its form even for large m̃, and arbi-
trarily small ⇤z. For example, in Fig. 2, we show the
inflationary potential with m̃2 = 0.9mMP and ⇤z =
10�3MP both the twisted (solid) and untwisted (dashed)
Polonyi models. Here t =

p
3/2 ln(2T ) is the canonically

normalized inflaton. In the figure, hzi and b have been
fixed at the approximate values given in (18) and (20),
respectively (higher order terms in (18) cannot be ne-
glected).
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FIG. 2: Projections of the e↵ective inflationary
potential for the model (9) with the Polonyi sector ((13)

and (17)), with p = 0. We use the nominal values
⇤z = 10�3 with m̃2/m = 0.9. The values hzi, b, and h�i
are given approximately by (18) (shown by the dashed

curve), and by (20) (shown by the solid curve).

The gravitino mass for small ⇤z can be written as

m
3/2 = m

5m̃6 + 6m̃2m2M2

P

2(3m2M2

P + m̃4)3/2
untwisted , (21)

m
3/2 = m

4m̃6 + 2m̃2m3MP

2
p
3(m2M2

P + m̃4)3/2
twisted , (22)

which in the limit of small m̃2/mMP for both cases gives
the expected resultm

3/2 = m̃2/
p
3MP . Indeed, for m̃2 =

0.9mMP , we obtain m
3/2 ⇠ 1013 GeV. It is indeed rather

surprising that even for a large Polonyi mass scale, the
inflationary dynamics are little a↵ected. This is only true

m̃2(z + b)
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we can again add a constant, µ to the superpotential. In
this case, the minimum is shifted slightly to [43]

T =
1

2
� µ2

m2
, � =

p
3
µ

m
, (16)

but the vacuum energy density is necessarily negative,
V0 = �3heGi = �3m2µ2/(m2 � 3µ2) < 0.

However, adding an untwisted Polonyi field, so that
the Kähler potential becomes

K = �3 ln

 
T + T̄ � 1

3

X

i

|�i|2 �
1

3
|z|2 + |z|4

⇤2
z

!
(17)

with the superpotential given in (13) with p = 0 leaves
the Starobinsky potential (now a function of T ) un-
changed, save for a shift in the minimum to

T ' 1

2
+

1

3

⇣ µ

m

⌘2
, � ' µ

m
,

z ' ⇤2
zp
27

, b ' 1p
3

✓
1� 1

6

⇣ µ

m

⌘2◆
, (18)

when µ/(mMP ),⇤z/MP ⌧ 1. Unlike the WZ case dis-
cussed above, the inflationary potential maintains its
form even for large µ, and arbitrarily small ⇤z. For ex-
ample, in Fig. 2, we show the inflationary potential with
µ = 0.9mMP and ⇤z = 10�5MP . Here x =

p
3/2 ln(2s)

is the canonically normalized inflaton. In the figure, z
and b have been fixed at the approximate values given in
(18) ( higher order terms in (18) can not be neglected).
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FIG. 2: Projections of the e↵ective inflationary
potential for the model (9) with the Polonyi sector ((13)

and (17)), with p = 0. We use the nominal values
m = 10�5 with µ/m = 0.9. z, b, and � are given

approximately by (18).

The gravitino mass for small ⇤z can be written as

m3/2 = m
5µ3 + 6µm2M2

P

2(3m2M2
P + µ2)3/2

(19)

which in the limit of small µ/mMP gives the expected
result m3/2 = µ/

p
3MP . Indeed, for µ = .9m, we have

a gravitino mass of 1.8 ⇥ 1013 GeV. It is indeed rather
surprising that even for a large Polony mass scale, the

inflationary dynamics are little a↵ected. This is only true
for case C given by Eq. (9). Thus we are free to make
the ‘natural’ choice of µ/m = m or µ = m2 ⇡ 10�10MP .
In this case, the gravitino mass is

m3/2 =
m2

p
3MP

⇡ 0.2 EeV. (20)

III. THE PARTICLE SPECTRUM

A. Gaugino and Scalar masses

Gaugino masses fixed by the form of the gauge kinetic
function f .

Consider f ⇠ f0 + f1 ln z.

scalar masses determined by loops, similar to gaugino
mediation.

Need scalar masses, m0 > m sets a limit on the Polonyi
stabilization scale ⇤.

Check consistency of such a model. Note that this is
on the edge of acceptable perturbativity at very small
hzi.

B. The Higgs mass and vacuum stability

Higgs masses and high scale susy.

C. Neutrino Masses

Neutrino masses. We can use the double see-saw de-
scribed in [47] where SO(10) is broken with a 1̄6H and is
coupled to the matter 16 and the inflaton.

D. Dark Matter

Dark matter is the gravitino which is stable and ther-
mally produced in reheating.

IV. OBSERVATIONAL CONSEQUENCES

Not many

If R-parity is broken, then gravitino decay to neutrinos
may be visible.

If scalars are at the scale H, maybe some e↵ects due
to non-gaussianities.

For m = m

m1/2 ⇠ m3/2
M2

P

⇤2
z

m0 ⇠ m1/2
g2

16⇡2

⇒
⇤z

MP
<

g

4⇡

✓
m
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FIG. 1: Projections of the e↵ective inflationary
potential for the model (7) with the Polonyi sector ((13)

and (14)), for p = 3. Here hT i = 1/2, hzi ' ⇤2

z/
p
12

and b ' 1/
p
3, and we use the nominal value

⇤z = 10�2. Shown is the potential for di↵erent choices
of m̃2/m = 10�8, 10�7, 2⇥ 10�7, 5⇥ 10�7 (in Planck

units) in black, blue, green, and red.

to m̃2/m ⇡ 10�5MP which would badly spoil the infla-
tionary potential.

While the WZ models are perfectly acceptable for low
scale supersymmetry breaking, our objective here is high
scale breaking and thus we turn our attention to the case
C, for the superpotential given by (9). To achieve super-
symmetry breaking and generate a finite gravitino mass,
we can again add a constant, w

0

to the superpotential.
In this case, if w

0

⌧ m, the minimum is shifted slightly
to [45]

hT i = 1

2
� w2

0

m2

, h�i =
p
3
w

0

m
, (16)

but the vacuum energy density is necessarily negative,
V
0

= �3heGi = �3m2w2

0

/(m2 � 3w2

0

) < 0.

However, adding an untwisted Polonyi field, so that
the Kähler potential becomes

K = �3 ln

 
T + T̄ � 1

3

X

i

|�i|2 �
1

3
|z|2 + |z|4

⇤2

z

!
,

(17)
with the superpotential given in (13) with p = 0 leaves
the Starobinsky potential (now a function of T ) un-
changed, save for a shift in the minimum to

hT i ' 1

2
+

1

3

✓
m̃2

mMP

◆
2

, h�i ' m̃2

m
,

hzi ' ⇤2

z

6
p
3
, b ' 1p

3

 
1� 1

6

✓
m̃2

mMP

◆
2

!
, (18)

when m̃2/(mMP ),⇤z/MP ⌧ 1. The mass of z is
p
3

times larger than the twisted Polonyi mass given in Eq.
(15).

Alternatively, one can add a twisted Polonyi field with

Kähler potential

K = �3 ln

 
T + T̄ � 1

3

X

i

|�i|2
!

+ |z|2 � |z|4

⇤2

z

, (19)

and the same superpotential (9). This also leaves the
Starobinsky potential unchanged, with a similar shift in
the minimum to [45]

hT i ' 1

2
+

2

3

✓
m̃2

mMP

◆
2

, h�i ' m̃2

m
,

hzi ' ⇤2

z

2
p
3
, b ' 1p

3

 
1� 1

2

✓
m̃2

mMP

◆
2

!
, (20)

Unlike the WZ case discussed above, the inflationary
potential maintains its form even for large m̃, and arbi-
trarily small ⇤z. For example, in Fig. 2, we show the
inflationary potential with m̃2 = 0.9mMP and ⇤z =
10�3MP both the twisted (solid) and untwisted (dashed)
Polonyi models. Here t =

p
3/2 ln(2T ) is the canonically

normalized inflaton. In the figure, hzi and b have been
fixed at the approximate values given in (18) and (20),
respectively (higher order terms in (18) cannot be ne-
glected).
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FIG. 2: Projections of the e↵ective inflationary
potential for the model (9) with the Polonyi sector ((13)

and (17)), with p = 0. We use the nominal values
⇤z = 10�3 with m̃2/m = 0.9. The values hzi, b, and h�i
are given approximately by (18) (shown by the dashed

curve), and by (20) (shown by the solid curve).

The gravitino mass for small ⇤z can be written as

m
3/2 = m

5m̃6 + 6m̃2m2M2

P

2(3m2M2

P + m̃4)3/2
untwisted , (21)

m
3/2 = m

4m̃6 + 2m̃2m3MP

2
p
3(m2M2

P + m̃4)3/2
twisted , (22)

which in the limit of small m̃2/mMP for both cases gives
the expected resultm

3/2 = m̃2/
p
3MP . Indeed, for m̃2 =

0.9mMP , we obtain m
3/2 ⇠ 1013 GeV. It is indeed rather

surprising that even for a large Polonyi mass scale, the
inflationary dynamics are little a↵ected. This is only true

~

~m̃2/
p
3MP
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3

and � is the inflaton with a Wess-Zumino (WZ) super-
potential written as [38]

W = m

✓
�2

2
� �3

3
p
3

◆
WZ , (7)

or in the symmetric basis

W = m


y2
1

2

✓
1 +

y
2p
3

◆
� y3

1

3
p
3

�
WZ , (8)

which is a WZ model for the inflaton y
1

with an interac-
tion term y2

1

y
2

. In both bases, when � (y
1

) is redefined
to a field x with a canonical kinetic term, the potential
is exactly of the form of the Starobinsky potential (1)
(with t identified as x), assuming that some dynamics
stabilizes and fixes T (y

2

): hT i = hT ⇤i = 1/2 (hy
2

i = 0).
One way to accomplish this is by adding a quartic term
in the Kähler potential [41, 66].

The second family of models first formulated as an R2

extension to supergravity by Cecotti [67] can be written
as

W =
p
3m�(T � 1/2) C , (9)

or

W = my
1

y
2

(1 + y
2

/
p
3) C , (10)

In this case, the inflaton is associated with T (y
2

) and it
must be assumed that � (y

1

) is stabilized at the origin [39,
41]. Again, when T (y

2

) is normalized to give a proper
kinetic term, we get the Starobinsky potential shown in
Eq. (1) [39].

In either case (WZ or C), the mass parameter m is
related to the inflaton mass, and is set by the amplitude
of density fluctuations measured in the CMB through Eq.
(2).

B. E↵ects of supersymmetry breaking on Inflation

Supersymmetry breaking can be accomplished in vari-
ous ways, but in many of these, there are constraints on
the SUSY breaking scale due to its e↵ect on the infla-
tionary potential. In general, SUSY breaking perturbs
the potential, but these e↵ects may be small, if the su-
persymmetry breaking scale, em ⌧ m. Indeed, this was
one of the initial motivations behind supersymmetric for-
mulations of inflation [68].

The simplest possibility we can consider is adding a
constant, w

0

to the superpotential. In most low energy
models of SUSY phenomenology, we would relate w

0

to
the weak scale through w

0

= m̃M2

P and the gravitino
mass is just

m
3/2 =

w
0

(T + T̄ )3/2
= m̃ , (11)

with T + T̄ = 1, in Planck units. However, in this case
low energy SUSY breaking parameters such as soft scalar
masses, m

0

, trilinear A-terms and the bi-linear B
0

are all
proportional tom

3/2 (m0

= 0 for untwisted matter fields)
[45, 69]. The gaugino mass in this case is

M
1/2 =

����
1

2
eG/2 f̄T

Ref
(G�1)TTG

T

���� =
����
1

2
w

0

f̄T
Re f

���� , (12)

where f↵� = f�↵� is the gauge kinetic function. For
T + T̄ = 1, it is unlikely that we get a hierarchy m

3/2 ⌧
M

1/2. Moreover, we would like to relate the supersym-
metry breaking scale to the inflationary scale m̃ = m.
However, a priori, we can set w

0

to be either m̃M2

P , or
m̃2MP , or m̃3, giving m

3/2 = m,m2/MP ⇡ 0.4EeV,
or m3/M2

P ⇡ 5 TeV (though the latter may be of phe-
nomenological interest at the LHC).

In [50], a linear term a2� for the inflaton in the WZ
model given in (7) was proposed, making the association
between the inflaton and Polonyi field. For small a, the
theory works quite well, and thus predicts a small (weak
scale) gravitino mass. The inflationary capability of the
theory breaks down when a & 5⇥ 10�5 corresponding to
an upper limit on the gravitino mass of m

3/2 = a4/2m .
106 GeV.

Next we can consider adding a strongly stabilized
(twisted) Polonyi field to the WZ model,

w
0

! m̃2(z + b)(T + 1/2)p , (13)

with

K � zz̄ � (zz̄)2

⇤2

z

. (14)

The factor (T + 1/2)p is needed to avoid a deSitter vac-
uum with weak scale energy density and we will take
p = 3 as an example here [45]. Choosing b ' 1/

p
3 gives

a minimum with zero vacuum energy at hzi ' ⇤2

z/
p
12.

The mass of the Polonyi field is now hierarchically larger
than the gravitino mass

m2

z =
12m2

3/2M
2

P

⇤2

z

. (15)

Once again, for m̃2 ⌧ mMP , this works quite well so
long as ⇤z is not too small (⇤z & 2(m̃2/mMP ).3). In-
creasing m̃, leads to the formation of a new minimum
at large field values (of the canonically normalized in-
flaton), which quickly becomes the global minimum. In
Fig. 1, we show the potential for fixed p = 3, ⇤z = 10�2,
and several values of m̃. For m̃2/m < 10�8MP , the
potential is indistinguishable from that shown as 10�8.
For m ⇡ 10�5MP , we see that this model works fine
for weak scale supersymmetry breaking, and for scales
as large as m̃2/MP . 10�12MP ⇠ 3 PeV, correspond-
ing to a gravitino mass of m

3/2 ' m̃2/
p
3MP . 1.7

PeV. In particular, m
3/2 = 0.2 EeV would correspond
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ators of supersymmetry breaking2. We expect ⇤mess �
MSUSY . Thus MSUSY > m� translates to F > m2

�. The
gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m2

�p
3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �scat

N [45, 46]. Fur-
thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt = n2
�h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T 3M2

SUSY /M
2
Pm

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM2

SUSY /MPm
2
3/2,

where we have simply taken the Hubble parameter as
T 2/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2
These messengers could in principle also play a role in restoring

unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n2h�vi ' 21.65⇥ T 12

F 4
(8)

where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T 8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T 3, and for gravitino production, we expect h�vi /
T 6/F 4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T 9/M4

Pm
4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T 7/M3

Pm
4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
TRH

2.0⇥ 1010 GeV

◆7

(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]

TRH =

✓
10

gs

◆1/4 ✓2�� MP

⇡ c

◆1/2

= 0.55
y�
2⇡

✓
m� MP

c

◆1/2

(10)
where we have defined a standard ”yukawa”-like coupling

y� of the inflaton field to the thermal bath, �� =
y2
�

8⇡m�

and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
of y�:

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
m�

3⇥ 1013GeV

◆7/2 ✓
y�

2.9⇥ 10�5

◆7

(11)
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FIG. 1. Region of the parameter space allowed by PLANCK

constraints [32] in the plane (m3/2, y�) for di↵erent values of the

branching ratio B3/2 and m� = 3 ⇥ 10

13
GeV (see the text for

details).

where we have set c = 1.2. The cosmological constraint is
plotted in Fig.(1) in the (m3/2, y�) plane, where we show
the region allowed by PLANCK [32]. The black (solid)
line represents the PLANCK constraint ⌦h2 = 0.11. One
immediately sees the linear increase in the Yukawa cou-
pling y� with increasing gravitino mass in order to coun-
terbalance the weakening of the e↵ective coupling 1/F
responsible for its production in the thermal bath.

A large inflaton-matter coupling produces a high re-
heating temperature, which in turn increases the grav-
itino abundance. Then, as one can see from Eq.(11), the
solid curve in Fig. 1 is an upper bound on y� to avoid
an overabundant gravitino. In fact, one can extract an
upper bound on y� independent of m3/2 simply requir-
ing m3/2 < TRH , a necessary condition for the gravitino
to be thermally produced. The condition m3/2 < TRH

implemented in Eq.(11) with the expression (10) gives

y� . 1.6⇥ 10�3

✓
3⇥ 1013 GeV

m�

◆1/2

, (12)

shown as the horizontal dashed line in the Figure 1. We
can then extract the maximum reheating temperature
TRH . 1.1⇥1012 GeV. Combined with the condition (7)
m3/2 > 0.2 EeV, the relic abundance constraint (9) gives

2.7⇥ 1010 GeV . TRH . 1.1⇥ 1012 GeV (13)

which is a strong prediction of our model.

D. Gravitino production by inflaton decay

It is also possible to produce gravitinos through the
direct decay of the inflaton. For example, in no-scale

supergravity models of inflation, the decay of the infla-
ton to gravitinos is highly suppressed. In simple models,
there is no coupling at the tree-level [51]. However, it is
possible to couple the inflaton to moduli without spoiling
the inflationary potential [41, 42]. We can parameterize

the decay to a pair of gravitinos as �3/2 = m�
y2
3/2

72⇡ .

The branching ratio of decays to gravitinos is then

B3/2 = �3/2/�� =
|y3/2|2

9y2�
. (14)

Using the result from [41] for the gravitino abundance
produced by inflaton decay at the epoch of reheating, we
get

n3/2

n�
⇡ 3.6B3/2

(��MP)1/2

m�
⇡ 0.7B3/2y�

✓
MP

m�

◆1/2

(15)
corresponding to

⌦decay
3/2 h2 = 0.11

✓
B3/2

1.3⇥ 10�13

◆✓
y�

2.9⇥ 10�5

◆
(16)

⇥
⇣ m3/2

0.1 EeV

⌘✓
3⇥ 1013 GeV

m�

◆1/2

.

today.

The condition (7) is then translated into

B3/2y� =
|y3/2|2

9|y�|
. 1.9⇥ 10�18

✓
0.1 EeV

m3/2

◆
(17)

for m� = 3 ⇥ 1013 GeV. Contrary to the case of ther-
mal gravitino production, our limit to the coupling y�
is strengthened as m3/2 is increased when gravitino pro-
duction occurs through inflaton decay. Since the den-
sity through the decay of the inflaton is proportional to
n�B3/2m3/2, where m�n� is the inflaton energy density,
the limit on the coupling is improved when either the
branching ratio or the gravitino mass is increased.

This result is also shown in Fig.(1) where we clearly see
the changing in the slope for larger value of B3/2 > 10�19

where the direct production from inflaton decay may
dominate over the thermal production. We note that the
constraints obtained on the inflaton coupling to graviti-
nos are strong. We recall, however, that in no-scale mod-
els of inflation [41, 42, 51] and in classes of inflationary
models with so-called stabilized field [52, 53], this cou-
pling is naturally very small. Finally, we point out that in
the case of the direct production of the gravitino through
inflaton decay, both the ±3/2 and the ±1/2 components
of the gravitino populate the Universe, whereas in the
case of thermal production (Eq.9) only the longitudinal
goldstino component contributes to the relic abundance.

m3/2 > .2EeV m3/2 < TR

6

In order to decrease the viable values of the gravitino
mass, some strong coupling e↵ects seem to be needed,
like for example in holographic models of supersymmetry
breaking of the type described in [63], or general gauge
mediation [64]. In more generic terms, this means a me-
diation mechanism with no loop suppression in the gen-
eration of visible sector soft masses, so that we obtain
m

0

⇠ M
1/2 ⇠ F/M . Thus we can start with the same

gauge kinetic function as in (24), namely

f↵� =

✓
f
0

+ f
1

Z

M

◆
�↵� , (28)

and generate squark/slepton/Higgs soft masses through
operators of the type

Z
d4✓

Z†Z

M2

Q†Q , (29)

where Q denotes a generic MSSM chiral superfield. In
this case, we recover the limit

m
3/2 > 0.2 EeV , (30)

and corresponds to the bound derived in [10]. Perturba-

tivity of the correction to gauge couplings f
1

hzi
M < f

0

,
together with the requirement, M

1/2 > m leads to the
new lower limit

m
3/2 >

4hzip
3

m

MP
. (31)

However, this constraint is easily satisfied, once the other
constraints, such as F  M2 are taken into account.

Note that at the lower gravitino mass limit (30) we
obtain the bound g2f

1

& 1. Since mediation is strongly
coupled, this is not really surprising. In both holographic
models and general gauge mediation setups, additional
states of mass, M and heavier are expected. In order
to not perturb our single-field inflation framework, the
masses of these states should be above the Hubble scaleH
during inflation3, which implies genericallyM > H. This
condition is satisfied by the range of gravitino masses in
Fig. 3 and is saturated at the lower bound.

Finally, we comment on the partial wave unitarity limit
arising from the scattering of two gluons into two grav-
itinos [70]. For gaugino mediation, tree-level unitarity is
violated at a scale ' 17/(g2f

1

)M , which for g2f
1

. 17
is above the messenger scale M (where new degrees of
freedom should appear), and therefore compatible with
the constraint arising from the gravitino mass limit (30).

3 It is also possible that all additional scalars obtain Hubble scale
masses during inflation, therefore avoiding this condition.

B. Constraints on the scale of supersymmetry
breaking from reheating

Reheating proceeds by coupling the inflaton to the
MSSM sector. Since all superpartners are above the infla-
ton mass and reheating temperature, reheating produces
predominantly SM particles (the abundance of graviti-
nos is discussed in section III.D). Radiative corrections
with MSSM fields in loops correct the inflaton potential.
In low-energy supersymmetry such corrections are tiny,
since they are proportional to the scale of supersymme-
try breaking [68]. In our case with high-scale supersym-
metry breaking, there may be large radiative corrections
that can spoil flatness of the inflaton potential. Such con-
straints can put upper limits on the superpartner masses
and therefore on the gravitino mass.

For example, a direct coupling (through the gauge ki-
netic function) of the inflaton, t to gauge fields, f 3
h
1

t/MP , would induce quadratic and quartic corrections
of magnitude

�m2 ⇠ h2

1

16⇡2

M2

1/2 , (32)

�� ⇠ h4

1

16⇡2

M2

1/2

M2

P

, (33)

which both place non-trivial bounds on the coupling h
1

.
For reheating dominated decays to gauge bosons, this can
be translated into a limit on the reheating temperature
and eventually the gravitino abundance.

As we discuss in more detail in section III.D, reheating
in this model proceeds via the gravitational coupling of
the inflaton to two Higgs bosons. The coupling of the
inflaton field, t to MSSM fields was derived in [45], and
the relevant bosonic coupling is

L
e↵

3 ReTp
3
(nI + nL � 3)W ILW̄LJ�I�̄

J ,

⇠ µ2e
p

2
3 t(|hu|2 + |hd|2) , (34)

where nI,J are modular weights4 of the superfields �I,J

and should be taken to be equal to one for untwisted
Higgs fields. The coupling for the Higgs fields is then
µ2/

p
3MP , where µ is the MSSM Higgs mixing mass,

which is now expected to be of order the scalar masses.
The quadratic and quartic corrections in Eqs. (32)-(33)
are found with the replacement h

1

! µ2/mMP . Re-
quiring �m2 ⌧ m2 and �� ⌧ 10�14 sets a rough bound
on µ/m . 102 which we will see below is satisfied when
µ is adjusted to give the correct gravitino relic density.
However a more model-independent statement is that re-
heating sets constraints on inflaton couplings to MSSM

4 Note that the definition of modular weights in our paper is op-
posite in sign with respect to the standard convention.

�2h =
µ4

384⇡mM2
P

sin2 2�
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9

where an additional factor of 1/16 has been included in
writing H0

u = h/
p
2 sin↵, and H0

d = h/
p
2 cos↵, and

noting that ↵ = � in the high scale SUSY limit 7.

If we define an e↵ective Yukawa-like coupling, yI =

µ2/(4
p
3mMP ), such that �

2h = y2
I

8⇡m, we can express
the reheating temperature in terms of yI [10, 30, 32]

TRH =

✓
10

gs

◆
1/4 ✓2�

2h MP

⇡ c

◆
1/2

= 0.5
yI
2⇡

(mMP )
1/2

,

(45)
where gs is the e↵ective number of light degrees of free-
dom, in this case set by the Standard Model, gs = 427/4
and c ⇡ 1.2 is a constant. We can then re-express the
relic abundance (41) as

⌦
3/2h

2 ' 0.11 r
3/2

✓
0.1 EeV

m
3/2

◆
3

✓
m

3⇥ 1013 GeV

◆
7/2

⇥
✓

yI
2.9⇥ 10�5

◆
7

,

= 0.11 r
3/2

✓
0.1 EeV

m
3/2

◆
3

✓
3⇥ 1013 GeV

m

◆
7/2

⇥
✓

µ

1.2⇥ 1014 GeV

◆
14

, (46)

where we have included the enhancement factor r
3/2 from

Eq. (42). The enhancement factor depends on lnµ, and
for the range of µ values considered here (roughly 1014�
1015 GeV), r

3/2 varies very little and we take it as a
constant r

3/2 = 25.

The value of µ needed to obtain the correct relic den-
sity of gravitinos is shown by the solid line in Fig. 5 using
Eq. (46). It is rather amazing that independent of the
supersymmetric particle spectrum discussed above, the
value of µ needed for the correct abundance of gravitinos
is in the range of roughly 3-30 times the inflaton mass.
This is exactly where one might expect the Higgsino mass
to lie given our spectrum of heavy scalars and gauginos.

It is also possible that µ takes values below the solid
line in Fig. 5. In that case, the abundance of gravitinos
is below the needed relic density of dark matter (by the
same token, values of µ above the solid line are excluded
as they yield a relic density in excess of the observed one).
Nevertheless, it is still possible to recover the correct relic
density through inflaton decay to gravitinos. The grav-
itino abundance produced by inflaton decay for a given
branching fraction to gravitinos, B

3/2 = �
3/2/�2h, was

7 We note that parametric resonance e↵ects such as those studied
in [78] are not e↵ective in this model. The adiabatic condition
ṁh/m2

h > 1 is at best satisfied during the first inflaton oscilla-
tion, where mh is the t-dependent Higgs mass. One can easily
check that ṁh/m2

h ⇠ Am/µMP , where A . MP is the ampli-
tude of inflaton oscillations and we require m < µ.
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FIG. 5: The value of µ relative to the inflaton mass
needed to obtain the correct relic density of gravitinos
thermally through reheating (solid line) as a function of
the gravitino mass. Also shown (dashed lines) are the
values of µ needed to obtain the correct relic density of
gravitinos through inflaton decays for a given value of

log⇤z/MP as labelled.

computed in [10]

⌦decay
3/2 h2 = 0.11

✓
B

3/2

1.3⇥ 10�13

◆✓
yI

2.9⇥ 10�5

◆
(47)

⇥
⇣ m

3/2

0.1 EeV

⌘✓
3⇥ 1013 GeV

m

◆
1/2

.

The decay of the inflaton to two gravitinos was computed
in [45] with

�
3/2 =

✓
⇤z

MP

◆
4 3m2

3/2m

256⇡M2

P

, (48)

so that

B
3/2 =

9

2

✓
⇤z

MP

◆
4 ⇣m

3/2

m

⌘
2

✓
m

µ

◆
4

. (49)

Using Eq. (48), inputting B
3/2 and yI , we obtain the

correct relic density of gravitinos along the sloped dashed
and dotted lines for di↵erent values of ⇤z/MP as labelled.

As one can see from Fig.5, the value of the abundance
of gravitinos from the decay of the inflaton is strongly
dependent on the value of ⇤z as this scale controls the
branching ratio B

3/2. As a consequence, we can derive
an upper limit to ⇤z

⇤z

MP
 2.4⇥ 10�4

✓
m

m
3/2

◆
9/14

, (50)
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UV Completion -SO(10)
Ellis, Gherghetta, Kaneta, Olive

scale gauge group, and a 10 to break the Standard Model (SM). Matter fields of each generation are neatly
contained in a fundamental 16. As we will see, in general, vacuum expectation values (VEVs) for the 210
and 126 and 126 occur simultaneously so that in e↵ect SO(10) is broken directly to the MSSM. Depending
on the pattern of VEVs, some states may remain light, i.e., below the GUT scale. Since MSUSY ° mI , all
R-parity -1 states (except perhaps the gravitino) also retain masses in excess of mI . Indeed, non-negligible
supersymmetry breaking e↵ects alter the mass spectra produced in GUT symmetry breaking as we discuss in
detail below.

It is often noted that whereas gauge coupling unification is absent in the standard model, it occurs quite
naturally in the MSSM [13] with supersymmetric states near the TeV scale. However, it has recently been
emphasized [35] that unification is also achievable with high-scale supersymmetry. Depending on the GUT
gauge group and the superheavy mass spectrum, unification may still occur where the mismatch between the
low-energy gauge couplings and the GUT (unified) gauge coupling is accounted for by threshold corrections
[35–37]. Indeed for a suitably complicated GUT such as SO(10) with an extensive GUT Higgs structure, these
threshold corrections may in fact be quite significant. In the present context of high-scale supersymmetry,
we expect SM running of the gauge couplings up to the inflationary scale which is only slightly below the
GUT scale. Nevertheless, as we will see, gauge coupling unification can still be achieved when properly taking
into account the predicted mass spectrum of superheavy states. Resolution of the Higgs stability question
presumably requires some modification to the SM below the scale of 1010 GeV (where the Higgs quartic
coupling runs negative), and it is quite possible that some component of the either the 210 or 126 may
remain light. However as we will argue below, there is only a single candidate for the light state in the
minimal SO(10) model. This state is an SU(2)L triplet, color singlet with zero hypercharge contained in the
210, labelled S. As we further show, the threshold corrections for each of the three SM gauge groups, though
large, are similar in magnitude and therefore some focusing of the gauge coupling running remains necessary.
The state S has a small yet important e↵ect on the running of the gauge couplings and the large threshold
e↵ects from GUT states give rise to unification. In contrast every other charged (or singlet) component, if
light, would negate unification because of the combination of threshold e↵ects from light states and those
from GUT states.

In what follows, we will first go over the minimal field content in section 2, and discuss known solutions
for breaking SO(10) while preserving GSM “ SUp3q ˆ SUp2qL ˆ Up1qY in a supersymmetric context. There
are a number of solutions that break SO(10) to GSM directly, many of which have states much lighter than
the GUT scale. We discuss the running of the gauge couplings and our treatment of threshold corrections
in section 3. In section 4, we discuss specific solutions where gauge coupling unification is achieved and the
running of the Higgs quartic coupling is discussed in section 5. Our conclusions are summarized in section 6.

2 The minimal GUT field content, interactions, VEVs and masses

We will follow the analysis of [12,33,34] and include only the following Higgs superfields (with SO(10) repre-
sentation in parentheses):

�p210q; ⌃p126q; ⌃p126q; Hp10q . (1)

The most general renormalizable superpotential in terms of this field content is:

W Å

µ�

4!
�2

`

µ⌃

5!
⌃⌃`

�

4!
�3

`

⌘

4!
�⌃⌃` µHH2

`

1

4!
�Hp↵⌃` ↵⌃q , (2)

where µ�, µ⌃, µH are mass parameters and �, ⌘,↵,↵ are dimensionless couplings. In addition, the theory
contains three generations of matter representations  (16) which couple to the Higgs fields H and ⌃. Given
the relatively large representations we are forced to utilize, it is useful to decompose them down to smaller

2

�(210); ⌃(126); ⌃(126); H(10)
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Vanishing F- and D- terms fixes the vevs

representations given in terms of the SU(2)Lˆ SU(2)Rˆ SU(4) subgroup of of SO(10). These are:

10 “ p1, 1, 6q ` p2, 2, 1q , (3)

126 “ p1, 3, 10q ` p3, 1, 10q ` p1, 1, 6q ` p2, 2, 15q , (4)

126 “ p1, 3, 10q ` p3, 1, 10q ` p1, 1, 6q ` p2, 2, 15q , (5)

210 “ p1, 1, 15q ` p1, 1, 1q ` p1, 3, 15q ` p3, 1, 15q ` p2, 2, 6q ` p2, 2, 10q ` p2, 2, 10q . (6)

We further recall the SUp4q decomposition in terms of its SUp3qc ˆUp1qB´L subgroup: 6 = 3(2/3) + 3(-2/3),
10 = 6(-2/3) + 3(2/3) + 1(2), and 15 = 8(0) + 3(-4/3) + 3(4/3) + 1(0).

Since only MSSM singlets can obtain VEVs, there is a limited number of fields which are allowed to obtain
VEVs and break SO(10). These are defined as

v1,1,1 “ x�p1, 1, 1qy; v1,1,15 “ x�p1, 1, 15qy; v1,3,15 “ x�p1, 3, 15qy; (7)

�1,3,10 “ x⌃p1, 3, 10qy; �1,3,10 “ x⌃p1, 3, 10qy , (8)

which means the superpotential for the VEVs can be written as

W Å µ�

`
v21,1,1 ` 3v21,1,15 ` 6v21,3,15

˘
` 2�

`
v31,1,15 ` 3v1,1,1v

2
1,3,15 ` 6v1,1,15v

2
1,3,15

˘
(9)

` µ⌃ �1,3,10�1,3,10 ` ⌘ �1,3,10�1,3,10 pv1,1,1 ` 3v1,1,15 ´ 6v1,3,15q .

Imposing the condition of vanishing D-terms implies |�1,3,10| “ |�1,3,10|, and imposing the condition of van-
ishing F-terms leads to the following equations:

2µ�v1,1,1 ` 6�v21,3,15 ` ⌘�1,3,10�1,3,10 “ 0 , (10)

2µ�v1,1,15 ` 2�
`
v21,1,15 ` 2v21,3,15

˘
` ⌘�1,3,10�1,3,10 “ 0 , (11)

2µ�v1,3,15 ` 2� pv1,1,1 ` 2v1,1,15q v1,3,15 ` ⌘�1,3,10�1,3,10 “ 0 , (12)

�1,3,10 pµ⌃ ` ⌘ pv1,1,1 ` 3v1,1,5 ´ 6v1,3,15qq “ 0 . (13)

There are several solutions to this set of equations including the trivial one with all VEVs equal to zero,
for which SO(10) is preserved. Other solutions include the breaking of SO(10) to either SU(5)ˆU(1), flipped
SU(5)ˆU(1), SU(5), SU(3)cˆ SU(2)Lˆ SU(2)Rˆ U(1)B´L, or SU(3)cˆ SU(2)Lˆ U(1)Rˆ U(1)B´L. It is also
possible to break SO(10) directly down to the SM. As we will be primarily interested in this class of solutions,
we quote the general solution to these conditions from [34]:

v1,1,1 “ ´

µ�

�

xp1 ´ 5x2q

p1 ´ xq

2
; v1,1,15 “ ´

µ�

�

p1 ´ 2x ´ x2q

p1 ´ xq

; v1,3,15 “ ´

µ�

�
x;

�1,3,10�1,3,10 “

2µ2
�

⌘�

xp1 ´ 3xqp1 ` x2q

p1 ´ xq

2
; ´ 8x3 ` 15x2 ´ 14x ` 3 “ px ´ 1q

2�µ⌃

⌘µ�
. (14)

Given the parameters µ�, µ⌃,�, and ⌘, the final equation in (14) determines x which in turn then determines
each of the 5 VEVs.

Ignoring for the moment the e↵ects of supersymmetry breaking, the value of x also determines the mass
spectrum of the SM components in �, ⌃, and ⌃. The masses of these states have been determined in [34].
Some of the mass eigenstates reside purely in either � or ⌃, and ⌃, while others correspond to mixed states.
The mass spectrum of the unmixed SM components as a function of x, given in Table I of [34], is reproduced
here for convenience in Table 1, with the coupling conventions labelled as in [12]. The mixed states are given
in Table 2. We will use these label conventions to easily distinguish between di↵erent possible solutions for
light states. Note however, that in our notation, we have defined hypercharge as Y “ T3R ` pB ´ Lq{2 and

3

choice of x ~ 0.63 leaves one state (in addition to the Higgs) light

S = (1, 3, 0) ⇢ (1, 3, 15) ⇢ 210
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where `xi are the Dynkin indices corresponding to ultra-heavy massive vector bosons (V ), scalars (S) or
fermions (F ). The coe�cient cS “ 1, 2 for real and complex scalars respectively, while cF “ 4, 4, 8 for Weyl,
Majorana and Dirac fermions respectively.

Unfortunately, given that gU is a deep UV quantity, and we live in the IR, we cannot unambiguously
define gU from our perspective. Any number of definitions can be proposed, such as choosing gU pMU q “

g2pMU q “ g1pMU q, or gU pMU q “ g2pMU q “ g3pMU q, but none of these are necessarily correct. Instead gU can
only be correctly defined from the UV perspective in the GUT phase of the theory. Then, at a given scale
M˚, one can match to the broken-GUT phase with the couplings g1, g2 and g3. This matching will likely
involve substantial changes from the threshold corrections, such that any gipM˚q may be quite di↵erent from
gU pM˚q. Therefore, for an analysis of how unification is achieved as calculated in the IR, without knowledge
of a specific UV completion, one would prefer to abstain from defining the unified coupling.

We may use the prescription proposed in [35], which allows one to assess the quality of gauge coupling
unification in the presence of threshold corrections, without substantial impact from the definition of gU . This
prescription calls for the definition of quantities which are independent of the unified gauge coupling at a scale
µ, gU pµq. We define these quantities as

ˆ
��ijpµq

48⇡2

˙

MS,DR

”

˜
1

g2i pµq

´

1

g2j pµq

¸

MS,DR

“

ˆ
�jpµq ´ �ipµq

48⇡2

˙

MS,DR

, (26)

such that only two need be defined so as to specify the GUT matching conditions. Thus, in the IR we may
calculate the required ��ij at any scale, and compare with the ��ij which are obtained in the UV for a
specific GUT spectrum. If the ��ij in the IR and the UV match, then it is possible that unification is
achieved. The di↵erences in the required threshold corrections, as viewed from the IR, contain an ambiguity
since they may not account for a constant term which cancels. Therefore matching the IR and UV calculations
of ��ij specifies

1

g2U pµq

` C and
�ipµq

48⇡2
` C , (27)

where C is a constant shift. Since both of these quantities are a priori known from the UV perspective,
specifying the UV theory allows for the ambiguity to be resolved.

Our prescription for finding solutions which lead to potentially acceptable gauge coupling unification is
outlined as follows. We start with the SM at low energies, supplemented with a light (À O(10 TeV)) GUT
state corresponding to one of the possibilities listed in Tables 1 or 2. At each renormalization scale µ, we can
calculate the quantities ��ij using the left hand side of Eq. (26). We will assume that the supersymmetric
particle spectrum lies at 3 ˆ 1013 GeV, and above that scale the ��ij are computed in the MSSM plus the
additional light scalar (and fermion superpartner). Next, we scan over the couplings �, ⌘. Recall that x is
fixed by requiring that one of the scalars is light using Eq. (15) with mF a function of x taken from Table 1.
We are then left with three unknowns: µ�, rm, and gU , all of which are needed to determine the masses of
the heavy states participating in the threshold corrections. For given values of these three parameters, the
threshold corrections in Eq. (25) can be computed, as can their di↵erences given in the right-hand side of Eq.
(26). Comparing these two results for ��ij , we can determine the degree to which a solution is acceptable.
In other words, viability is determined by scanning ��ij in the allowed ⌘ ´ � parameter space for each of the
light state solutions in Section 2 above, and comparing with the required ��ij calculated in the IR from the
running of the gauge couplings towards the UV.

To find viable unification solutions, we search a set of parameters, pgU , µ�, rm, m�q, for a given p�, ⌘q so
that the function �2 defined by

�2
pgU , µ�, m̃,m�q ”

3ÿ

i“1

„
g´2
i pµ�q ´ pg´2

U ´

�ipgU , µ�, rm,m�q

48⇡2
q

⇢2

{�2
i , (28)
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Appendix) shows that the dominant contribution arises from �⌫ , leading to the interaction

Lint „

1

MP

Bµ✓  ̄�
µ�L ` h.c. . (5)

In the massless �L limit, the amplitude squared then becomes#1

|M|

2
„

m4
3{2

M2
P

. (6)

Anticipating that the LHu term will induce a mixing, parameterized by ✏, between �L (or

the Higgsino) and the neutrino (to be discussed in detail below), we can write �L „ ✏ ⌫. The

dominant decay channel is then  µ Ñ ⌫Z{h, with a width

�3{2 „

|M|

2

s
m3{2 „ ✏2

m3
3{2

M2
P

. (7)

From the above argument, we can also anticipate that the Goldstino decay to ⌫� will be

suppressed since the photon does not have a longitudinal component. In the detailed cal-

culation the result (7) will be generalized to the non-Abelian, supersymmetric two Higgs

doublet case. In section 5, we will derive limits on ✏ from existing experimental constraints,

requiring in addition, that su�ciently many gravitinos are present today to supply the dark

matter.

3 R-Parity Violation

The simplest model including RPV only introduces a bilinear RPV operator:

W “ WMSSM ` WRPV, (8)

WMSSM “ µHuHd ` yeLHde
c

` yuQHuu
c

` ydQHdd
c, (9)

WRPV “ µ1LHu. (10)

In general the RPV mass parameter µ1 depends on the lepton flavor, but here we omit the

flavor dependence for simplicity (for more detailed discussion, see, e.g., [15]). Note that we

have suppressed all generation indices in both (9) and (10). Since lepton number is no longer

conserved, L and Hd cannot be distinguished in this setup, and thus there is a field basis

#1
As will be shown in the Appendix, the piece  ⌫ „ B⌫ {m3{2 leads to |M|2 „ m2

3{2m
2
A{M2

P where mA is

the gauge boson mass, which is highly suppressed when mA ! m3{2.

4

Signatures of decay with R-parity violation

Dudas, Gherghetta, Kaneta,	
Mambrini, Olive

Normally, 

will induce one-to-two processes involving a Higgsino, lepton, and a gauge boson. The

thermally averaged rate at a temperature, T for these lepton number violating interactions

is given by

�1Ñ2 “

g2✓2T⇡

192⇣p3q

» 0.014g2
µ12

m2
f

T , (24)

where g is a gauge coupling, and ✓ » µ12
{m2

f is the mixing angle induced by µ1 for a

fermion with mass mf . Comparing the interaction rate (24) with the Hubble rate, H »

a
⇡2N{90 T 2

{MP , where N is the number of relativistic degrees of freedom at T , gives us

the condition

µ12
† 56

?

N
T

MP

m2
f . (25)

By insisting that any lepton number violating rate involving µ1 remains out-of-equilibrium

while sphaleron interactions are in equilibrium, i.e., between the weak scale and „ 1012 GeV

(where the latter is determined by comparing the sphaleron rate „ ↵4
WT to the Hubble rate),

the limit (25) is strongest for mf „ T , where T is of order the weak scale. For weak scale

supersymmetry, the fermion can be either a lepton or Higgsino, N “ 915{4 and at T „ 100

GeV, one obtains the limit [13]

µ1
† 2 ˆ 10´5GeV . (26)

For weak scale supersymmetry this limit translates to ✏ À 10´7. This is stronger than the

limit from neutrino masses in weak scale supersymmetry models [15, 21].

In the case of high scale supersymmetry, while the Higgsino cannot be part of the ther-

mal bath, it can still mediate lepton number violating interactions, but the limit on µ1 is

significantly weaker. For example, the process HH Ø LL will involve two insertions and is

suppressed by the supersymmetry breaking scale. The rate can be estimated as

�2Ñ2 » 10´2g4
µ14

µ4 rm2
T 3 , (27)

where m̃ „ µ is the gaugino mass. Setting �2Ñ2 † H gives us

µ14
À 200

?

N
µ4 rm2

TMP

, (28)

This limit should now be applied at the highest temperatures at which sphalerons are in

equilibrium (T „ 1012 GeV), with N “ 427{4. Thus

µ1
† 2 ˆ 10´7

ˆ
µrm1{2

GeV3{2

˙
GeV . (29)
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Figure 1: Branching ratios (top) and the deviation r (47), from the asymptotic value for

�tot (bottom) with M1 “ M2{2 “ µ “ rm “ 1014 GeV.

where the charge conjugate of the final state and the number of neutrinos are incorporated#6.

Thus the total decay width is given by

�tot »

✏2c2�m
3
3{2

16⇡M2
P

, (46)

which is indeed a good approximation for m3{2 Á 1 TeV. Figure 1 (bottom) shows the

#6
We have assumed that µ1

is flavor universal.
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deviation of the total decay width from this asymptotic value with M1 “ M2{2 “ µ “

1014 GeV, which is parametrized by

r “ �tot{

˜
✏2c2�m

3
3{2

16⇡M2
P

¸
. (47)

Thus, in the large m3{2 limit, the gravitino lifetime is given by

⌧3{2 » 1028
ˆ
0.44 ˆ 10´20

✏c�

˙2 ˆ
1 EeV

m3{2

˙3

s. (48)

In the next section, we derive a constraint on ✏, by ensuring that a) we have su�cient dark

matter and b) that the decay products do not exceed observational backgrounds.

5 Observational Constraints

5.1 PLANCK Constraints

Cosmological constraints on models with high scale supersymmetry are severe. Indeed,

the only way to produce the gravitino in the early Universe if the supersymmetry break-

ing scale lies above the reheating temperature#7, TRH , is through the exchange of highly

virtual sparticles with Planck-suppressed couplings, such as t-channel processes of the type

G G Ñ G̃ Ñ  µ  µ, with G, G̃ representing the gluon and gluino, respectively [8]. Because

the production rate is doubly Planck-suppressed, the abundance of dark matter produced

from the bath is very limited (proportional to T 7
RH [8] as in Eq. (2)), requiring a massive

gravitino to compensate its low density. Moreover, it was shown in [7, 9] that considering

reheating processes involving inflaton decay imposes a lower bound on TRH Á 3 ˆ 1010 GeV

implying from Eq.(2) a lower bound on the gravitino mass m3{2 Á 0.2 EeV [7] to respect

PLANCK constraints [32] on the density of cold dark matter.

It is of interest to check this constraint in the context of models with the bilinear R-parity

breaking term in Eq. (10). In the context of high scale supersymmetry,

µ „ rm " µ1
ñ ✏ “

µ1
a
µ2

` µ12 »

µ1

µ
»

µ1

rm . (49)

#7
To be more precise, above the maximum temperature of the thermal bath Tmax which is di↵erent from

TRH if one considers non-instantaneous reheating [31].
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Dudas, Gherghetta, Kaneta,	
Mambrini, OliveWe can then rewrite Eq.(48):

⌧3{2 » 1028
ˆ

rm
1014 GeV

˙2 ˆ
0.44 keV

µ1c�

˙2 ˆ
1 EeV

m3{2

˙3

s . (50)

One of the interesting features in this framework is that the scale of the gravitino mass

required to obtain the experimentally determined relic abundance from Eq. (2) is around

the PeV-EeV scale (and higher). The decay of a particle with this mass would provide a

smoking gun signature: a monochromatic neutrino from its decay into Z⌫ or h⌫ (Eq. (50))

which could be observed by IceCube [33] or ANITA [34].

Combining the relic density constraint Eq. (2) with Eq. (50), we can eliminate the grav-

itino mass and write#8

µ1c� “ 14 keV

ˆ
⌦3{2h2

0.11

˙1{2 ˆ
1028 s

⌧3{2

˙1{2 ˆ
rm

1014 GeV

˙ ˆ
2.0 ˆ 1010 GeV

TRH

˙7{2
. (51)

We see that while the high scale supersymmetry framework does not yield a strong constraint

from lepton number violation (µ1
À µ » rm » 1014 GeV from Eq. (29)) just requiring the

lifetime to exceed the current age of the Universe (⌧U » 4.3 ˆ 1017 s), would give the limit

µ1
À 20 GeV, for c� » 0.1. However, as we will see below, observational constraints will

actually require a lifetime in excess of 1028 s, which further restricts µ1
† 140 keV, for

c� » 0.1, as given in Eq. (51).

These limits can be contrasted with those derived in weak-scale supersymmetric models,

where µ1
† 20 keV from the preservation of the baryon asymmetry as given in Eq.(26). In

the weak scale supersymmetry scenario, gravitinos are singly produced from the thermal

bath and the relic abundance can be expressed as [31, 35]

⌦3{2h
2

» 0.11

ˆ
100 GeV

m3{2

˙ ˆ
TRH

2.2 ˆ 106 GeV

˙ ˆ
M1{2

10 TeV

˙2

, (52)

where M1{2 is a typical gaugino mass and we have assumed m3{2 ! M1{2. Repeating the

steps outlined above, we can again relate µ1 to the gravitino lifetime,

µ1c� » 1.4 keV

ˆ
10 TeV

rm

˙2 ˆ
⌦3{2h2

0.11

˙3{2 ˆ
1028 s

⌧3{2

˙1{2 ˆ
2.2 ˆ 106 GeV

TRH

˙3{2
, (53)

#8
We have utilized non-instantaneous reheating in solving the complete set of Boltzmann equations [31]

with Tmax “ 100 ˆ TRH
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deviation of the total decay width from this asymptotic value with M1 “ M2{2 “ µ “

1014 GeV, which is parametrized by

r “ �tot{

˜
✏2c2�m

3
3{2

16⇡M2
P

¸
. (47)

Thus, in the large m3{2 limit, the gravitino lifetime is given by
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✏c�
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1 EeV

m3{2

˙3

s. (48)
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matter and b) that the decay products do not exceed observational backgrounds.
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virtual sparticles with Planck-suppressed couplings, such as t-channel processes of the type

G G Ñ G̃ Ñ  µ  µ, with G, G̃ representing the gluon and gluino, respectively [8]. Because

the production rate is doubly Planck-suppressed, the abundance of dark matter produced

from the bath is very limited (proportional to T 7
RH [8] as in Eq. (2)), requiring a massive

gravitino to compensate its low density. Moreover, it was shown in [7, 9] that considering

reheating processes involving inflaton decay imposes a lower bound on TRH Á 3 ˆ 1010 GeV

implying from Eq.(2) a lower bound on the gravitino mass m3{2 Á 0.2 EeV [7] to respect

PLANCK constraints [32] on the density of cold dark matter.

It is of interest to check this constraint in the context of models with the bilinear R-parity

breaking term in Eq. (10). In the context of high scale supersymmetry,

µ „ rm " µ1
ñ ✏ “

µ1
a
µ2

` µ12 »

µ1

µ
»

µ1

rm . (49)

#7
To be more precise, above the maximum temperature of the thermal bath Tmax which is di↵erent from

TRH if one considers non-instantaneous reheating [31].
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1 EeV

m3{2

˙3

s . (50)

One of the interesting features in this framework is that the scale of the gravitino mass

required to obtain the experimentally determined relic abundance from Eq. (2) is around

the PeV-EeV scale (and higher). The decay of a particle with this mass would provide a

smoking gun signature: a monochromatic neutrino from its decay into Z⌫ or h⌫ (Eq. (50))

which could be observed by IceCube [33] or ANITA [34].

Combining the relic density constraint Eq. (2) with Eq. (50), we can eliminate the grav-

itino mass and write#8

µ1c� “ 14 keV

ˆ
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0.11
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TRH
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. (51)

We see that while the high scale supersymmetry framework does not yield a strong constraint

from lepton number violation (µ1
À µ » rm » 1014 GeV from Eq. (29)) just requiring the

lifetime to exceed the current age of the Universe (⌧U » 4.3 ˆ 1017 s), would give the limit

µ1
À 20 GeV, for c� » 0.1. However, as we will see below, observational constraints will

actually require a lifetime in excess of 1028 s, which further restricts µ1
† 140 keV, for

c� » 0.1, as given in Eq. (51).

These limits can be contrasted with those derived in weak-scale supersymmetric models,

where µ1
† 20 keV from the preservation of the baryon asymmetry as given in Eq.(26). In

the weak scale supersymmetry scenario, gravitinos are singly produced from the thermal

bath and the relic abundance can be expressed as [31, 35]

⌦3{2h
2

» 0.11

ˆ
100 GeV

m3{2

˙ ˆ
TRH

2.2 ˆ 106 GeV

˙ ˆ
M1{2

10 TeV

˙2

, (52)

where M1{2 is a typical gaugino mass and we have assumed m3{2 ! M1{2. Repeating the

steps outlined above, we can again relate µ1 to the gravitino lifetime,

µ1c� » 1.4 keV

ˆ
10 TeV

rm

˙2 ˆ
⌦3{2h2

0.11

˙3{2 ˆ
1028 s

⌧3{2

˙1{2 ˆ
2.2 ˆ 106 GeV

TRH

˙3{2
, (53)

#8
We have utilized non-instantaneous reheating in solving the complete set of Boltzmann equations [31]

with Tmax “ 100 ˆ TRH
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R1

SO(10) DM models
!
1. Pick an Intermediate Scale Gauge Group

2 Model

We begin with an overview of the basic SO(10) model needed to accommodate a DM
candidate. As mentioned above, in this work, we consider SO(10) GUT models and
restrict ourselves to a two step simultaneous symmetry breaking chain,1 in which the
SO(10) gauge group is broken to an intermediate gauge group G

int

at the GUT scale
M

GUT
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symmetry will be given in Sec. 2.1. Possible SO(10)
multiplets that contain an electric and color neutral component for a WIMP DM candidate
are summarized in Sec. 2.2. For a group theoretical argument on the classification of these
DM candidates, see Appendix A. Among them, those who have a non-zero hypercharge
are severely restricted by the DM direct search experiments. We consider this class of
DM candidates in Sec. 2.3 and discuss conditions for the DM models to evade the direct
search bound.

To keep our model concise, in the following discussion, we only consider SO(10) irre-
ducible representations with dimensions up to 210.

2.1 SO(10) GUT and discrete symmetry

We start by giving a brief description of the ingredients in our model. In an SO(10) unifi-
cation theory, a generation of SM fermions and a right-handed neutrino are embedded in a
16 chiral representation, while the SM Higgs boson usually lies in a 10 representation. To
obtain a realistic Yukawa sector, it is necessary to take the 10 to be complex [27,28]. We
will keep this sector unchanged in most of what follows. In addition to the SM particles,
the R
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scale masses. Also, to obtain the right relic abundance, the mass of the DM particle is
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Examples: 
Scalars

Table 4: One-loop result for scales, unified couplings, and proton lifetimes for models in
table. 3. The DM mass is set to be mDM = 1 TeV. The mass scales are given in GeV
and the proton lifetimes are in units of years. Blue shaded models evade the proton decay
bound, ⌧(p ! e+⇡0) > 1.4⇥ 1034 yrs [55,56].
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SE3221D 14.60 12.29 0.0245 29.9± 1.2
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Higgs portal models!
Inert Higgs doublet models
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FIG. 1: Running of the quartic couplings of Higgs field, for
selected inputs. The green solid, brown dashed, and blue dash-
dotted lines show the running of �, �sH , and �s, respectively,
while the green dotted curve shows the running of � in the
SM. The gauge coupling running is also shown in thin black
lines. Above the intermediate scale, the running of c�, c�,
and c�� is shown using the matching conditions in (4). The
free parameters are chosen as follows: At Q = mt, �s = 0
and �sH = 0.46 (which corresponds to mDM ' 1.5 TeV);
At Mint, c̃� = c0� = c�� = c�� = c0�� = c0�� = 0 and
c� = �c0�� = �m��/vR = 0.05. The non-zero couplings are
taken so that the low-energy mass spectrum we consider here
is realized.

Then a quartic potential can be written as

V
(4)
abv =

c�
2

�
tr(�†�)

�2
+

c0�
4
tr (��) tr

�
�†�†

�

+
c�
2

�
tr(�†�)

�2
+

c̃�
4
tr(�̃†�)tr(�†�̃)

+ c��tr(�
†�)tr(�†�) +

c�
2
|�|4 + c��|�|2tr(�†�)

+ c��|�|2tr(�†�) + c0���
†[�†,�]�

+ c0��tr
�
�†�[�†,�]

�
+ c0���

†�†��+ . . . . (3)

Note that we have only included those quartic couplings
which can be generated through RGE evolution, with
the exception of the last two; c0�� is needed to split the
masses of the two-Higgs doublet, �, while c0�� is induced
by the c0�� term via RGE e↵ects.

The quartic terms that contain two powers of �, as
well as the cubic coupling (see Eq. (5)) produce non-
trivial tree-level threshold corrections at Mint, after �

acquires a vev and the heavy fields are integrated out:

� = c� � (c�� + c0��)
2

c�
,

�sH = c�� �
(c�� + c0��)[m�� + (c�� � c0��)vR]

c�vR
,

�s = 3c� � 3
[m�� + vR(c�� � c0��)]

2

c�v2R
, (4)

where h�i = vRT�

with T
�

⌘ (�1 � i�2)/2. As is well
known, these threshold e↵ects always go in the direction
of benefiting vacuum stability [7]. The evolution of the
quartic couplings, c�, c�, and c�� above the intermediate
scale are also shown in Fig. 1 using the matching condi-
tions in (4). We use the one-loop RGEs for these quartic
couplings. Although we do not explicitly display the run-
ning of all quartic terms above the intermediate scale, we
have checked that although some run negative (notably
c0�), we have verified that the couplings satisfy su�cient
conditions which guarantee stability of the vacuum up to
the GUT scale.

The quadratic and cubic parts (which can lead to mass
terms) of the potential can be written as

V
(2,3)
abv = m2

�|�|2 +m2
�tr(�

†�) +m2
�tr(�

†�)

+m��

�
�̃†�†�

�
+ h.c. , (5)

where we take m�� to be real for simplicity. The relevant
matching conditions with the weak scale mass parameters
are

µ2
s = m2

� +
�
c�� � c0��

�
v2R + 2m��vR ,

µ2 = m2
� + (c�� + c0��) v

2
R , (6)

where the low energy fields are related to the high energy
fields as �1 = H and �0 = (s+ ia)/

p
2.

The running of �s receives a large contribution from
�sH , d�s/d lnQ = 12�2

sH/(4⇡)2 + · · · and thus by de-
manding perturbativity of the couplings (�i . 1/�i,
where �i is a relevant beta-function coe�cient) up to
the intermediate scale, we can set an upper bound on
�sH . 1.3. However, requiring perturbativity of the ci’s
above the intermediate scale places a stronger bound on
�s(Mint) . 2.4 which requires �sH(mt) . 0.9. Non-
zero values for other couplings further push the upper
limit to �sH(mt) . 0.6 in order to avoid singularities
in the RGEs. Since �sH controls the annihilation cross
section for s: �annvrel ' �2

sH/16⇡m2
DM, and the relic

density is proportional to 1/h�annvreli, the upper limit
on �sH corresponds to an upper limit to the DM mass
mDM . 2 TeV, similar to that in the minimal dark mat-
ter model [24] without an intermediate scale.

The Higgs mass parameter, µ2, must be negative in or-
der to break the electroweak symmetry, and in the SM,
µ2 remains negative as it is run up to high energies. The

Example based on scalar!
 singlet DM  (SA3221) with

2

negative. The presence of the singlet scalar DM at low
energies also deflects the running of the Higgs quartic
coupling. Moreover, we show that the negative mass-
squared needed for electroweak symmetry breaking runs
positive due the coupling of the Higgs field with the DM
singlet.

The requirement for the radiative electroweak sym-
metry breaking imposes a lower bound on the DM–
Higgs coupling. This then leads to a lower limit on the
DM mass if one assumes that the thermal relic abun-
dance of the DM agrees with the observed DM density
⌦DMh2 ' 0.12 [21]. On the other hand, perturbativity
of the couplings in the model gives an upper limit on the
DM–Higgs coupling, and thus on the DM mass. As a
result, a finite DM mass region is allowed by these two
conditions. We find that this mass range can be probed
in the XENON1T experiment [22].

An exemplary SO(10) model with stable dark matter.—
When one combines the number of possible intermediate
scale gauge groups with the multitude of choices for dark
matter and Higgs representations in an SO(10) model,
one may think that the amount of freedom one has for
model building is enormous. However, in practice when
one imposes the conditions that i) gauge coupling unifi-
cation occurs, ii) that the intermediate scale is found to
be below the GUT scale, and iii) that the GUT scale is
high enough so that the proton lifetime exceeds current
experimental bounds, only a handful of possible mod-
els survive [14, 15]. Furthermore, since any dark matter
candidate must be part of a larger SO(10) representation,
that multiplet must be split, putting further constraints
on the possible choice of field content.

In this letter, we choose one example of a scalar dark
matter model with an intermediate scale gauge group
given by Gint = SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦U(1)B�L.
We will examine the model labeled SA3221 in [15] for
which the dark matter is a scalar singlet originating in a
16 of SO(10). In addition to SM fields, the model em-
ploys a 45 (or 210) to break SO(10) to Gint when the
(15, 1, 1) component (under SU(4)C⌦SU(2)L⌦SU(2)R)
acquires a vacuum expectation value (vev). The inter-
mediate scale gauge group is subsequently broken when
the color singlet, right-handed triplet sitting in the 126

acquires a vev. All other components of the 126 are
expected to have GUT scale masses. In addition to an
explicit (GUT scale) mass term for the 16, the scalar
multiplet can have mass contributions from its couplings
to the Higgs 45 and 126. An explicit calculation of the
fine-tuning needed to obtain a TeV scale mass for the
singlet scalar dark matter candidate can be found in Ap-
pendix C of [15]. In the example given there, all members
of the 16 are GUT scale except the scalar analog of eR
(ẽR) which has an intermediate scale mass, and ⌫̃R which
has a weak scale mass.

Renormalization group evolution of the Higgs couplings
and masses.—The renormalization group evolution be-
tween the weak scale and intermediate scale is almost
identical to the SM. The only di↵erence comes from
the inclusion of the SM singlet dark matter candidate,
s ⌘ Re[⌫̃R]. Below the intermediate scale, the scalar po-
tential is relatively simple,

Vblw = µ2|H|2+1

2
µ2
ss

2+
�

2
|H|4+�sH

2
|H|2s2+�s

4!
s4 . (1)

In many ways, this resembles the minimal dark mat-
ter model often referred to as the Higgs portal [23, 24].
The mass of our dark matter candidate is given by
m2

DM = �sHv2/2+µ2
s. Furthermore, fixing the dark mat-

ter mass will also fix �sH at the weak scale (taken here
to be mt) through the relic density (assuming standard
thermal freeze-out): mDM ' 3.3�sH TeV. In this paper,
we compute the DM relic density using micrOMEGAS [25].
The evolution of the Higgs quartic coupling in the SM
with and without the inclusion of the scalar s is shown
in Fig. 1 by the green solid and dotted curves, respec-
tively. The renormalization group equations (RGE) are
run at the two-loop level1 and one sees that the SM quar-
tic coupling runs negative just above 1010 GeV [4] with-
out the scalar contribution. With the scalar contribution,
the running of � would remain positive out to the GUT
scale. Note that at the intermediate scale (determined by
the conditions for gauge coupling unification; the running
of the gauge couplings in SA3221 is shown by thin black
lines in Fig. 1), Mint ' 109 GeV, � > 0. Gauge cou-
pling unification also determines the GUT scale to be
MGUT ' 1.5⇥ 1016 GeV, which is high enough to evade
the proton decay limit. Also shown is the running of �s

(blue dash-dotted) and �sH (brown dashed).

Above the intermediate scale, it is necessary to include
in addition to s, the right-handed doublet �(1,1,2, 1)
which contains s, the Higgs triplet �(1,1,3, 2) residing
in the 126, two heavy complex fields in addition to the
SM Higgs doublet which all sit in a complex �(1,2,2, 0),
and finally the three right handed neutrinos sitting in the
fermionic 16 matter representations. Above the interme-
diate scale, we write � = (�1, �̃2), �̃ ⌘ �2�⇤�2 (�a are
the Pauli matrices), � = (�+,�0)T , and

� =

✓
�+/

p
2 �++

�0 ��+/
p
2

◆
, (2)

where �i = (�0
i ,�

�

i )
T is an SU(2)L doublet; �̃ ⌘ i�2�

⇤.

1 We use the three-loop RGEs for the top Yukawa and Higgs quar-
tic couplings. We also include the two-loop electroweak threshold
corrections according to Ref. [4]. We use the MS scheme up to
the intermediate scale, and switch to the DR scheme at Mint.
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Summary

LHC susy and Higgs searches have pushed CMSSM-like 
models to “corners” or strips 

However, still viable and more so beyond the CMSSM 

But maybe the susy spectrum is very heavy, and was never 
part of the thermal background, yet the gravitino may still be 
the dark matter! 

Can we learn more from a UV completion? 

Signatures at the EeV scale?


