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• Extract the DM distribution from high resolution cosmological 
simulations to make accurate predictions for DM searches.



Prospects for direct DM searches



Nassim Bozorgnia

Astrophysical inputs
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Astrophysical inputs

• Standard Halo model (SHM): isothermal sphere with an 
isotropic Maxwell-Boltzmann velocity distribution with a peak 
speed equal to the local circular speed (~220 km/s).
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XENON1T, 1805.12562
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XENON1T, 1805.12562

���� ����

��
��
�
��
��
��
�

 DM density

DM velocity 
distribution

Assumption: SHM

Astrophysical inputs

What can we learn from cosmological simulations about the local 
DM distribution in the Milky Way (MW)?

DSU18, Annecy, 25 June 2018
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Dark Matter only simulations

• Significant systematic uncertainty since the impact of baryons neglected.

Vogelsberger et al., 0812.0362

• DM speed distributions from cosmological N-body simulations 
without baryons, deviate substantially from a Maxwellian.

DSU18, Annecy, 25 June 2018



• Each hydrodynamical (DM + baryons) simulation adopts a 
different galaxy formation model, spatial resolution, particle mass.
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Hydrodynamical simulations

SHM Ling+'09
Eris
NIHAO
EAGLE
MaGICC
Sloane+'16
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• Each hydrodynamical (DM + baryons) simulation adopts a 
different galaxy formation model, spatial resolution, particle mass.
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Hydrodynamical simulations

SHM Ling+'09
Eris
NIHAO
EAGLE
MaGICC
Sloane+'16
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different groups. The most common criterion is the MW mass 
constraint, which has a large uncertainty.

Bozorgnia & Bertone, 1705.05853

DSU18, Annecy, 25 June 2018



Nassim Bozorgnia

EAGLE and APOSTLE
• We use the EAGLE and APOSTLE hydrodynamic simulations.   

Calibrated to reproduce the observed distribution of stellar masses 
and sizes of low-redshift galaxies.

DSU18, Annecy, 25 June 2018



• Identify MW-like galaxies by taking into account observational 
constraints on the MW, in addition to the mass constraint: 
rotation curves [Iocco, Pato, Bertone, 1502.03821], total stellar mass.
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Identifying Milky Way analogues
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EAGLE HR

Bozorgnia et al., 1601.04707 
Calore, Bozorgnia et al., 1509.02164 

14 MW 
analogues
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• Spherically averaged DM density profiles of the MW analogues:
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Dark Matter density profiles
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• Spherically averaged DM density profiles of the MW analogues:

Nassim Bozorgnia

Dark Matter density profiles

• To find the DM density at the position of 
the Sun, consider a torus aligned with the 
stellar disc.

ρχ = 0.41 - 0.73 GeV/cm3

DSU18, Annecy, 25 June 2018



In the galactic rest frame: 
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Local speed distributions
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EAGLE HR

DMO simulations

Bozorgnia et al., 1601.04707

DSU18, Annecy, 25 June 2018



In the galactic rest frame: 
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Local speed distributions
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EAGLE HR

DMO simulations

• Maxwellian distribution with a free peak provides a better fit to 
haloes in the hydrodynamical simulations compared to their 
DMO counterparts.

• Best fit peak speed: 

Bozorgnia et al., 1601.04707

vpeak = 223 - 289 km/s

DSU18, Annecy, 25 June 2018



• Baryons deepen the gravitational potential in the inner halo, 
shifting the peak of the DM speed distribution to higher speeds. 

• In most cases, baryons appear to make the local DM speed 
distribution more Maxwellian.

•

Nassim Bozorgnia

Local speed distributions
Common trends in different hydrodynamical simulations: 

Bozorgnia & Bertone, 1705.05853

DSU18, Annecy, 25 June 2018
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Departure from isothermal

Hydro

DMO
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EAGLE HR

• At the Solar circle, haloes in the hydrodynamical simulation are 
closer to isothermal than their DMO counterparts.

Bozorgnia & Bertone, 1705.05853

DSU18, Annecy, 25 June 2018
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Components of the velocity distribution

Bozorgnia et al., 1601.04707

radial azimuthal

vertical

DSU18, Annecy, 25 June 2018
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Comparison with DMO

Bozorgnia et al., 1601.04707

radial azimuthal

vertical

DSU18, Annecy, 25 June 2018



• Clear velocity anisotropy at the Solar circle.

• Two haloes have a rotating DM component in the disc with 
mean velocity comparable (within 50 km/s) to that of the stars.         

• Hint for the existence of a co-rotating dark disk in 2 out of 14 
MW-like haloes.         Dark disks are relatively rare in 
our halo sample.

Nassim Bozorgnia

How common are dark disks?
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How common are dark disks?

• Sizable dark disks also rare in other hydro simulations: 

• They only appear in simulations where a large satellite 
merged with the MW in the recent past, which is robustly 
excluded from MW kinematical data.

Bozorgnia & Bertone, 1705.05853

Bozorgnia et al., 1601.04707 
Schaller et al., 1605.02770 

DSU18, Annecy, 25 June 2018
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The halo integral

Bozorgnia et al., 1601.04707

• For standard spin-independent and spin-dependent interactions:
astrophysics

particle physics
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DMO simulations
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The halo integral

Bozorgnia et al., 1601.04707
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EAGLE HR, DMO

DMO simulations

• Halo integrals for the best fit Maxwellian velocity distribution 
(peak speed 223 - 289 km/s) fall within the 1σ uncertainty band 
of the halo integrals of the simulated haloes.

DSU18, Annecy, 25 June 2018



• Halo integrals and hence direct detection event rates obtained 
from a Maxwellian velocity distribution with a free peak are 
similar to those obtained directly from the simulated haloes.

•

Nassim Bozorgnia

The halo integral

Common trend in different hydrodynamical simulations: 

Bozorgnia & Bertone, 1705.05853

Bozorgnia et al., 1601.04707 (EAGLE & APOSTLE) 
Kelso et al., 1601.04725 (MaGICC) 
Sloane et al., 1601.05402

DSU18, Annecy, 25 June 2018



• Assuming the Standard Halo Model:
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Implications for direct detection

LUX

DAMA
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• Compare with simulated Milky Way-like haloes:
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Implications for direct detection

LUX

DAMA
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few GeV shift 
in mass

factor of ~2-3 
shift in cross 
section
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Implications for direct detection

LUX

DAMA
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Fix local ρχ=0.3 GeV cm-3

• Difference in the local DM density        overall difference with the SHM. 

• Variation in the peak of the DM speed distribution        shift in the low 
mass region.

DSU18, Annecy, 25 June 2018
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Implications for direct detection

Fix local ρχ=0.3 GeV cm-3

Comparison to other hydrodynamical simulations: 

Bozorgnia & Bertone, 1705.05853

DSU18, Annecy, 25 June 2018



• For a very general set of non-relativistic effective operators:
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Non-standard interactions

Kahlhoefer & Wild, 1607.04418
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Non-standard interactions
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• For a very general set of non-relativistic effective operators:
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Non-standard interactions
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• Best fit Maxwellian     
falls within the 1σ 
uncertainty band of the     
h          of the simulated 
haloes.

DSU18, Annecy, 25 June 2018
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Future perspective

Auriga simulations: 30 hydrodynamic simulations of MW size haloes

New high resolution simulations available:

• Search for correlations between the local DM and stellar 
velocity distributions. 

DSU18, Annecy, 25 June 2018
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Future perspective
Are the DM and stellar velocity distributions correlated?

Herzog-Arbeitman, Lisanti, Madau, Necib, 1704.04499

DSU18, Annecy, 25 June 2018
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Future perspective
Are the DM and stellar velocity distributions correlated?

Herzog-Arbeitman, Lisanti, Madau, Necib, 1704.04499

Auriga

DSU18, Annecy, 25 June 2018

-��� -��� � ��� ���
�

�

�

�

�

�ϕ[��/�]

�(�
ϕ
)[
��

-
�
(�
�
/�
)-
� ]

-��� -��� � ��� ���
�

�

�

�

�

��[��/�]

�(�
�)
[�
�-
�
(�
�
/�
)-
� ]

DM
All Stars
[Fe/H]<-2
[Fe/H]<-3

-��� -��� � ��� ���
�

�

�

�

�

�ρ[��/�]

�(�
ρ)
[�
�-
�
(�
�
/�
)-
� ]

Preliminary



Nassim Bozorgnia

Future perspective
Are the DM and stellar velocity distributions correlated?

Auriga

DSU18, Annecy, 25 June 2018
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Prospects for indirect DM searches



• Expected gamma-ray flux from DM annihilation:

• Large uncertainties in the DM density profile in the inner few kpc.

Nassim Bozorgnia

Indirect DM searches

astrophysics

Pato & Iocco, 1504.03317

DSU18, Annecy, 25 June 2018



• Expected gamma-ray flux from DM annihilation:

• Large uncertainties in the DM density profile in the inner few kpc.

Nassim Bozorgnia

Indirect DM searches

astrophysics

Use cosmological simulations: 

• DMO simulations predict NFW profile:         , where          in 
the inner few kpc.

• What is the DM density profile for MW-like galaxies in 
hydrodynamical simulations?

DSU18, Annecy, 25 June 2018



• Unexplained excess of gamma rays in Fermi-LAT data from the 
centre of our Galaxy, above the known astrophysical 
background.

Nassim Bozorgnia

Galactic centre GeV excess

• DM interpretation:
  Best fit value for the inner slope: 

• Other interpretations: unresolved millisecond pulsars, diffuse photons 
from cosmic rays, stellar source population in the Galactic bulge, …

Hooper & Goodenough ’09, Vitale & Morselli ’09, ….

Macias & Gordon, 1312.6671

DSU18, Annecy, 25 June 2018
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Galactic centre GeV excess

• Test the DM density profile predicted by hydrodynamical 
simulations against the GeV excess data.

• Additional selection criterion of MW-like galaxies: substantial 
stellar disk component.      

4 MW analogues: 
2 EAGLE + 2 APOSTLE

DSU18, Annecy, 25 June 2018
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DM density profiles
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DM density profiles
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DM density profiles
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DM density profiles
• GeV excess data analyzed in the region: 

• A very conservative approach: power-law extrapolation with 
maximal asymptotic slope at the Power radius.
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Fitting the GeV excess
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• Assuming 100% annihilation into b-quarks:

• Similar constraints on 
DM mass and 
annihilation cross 
section, but significantly 
worse fit.

(238 dof)

DSU18, Annecy, 25 June 2018
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Fitting the GeV excess
• Even under our very conservative assumption, DM density 

profiles of our MW-like galaxies do not reproduce the correct 
morphology of the GeV excess in the inner most regions.

Calore, Bozorgnia et al., 1509.02164 

DSU18, Annecy, 25 June 2018



• To make precise quantitative predictions for the DM distribution 
from simulations         Identify MW analogues by taking into 
account observational constraints on the MW.

• Local DM density agrees with local and global estimates. Constraints 
from Gaia could be used in future simulations. 

• DM density profiles show flattening in the inner few kpc and 
contraction up to 10 kpc.    

• Halo integrals of MW analogues match well those obtained from 
best fit Maxwellian velocity distributions. 

• Maxwellian works for the analysis of direct detection data.         
Can substantially reduce astrophysical uncertainties by a better 
selection of MW-like galaxies in simulations. 

• DM density profiles of MW-like galaxies fail to reproduce the GeV 
excess.

Summary
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Selection criteria for MW analogues

DSU18, Annecy, 25 June 2018
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Departure from isothermal

Hydro

DMO
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Searching for dark disks

DSU18, Annecy, 25 June 2018
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Searching for dark disks

DSU18, Annecy, 25 June 2018



Nassim Bozorgnia

Halo shapes

DSU18, Annecy, 25 June 2018
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Halo shapes

DSU18, Annecy, 25 June 2018
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Parameters of the simulations

Properties of the selected MW analogues

DSU18, Annecy, 25 June 2018
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Parameters of the simulations

Auriga simulations

DSU18, Annecy, 25 June 2018
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Morphology of simulated haloes

DSU18, Annecy, 25 June 2018
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Morphology of simulated haloes

DSU18, Annecy, 25 June 2018
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GeV excess spatial profile

Calore et al., 1409.0042 

Generalized NFW:

DSU18, Annecy, 25 June 2018
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GeV excess DM interpretation

Calore et al., 1411.4647 
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